Spelling suggestions: "subject:"5construction engineering"" "subject:"5construction ingineering""
381 |
Surface Shape Correction by Highlight LinesGyurecz, György, Bercsey, Tibor 26 September 2017 (has links) (PDF)
The design of industrial products applies various construction aspects. Beside functionality and manufacturability conditions that are essential in technical design, products must also meet aerodynamic, hydrodynamic and aesthetic demands. These demands are particularly important in automotive, ship and airplane industry but they are also present in the design of medical replacements, household appliances, etc. The common objective of above aspects is to produce smooth and irregularity free surface shape. Quality and smoothness of surfaces of industrial objects can efficiently be evaluated by highlight lines.
|
382 |
Time, Cost, and Environmental Impact Analysis for Sustainable Design at Multiple Building LevelsInyim, Peeraya 23 March 2015 (has links)
Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated.
The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.
|
383 |
A System-of-Systems Framework for Assessment of Resilience in Complex Construction ProjectsZhu, Jin 14 July 2016 (has links)
Uncertainty is a major reason of low efficiency in construction projects. Traditional approaches in dealing with uncertainty in projects focus on risk identification, mitigation, and transfer. These risk-based approaches may protect projects from identified risks. However, they cannot ensure the success of projects in environments with deep uncertainty. Hence, there is a need for a paradigm shift from risk-based to resilience-based approaches. A resilience-based approach focuses on enhancing project resilience as a capability to cope with known and unknown uncertainty. The objective of this research is to fill the knowledge gap and create the theory of resilience in the context of complex construction project systems.
A simulation approach for theory development was adopted in this research. The simulation framework was developed based on theoretical elements from complex systems and network science. In the simulation framework, complex projects are conceptualized as meta-networks composed of four types of nodes: human agents, information, resources, and tasks. The impacts of uncertainty are translated into perturbations in nodes and links in project meta-networks. Accordingly, project resilience is investigated based on two components: project vulnerability (i.e., the decrease in meta-network efficiency under uncertainty) and adaptive capacity (i.e., the speed and capability to recover from uncertainty). Simulation experiments were conducted using the proposed framework and data collected from three complex commercial construction project cases. Different scenarios related to uncertainty-induced perturbations and planning strategies in the cases were evaluated through the use of Monte Carlo simulation.
Three sets of theoretical constructs related to project resilience were identified from the simulation results: (1) Project vulnerability is positively correlated with exposure to uncertainty and project complexity; (2) Project resilience is positively correlated with adaptive capacity, and negatively correlated with vulnerability; (3) Different planning strategies affect project resilience either by changing the level of vulnerability or adaptive capacity. The effectiveness of a planning strategy is different in different projects. Also, there is a diminishing effect in effectiveness when adopting multiple planning strategies. The results highlighted the significance of the proposed framework in providing a better understanding of project resilience and facilitating predictive assessment and proactive management of project performance under uncertainty.
|
384 |
Maximizing Environmental Sustainability and Public Benefits of Highway Construction ProgramsLimsawasd, Charinee 24 March 2016 (has links)
Transportation agencies face a challenging task to repair damaged roads in an aging transportation network with limited funding. In addition, the funding gap is forecasted to continue widening, which has direct impacts on the performance of surface transportation networks and the nation’s economy in the long run. Recently, transportation agencies were required by a newly enacted law to include national performance-based goals, such as environmental sustainability, in their programming and planning efforts for highway repair and rehabilitation. Therefore, the current practice in the area of highway rehabilitation planning is inadequate to handle this task and new practices are needed to improve the performance of transportation networks while maintain the national goal of maximizing environmental sustainability. Accordingly, this dissertation presents an innovative environmental-based decision-support model for planning highway construction programs. The model is developed in three main parts that are designed to: (1) model total vehicle fuel consumption and public benefits/costs of traveling on transportation networks; (2) evaluate the economic and environmental impacts of highway rehabilitation efforts; and (3) develop a multi-objective optimization model to identify and evaluate highway rehabilitation program(s) that are capable of simultaneously minimizing environmental impact and maximizing public benefits of rehabilitation decisions.
First, mathematical models were developed to facilitate estimating the total vehicle fuel consumption and public benefits/cost for road users at the network-level. These models are deigned to estimate vehicle fuel consumption rate, tire depreciation cost, and vehicle repair and maintenance cost rate, in terms of major vehicle–road interaction factors, such as vehicle type, speed, and pavement conditions. The developed and statistically validated models are then used to estimate total vehicle fuel consumption and public benefits/costs at the network-level.
Second, a new model was developed for evaluating the impact of decision making in highway rehabilitation efforts on greenhouse gas emissions and public travel costs. The model has the capabilities of: (1) identifying candidate rehabilitation treatment alternatives for damaged or aging pavement; (2) evaluating the impact of these treatments on pavement performance; (3) estimating network fuel consumption due to highway rehabilitation decisions; (4) estimating additional public costs as a result of travel-delay during road construction operations; and (5) evaluating the impact of rehabilitation efforts on public benefits expressed as expected savings in road user costs.
Third, a multi-objective optimization model was developed to search for and identify highway rehabilitation programs that are capable of minimizing environmental impact in terms of CO2 emissions while maximizing public benefits under budget constraints. This newly developed model enables planners and decision makers to design and implement highway rehabilitation programs that are cost-effective and environmentally-conscious.
|
385 |
Innovative Delivery of Water Infrastructure ProjectsJanuary 2020 (has links)
abstract: Water utilities across the United States are facing numerous challenges, such as limited funding and increasing project complexity, in constructing and upgrading their aging infrastructure. One innovative method to overcome these challenges is through the use of alternative project delivery methods (APDM), such as construction management at-risk (CMAR) and design-build (DB). Previous research has shown that APDM have the potential to deliver higher performing water infrastructure projects when compared to the traditional design-bid-build (DBB) method. However, there is a need to further examine APDM practices and develop tools that may support utilities in the delivery of their APDM water infrastructure projects. This study fills the knowledge gap by conducting several studies that may support public and private utilities in improving the delivery of their APDM water infrastructure projects. First, APDM implementation practices for water infrastructure projects are identified by assessing the state of practice, particularly during project procurement and execution. Second, DB project administration best practices are determined to support utilities seeking to add DB to their organization’s project delivery toolbox. Third, a pioneering web-based project delivery method decision-support tool was developed to aid utilities in selecting the appropriate delivery method for their water project. Finally, project-specific factors and attributes that impact project delivery performance are investigated through exploratory modeling and analysis. The study collected data on 75 completed treatment plant projects, conducted interviews with ten utilities that successfully deliver their water projects using DB, and worked closely with several industry experts through industry workshops and panels. Key findings related to water infrastructure project delivery revealed in this study included: (1) guaranteed maximum price (GMP) is the preferred compensation type for APDM projects; (2) utilities statistically having the lowest comfort level with delivering CMAR projects; (3) qualifications-based procurement is an effective DB project delivery practice; (4) the identification of 13 key project delivery method selection factors; and (5) the three highest predictors that impact unit cost performance are project complexity, project team chemistry and communication, and project size. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
|
386 |
Dimensional Stability of Geosynthetic Clay Liners in Landfill ApplicationsOlsen, Gregory R. 01 December 2011 (has links)
An investigation was conducted related to the dimensional stability of geosynthetic clay liners (GCLs) in landfill applications. Multiple occurrences of panel separation of overlap seams in GCLs have been documented; however, explanation for the relative contribution of various mechanisms causing shrinkage has been limited. A systematic test program was conducted to determine the effects of a variety of conditions on GCL dimensional stability.
Effects of initial moisture content, permeant type, and overburden pressure were tested by subjecting various GCL products to wet-dry cycles and measuring the dimensional change with each cycle. Different GCL types were each tested under various combinations of initial moisture content (as-received, 50, 75, 100, and 125%), permeant types (tap water, distilled water, and 0.1 M CaCl2), and overburden pressures (0, 6, and 20 kPa). Thermal expansion tests were conducted by heating or cooling GCL test specimens to temperatures of 0, 10, 40, 60, and 80°C at constant moisture content. Subgrade tests were conducted by placing GCL test specimens on compacted clay and sand subgrades in different orientations and hydration conditions in sealed containers and measuring dimensional change over time. Mechanical necking tests were conducted by subjecting GCL specimens to varying levels of tension and measuring the longitudinal and transverse strains at each load increment. Field simulation tests were conducted by placing specimens on a compacted sand subgrade beneath an exposed geomembrane liner outdoors in late summer.
Initial moisture content tests resulted in shrinkage strains as high as 20% after 20 wet-dry cycles. GCLs ranged from slightly anisotropic [approximately 1.1:1 ratio of machine (MD) to cross-machine (XMD) shrinkage] to highly anisotropic (approximately 3:1 ratio of MD to XMD shrinkage). Most combinations of GCL type and initial moisture content resulted in GCL MD shrinkage strains greater than a value that would cause panel separation (termed panel separation threshold, PST) at roll ends during the first wet-dry cycle. All test specimens contracted beyond the PST in the MD within 3 wet-dry cycles. GCL specimens without attached geomembranes contracted beyond the PST in the XMD within 5 cycles. Permeant type tests demonstrated that hydration with 0.1 M CaCl2 reduced shrinkage by 50-80% compared to permeation with tap water. Overburden tests demonstrated that applying 6 kPa and 20 kPa reduced specimen shrinkage by at least 60% and 80%, respectively. Thermal expansion tests indicated that temperature changes at constant moisture content had little effect on GCL dimensional stability. Subgrade tests demonstrated that subgrade type and moisture as well as GCL type and orientation had effects on dimensional stability. Tensile necking tests demonstrated that transverse shrinkage occurred due to tensile forces in GCLs, but shrinkage was nearly always less than PST. Field simulation tests demonstrated that wet-dry cycles in the field were less intense and/or less frequent than in the laboratory. Results of this testing provide a basis for GCL overlap specifications necessary to maintain full coverage and future research to confirm a suggested method of preconditioning bentonite to prevent shrinkage.
|
387 |
Computer-Simulation-Assisted Lean Manufacturing TrainingWang, Luoding 19 January 2005 (has links)
This thesis assesses the potential of using computer simulation to aid existing lean manufacturing training methods such as lecture and live simulation. An investigation of this possibility was carried out in conjunction with UMEP's Lean 101 class. In the study, two experimental computer simulation models demonstrating the push and pull production scenarios were constructed using ProModel software. Simulation models were equipped with a Visual Basic interface to aid trainees to manipulate the model via ActiveX. Constructed computer simulation was compared with live simulation to answer these research questions: 1. Was computer simulation able to teach additional lean concepts not covered in live simulations? 2. Was training time less for trainees going through a computer simulation than for those going through a live simulation? 3. Was a computer simulation quicker and easier to set up than a live simulation for trainers? 4. Did computer simulation achieve comparable educational objectives as live simulation? Objective measurements for first three questions were positive and conclusive. For the fourth one, a survey was conducted among trainees of a treatment group (computer simulation only) and a control group (live simulation only) to collect responses. Statistical analysis of the subjective responses indicated the computer simulation aided the trainees to learn and implement lean manufacturing, but was not as effective as live simulation. Holistically, these results did not warrant the complete changeover from live simulation to computer simulation. Yet, a combined implementation of computer simulation and live simulation was proposed to reap the benefits from the best of both approaches.
|
388 |
Globale Collaboration im Kontext mit PLMMuschiol, Michael, Schulte, Stefan 25 September 2017 (has links)
Aus der Einleitung:
"Bedingt durch eine geforderte, lokale Präsenz eines global agierenden Unternehmens gegenüber weltweiten Kunden sowie durch global verteiltes Engineering, Produktion und Service sind Unternehmen zunehmend in der Pflicht, sich global zu positionieren. Auch die Verlagerung von Engineeringaufgaben zu externen Zulieferern und Partnern erfordern organisatorische sowie prozesstechnische Maßnahmen, die durch eine entsprechende informationstechnische Unterstützung flankiert werden müssen. Für diese Unterstützung können sogenannte PLM-Systemumgebungen genutzt werden, die sich auf PDM-Systemen abstützen."
|
389 |
Virtual Reality bei KärcherSeibold, Andreas, Stelzer, Ralph, Saske, Bernhard 25 September 2017 (has links)
Die Firma Kärcher wurde 1935 von Alfred Kärcher in Stuttgart-Bad Cannstatt zur Entwicklung und Herstellung industrieller Produkte auf dem Gebiet der Heiztechnik gegründet. Der erste Heißwasser-Hochdruckreiniger Europas entstand 1950 am neuen Stammsitz in Winnenden und bedeutete für Kärcher den Durchbruch in der Reinigungstechnik. Ein weiterer Meilenstein in der Firmengeschichte war die Einführung des ersten tragbaren Hochdruckreinigers und die damit verbundene Erschließung des Consumer-Marktes 1984.
|
390 |
Ansatz für die Modellierung und Simulation von Hybridgleitlagern für Wellen mit großen Durchmessern und geringen Drehzahlen am Beispiel einer WindkraftanlageJonuschies, Ingo, Brökel, Klaus January 2012 (has links)
Motivation
"Am stetig steigenden Anteil der erneuerbaren Energien, der auf der einen Seite durch die ehrgeizigen Ziele der Politik forciert und auf der anderen Seite durch wirtschaftliche Interessen beflügelt wird, stellt die Windenergie den größten und aussichtsreichsten Bestandteil dar (BMU 2012). Setzt sich der gegenwärtige Trend fort, so ist in den nächsten Jahren mit Multimegawattanlagen im mehrstelligen Megawattbereich zu rechnen."
|
Page generated in 0.1238 seconds