• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 23
  • 13
  • 10
  • 9
  • 6
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 268
  • 51
  • 32
  • 28
  • 23
  • 21
  • 20
  • 20
  • 20
  • 19
  • 18
  • 18
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Investigation of Sulphur Containing Organic Compounds in Groundwater Using Differential Ion Mobility and Mass Spectrometry

Lyczko, Jadwiga 28 August 2013 (has links)
Groundwater aquifers are the largest source of drinking water for human population. Current available information of the quality of groundwater is quite limited mainly due to the lack of comprehensive analysis of groundwater and the challenging task of applying any analytical method in its investigation. In this thesis, a new method based on “soft” mass spectrometry and differential ion mobility (FAIMS) was developed to discover previously unknown sulphur-containing contaminants in groundwater in Ontario. Following this discovery, de novo identification of these contaminants was accomplished by determining their elemental composition based on mass measurements and their chemical structures from unique dissociation patterns. The compounds characterized in this study were found to be thiotetronic acids which are structurally related to synthetic and natural antibacterial agents such as the natural antibiotics thiolactomycin and thiotetramycin, allowing for speculation as to their potential beneficial properties.
132

Untersuchungen zum Abbauverhalten von Polyestern mit unterschiedlichen Phosphorsubstituenten

Fischer, Oliver 29 January 2014 (has links) (PDF)
In unserem alltäglichen Leben nehmen Kunststoffe eine immer größere Rolle ein. Die organische Struktur dieser Materialien bedingt die Brennbarkeit derselbigen und birgt somit eine Gefahr, die allgegenwärtig ist. Flammschutz von Polymeren ist daher eine wichtige Eigenschaft. Der Markt an Flammschutzadditiven ist bereits sehr breit gefächert. Allerdings gibt es nur wenig Studien, die systematisch Struktur und Flammschutzwirkung betrachten. So war es das Ziel dieser Arbeit, durch die Untersuchung zweier systematisch variierter Polymergruppen Struktur-Eigenschafts-Beziehungen zu entwicklen, die das Verständnis von Flammschutzadditiven erweitern. Die erste Gruppe bestand aus Polyestern mit einem gleichbleibenden Polymerrückrat an dem phosphorhaltige Seitenketten systematisch variiert wurden. In der zweiten Gruppe wurde das Polymergrundgerüst bei gleichbleibendem Substituenten variiert. Die Strukturen wurden umfassend hinsichtlich ihres Abbaus untersucht, so das durch Korrelation von Abbauverhalten und erarbeiteten Abbaumechanismen Zusammenhänge zwischen der nativen Polymerstruktur und dem Flammschutzverhalten gefunden werden konnten. Es lässt sich nachweisen, dass das Hauptabbaumaximum fast vollständig durch die Polymergrundkette dirigiert wird. Der Substituent hat wenig Einflauss darauf, womit sich die Möglichkeit ergibt Flammschutzadditive gezielt and das Abbaumaximum des zu schützenden Matrixpolymers anzupassen. Die strukturelle Veränderung des phosphorhaltigen Substituenten hingegen ermöglich es das Flammschutzadditv in seiner Wirkungsweise, also Aktivität in der Gasphase oder kondensierten Phase, anzupassen. Sehr wesentlich, besonders mit Blick auf die Rückstandbildung, ist das Zusammenspiel zwischen Substituent und Polymerrückgrat. Bei geeigneter Wahl aliphatischer und aromatischer Anteile lassen sich so Flammschutzadditive herstellen, die einerseits gut zu verarbeiten sind, andererseits aber auch einen möglichst hohen Rückstand erzeugen. Mit Kenntnis dieser Struktur-Eigenschafts-Beziehungen ist es zukünftig möglich, polymere Flammschutzadditive zielgerichteter zu entwickeln. So lässt sich das Additiv in seiner Wirkung nicht nur an das Matrixpolymer anpassen, sondern auch an die primären Brandgefahren in dessen Endanwendung. Eine Under-the-hood-Anwendung im Automobilbau fordert andere Flammschutzeigenschaften als die Verwendung im häuslichen Küchenbedarf.
133

Validation and Functional Characterization of Novel Neurofibromin Interacting Proteins

Arun, Vedant 19 March 2013 (has links)
Neurofibromin (NF1) is a 2,818aa protein encoded by the very large NF1 tumour suppressor gene located on chromosome 17q11.2. Loss of function mutations and deletions in NF1 underlie Neurofibromatosis type-1 (NF-1) - the most common inherited syndrome of the nervous system in humans with a birth incidence of 1:3,000. The most visible feature of NF-1 is the neoplastic manifestations known as neurofibromas, however, the syndrome is also characterized by pigmentary defects, peripheral motor dysfunction, learning disabilities and several developmental abnormalities. The molecular etiology of many of these non-neoplastic phenotypes remains unknown. Here we demonstrate that the Tubulin Binding Domain (TBD) of NF1 is a binding partner of the Leucine Rich Pentatrico Peptide Repeat motif-Containing protein (LRPPRC) and cytoplasmic Dynein Heavy Chain (DHC). The NF1-LRPPRC interaction is of high significance as it links NF-1 with Leigh’s Syndrome, French Canadian variant (LSFC) – an autosomal recessive neurodegenerative disorder that arises due to mutations in the LRPPRC gene. This interaction occurs as part of an RNA granule complex, and use of transgenic mouse models establishes an important role of NF1 and LRPPRC in peripheral nerve development. The NF1-DHC interaction is of importance in melanocytes where our studies suggest a possible role in melanosome localization, disruptions in which may underlie the abnormal pigmentary features known as café-au-lait macules that are commonly associated with NF-1. The validation of LRPPRC and DHC as novel NF1 interactors reveal new roles of NF1, which open the door to better understanding the molecular mechanisms that underlie the myriad of NF-1 manifestations.
134

Validation and Functional Characterization of Novel Neurofibromin Interacting Proteins

Arun, Vedant 19 March 2013 (has links)
Neurofibromin (NF1) is a 2,818aa protein encoded by the very large NF1 tumour suppressor gene located on chromosome 17q11.2. Loss of function mutations and deletions in NF1 underlie Neurofibromatosis type-1 (NF-1) - the most common inherited syndrome of the nervous system in humans with a birth incidence of 1:3,000. The most visible feature of NF-1 is the neoplastic manifestations known as neurofibromas, however, the syndrome is also characterized by pigmentary defects, peripheral motor dysfunction, learning disabilities and several developmental abnormalities. The molecular etiology of many of these non-neoplastic phenotypes remains unknown. Here we demonstrate that the Tubulin Binding Domain (TBD) of NF1 is a binding partner of the Leucine Rich Pentatrico Peptide Repeat motif-Containing protein (LRPPRC) and cytoplasmic Dynein Heavy Chain (DHC). The NF1-LRPPRC interaction is of high significance as it links NF-1 with Leigh’s Syndrome, French Canadian variant (LSFC) – an autosomal recessive neurodegenerative disorder that arises due to mutations in the LRPPRC gene. This interaction occurs as part of an RNA granule complex, and use of transgenic mouse models establishes an important role of NF1 and LRPPRC in peripheral nerve development. The NF1-DHC interaction is of importance in melanocytes where our studies suggest a possible role in melanosome localization, disruptions in which may underlie the abnormal pigmentary features known as café-au-lait macules that are commonly associated with NF-1. The validation of LRPPRC and DHC as novel NF1 interactors reveal new roles of NF1, which open the door to better understanding the molecular mechanisms that underlie the myriad of NF-1 manifestations.
135

Characterization And Modulation By Drugs And Other Effectors Of Bovine Liver Microsomal Flavin Monooxygenase (fmo)

Baser, Deniz Fulya 01 January 2004 (has links) (PDF)
The flavin-containing monooxygenases (FMO / E.C.1.14.13.8) are microsomal NADPH and oxygen-dependent flavoprotein enzymes that catalyze the oxidation of a wide variety of xenobiotics, including drugs and environmental toxicants. Nucleophiles containing nitrogen, sulfur, phosphorus and selenium heteroatoms are the substrates of FMO. Bovine liver microsomal FMO enzyme activity was characterized using methimazole as substrate, which is a highly specific substrate for FMO. From 12 different bovine liver samples, microsomes were prepared and the average specific activity of bovine liver microsomal FMO was found to be 2.37 &amp / #61617 / 0.30 nmol/min/mg (Mean &amp / #61617 / SE, n=12). The rate of reaction was linear up to 0.5 mg of bovine liver microsomal protein. The maximum FMO enzyme activity was detected at 37 &amp / #61616 / C and at pH 8.0. Effects of detergents / Triton X-100 and Emulgen 913, on FMO activity were determined and found that enzyme activity increased by the addition of either detergent at all concentrations (0.1%-1.0%). The apparent Vmax and Km values of bovine liver microsomal FMO for methimazole substrate were found as 1.23 nmol/min/mg and 0.11 mM, respectively. Thermostability of bovine liver microsomal FMO was studied at four different temperatures / 24 &amp / #61616 / C, 37 &amp / #61616 / C, 50 &amp / #61616 / C and 65 &amp / #61616 / C. The incubation time required for the complete loss of enzyme activity was 5 minutes at 65 &amp / #61616 / C, 10 minutes at 50 &amp / #61616 / C and 6.5 hours at 37 &amp / #61616 / C. 68 % of the activity was still detectable at the end of 53 hours at 24 &amp / #61616 / C. Bovine liver microsomal activity towards two drug substrates, imipramine and chlorpromazine, was also determined and found to be 3.73 and 3.75 nmol NADPH oxidized/min/mg, respectively. Effects of two drug substrates, imipramine and chlorpromazine, on bovine liver microsomal FMO-catalyzed methimazole oxidation activity was also studied and found that they inhibit FMO activity at all concentrations studied. Modulation of bovine liver microsomal FMO activity was studied using three different heavy metal ions / Ni+2, Cd+2 and Hg+2. At all other concentrations studied for each heavy metal ion and at all substrate methimazole concentrations (0.1, 0.2, 0.5, 1.0 mM), FMO-catalyzed methimazole oxidation activity decreased compared to control activity. KI values for Ni+2, Cd+2 and Hg+2 were found to be 0.5 mM, 0.085 mM, 4.6 &amp / #61549 / M, respectively. From the Dixon plot, the pattern of inhibition for three heavy metal ions was observed to be noncompetitive.
136

A Novel ELISA to Detect Methionine Sulfoxide−Containing Apolipoprotein A−I

Wang, Xiao suo January 2009 (has links)
Doctor of Philosophy(PhD) / Atherosclerosis manifests a state of increased oxidative stress characterized by comparable lipid and protein oxidation in the affected arterial wall. While oxidative modification of low density lipoprotein (LDL) has been extensively studied, increasing attention has been focused recently on oxidation of high-density lipoproteins (HDL) and its functional consequences in relation to atherosclerosis. Oxidative modification is thought to generate “dysfunctional” HDL that has lost anti-atherosclerotic activities, including the ability to remove cholesterol from lipid-laden cells. Therefore, there has been much interest in the detection of oxidized HDL. Unfortunately, available methods to detect oxidized HDL are limited at present, in part because oxidative modification of HDL is a complex process and ‘oxidized HDL’ is not a chemically defined entity. What is known however is that conversion of methionine (Met) residues of apolipoprotein (apo) A-I to methionine sulfoxide (MetO) is a process that occurs commonly as HDL undergoes oxidative modification. For example, human apoA-I+16 (containing MetO86 or MetO112) and apoA-I+32 (MetO86 plus MetO112) are generated when apoA-I reacts with lipid hydroperoxides formed as a consequence of the lipoprotein being exposed to 1e−oxidants. The formation of MetO in apoA−I induced by 2e−oxidants (i.e., hydrogen peroxide, hypochlorous acid or myeloperoxidase/hydrogen peroxide/chloride system) is associated with an impaired ability of the apolipoprotein to facilitate reactions relevant to reverse cholesterol transport. In addition, a previous study has suggested the plasma content of apoA-I+32 to be increased in certain subjects that have an increased risk to develop cardiovascular disease (CVD). Moreover, the MetO content in circulating, HDL−associated apoA−I is elevated in type 1 diabetes, a disorder commonly associated with increased oxidative stress and a risk factor for atherosclerosis. Therefore, in the present study, an existing HPLC method was applied to HDL samples from the Fletcher−Challenge study, a nested case control study, to test the potential usefulness of MetO-containing apoA-I as a marker of oxidative stress and/or CVD in a general population. Plasma samples whose HDL contained detectable apoA-I+16 and/or apoA-I+32 had significantly elevated levels of F2-isoprostanes, a marker of in vivo lipid oxidation, consistent with MetO-containing apoA-I being a useful marker of in vivo protein oxidation. Despite this however, there was no significant difference between controls and cases in their concentrations of HDL apoA-I+16 and apoA-I+32 or F2-isoprostanes, suggesting that markers of protein and lipid oxidation are not associated with the risk of coronary heart disease (CHD) in this general population. A limitation of the Fletcher−Challenge study was that only 22% of the 534 HDL samples analyzed contained apoA-I+16 and/or apoA-I+32. In addition, the HPLC−based method used is expensive and time−consuming and may lack the sensitivity needed for apolipoproteins to clinical studies. Thus, a mouse monoclonal anti-human apoA-I+32 antibody (MOA−1) was raised using HPLC−purified apoA-I+32 as immunogen. A sensitive ELISA was then developed using a commercial anti-human apoA-I monoclonal antibody as capture and biotinylated MOA−1 as detection antibody, respectively. The assay detected lipid−free HPLC−purified human apoA-I+32 in a concentration-dependent manner and with a significantly lower limit of detection (i.e., 3 ng/mL) than the HPLC method (1 μg/mL). The ELISA also detected lipid-free apoA-I modified by 2e-oxidants (hydrogen peroxide, hypochlorous acid, peroxynitrite), and HDL oxidized by 1e- or 2e-oxidants and present in buffer or human plasma. Moreover, the extent of recognition of MetO by MOA−1 increased with increasing numbers of MetO in apoA−I, as assessed by the experiments with H2O2−oxidized forms of apoA−I mutants, in which one, two or three Met residues were replaced with Leu. Their detection was concentration-dependent, reproducible, and exhibited a linear response over a physiologically plausible range of concentrations of oxidized HDL. In contrast, MOA-I failed to recognize native apoA-I, native apoA-II, apoA-I modified by hydroxyl radicals or metal ions, or LDL modified by 2e-oxidants. Furthermore, MOA−1 did not detect other Met−containing proteins oxidized by either hypochlorous acid or hydrogen peroxide. Taken together, the results showed that recognition of oxidized proteins by MOA−1 is limited to MetO contained in apoA−I. Finally, in a pilot study, plasma samples obtained from subjects with coronary artery disease (CAD) proven by angiography, and samples from CAD patients undergoing percutaneous coronary intervention (PCI) were analyzed by the ELISA. The preliminary data obtained showed elevated levels of MetO-containing apoA-I in plasma samples of CAD patients compared to those of corresponding control subjects. Unexpectedly, levels of MetOcontaining apoA-I decreased PCI compared to before PCI. A possible explanation for these results is that HDL−associated apoA−I become displaced by acute phase proteins, such as serum amyloid A, in response to PCI. In summary, the ELISA developed here specifically detects apoA-I containing MetO in HDL and human plasma. As such it may provide a useful tool for investigating the relationship between oxidized HDL and CAD.
137

A Novel ELISA to Detect Methionine Sulfoxide−Containing Apolipoprotein A−I

Wang, Xiao suo January 2009 (has links)
Doctor of Philosophy(PhD) / Atherosclerosis manifests a state of increased oxidative stress characterized by comparable lipid and protein oxidation in the affected arterial wall. While oxidative modification of low density lipoprotein (LDL) has been extensively studied, increasing attention has been focused recently on oxidation of high-density lipoproteins (HDL) and its functional consequences in relation to atherosclerosis. Oxidative modification is thought to generate “dysfunctional” HDL that has lost anti-atherosclerotic activities, including the ability to remove cholesterol from lipid-laden cells. Therefore, there has been much interest in the detection of oxidized HDL. Unfortunately, available methods to detect oxidized HDL are limited at present, in part because oxidative modification of HDL is a complex process and ‘oxidized HDL’ is not a chemically defined entity. What is known however is that conversion of methionine (Met) residues of apolipoprotein (apo) A-I to methionine sulfoxide (MetO) is a process that occurs commonly as HDL undergoes oxidative modification. For example, human apoA-I+16 (containing MetO86 or MetO112) and apoA-I+32 (MetO86 plus MetO112) are generated when apoA-I reacts with lipid hydroperoxides formed as a consequence of the lipoprotein being exposed to 1e−oxidants. The formation of MetO in apoA−I induced by 2e−oxidants (i.e., hydrogen peroxide, hypochlorous acid or myeloperoxidase/hydrogen peroxide/chloride system) is associated with an impaired ability of the apolipoprotein to facilitate reactions relevant to reverse cholesterol transport. In addition, a previous study has suggested the plasma content of apoA-I+32 to be increased in certain subjects that have an increased risk to develop cardiovascular disease (CVD). Moreover, the MetO content in circulating, HDL−associated apoA−I is elevated in type 1 diabetes, a disorder commonly associated with increased oxidative stress and a risk factor for atherosclerosis. Therefore, in the present study, an existing HPLC method was applied to HDL samples from the Fletcher−Challenge study, a nested case control study, to test the potential usefulness of MetO-containing apoA-I as a marker of oxidative stress and/or CVD in a general population. Plasma samples whose HDL contained detectable apoA-I+16 and/or apoA-I+32 had significantly elevated levels of F2-isoprostanes, a marker of in vivo lipid oxidation, consistent with MetO-containing apoA-I being a useful marker of in vivo protein oxidation. Despite this however, there was no significant difference between controls and cases in their concentrations of HDL apoA-I+16 and apoA-I+32 or F2-isoprostanes, suggesting that markers of protein and lipid oxidation are not associated with the risk of coronary heart disease (CHD) in this general population. A limitation of the Fletcher−Challenge study was that only 22% of the 534 HDL samples analyzed contained apoA-I+16 and/or apoA-I+32. In addition, the HPLC−based method used is expensive and time−consuming and may lack the sensitivity needed for apolipoproteins to clinical studies. Thus, a mouse monoclonal anti-human apoA-I+32 antibody (MOA−1) was raised using HPLC−purified apoA-I+32 as immunogen. A sensitive ELISA was then developed using a commercial anti-human apoA-I monoclonal antibody as capture and biotinylated MOA−1 as detection antibody, respectively. The assay detected lipid−free HPLC−purified human apoA-I+32 in a concentration-dependent manner and with a significantly lower limit of detection (i.e., 3 ng/mL) than the HPLC method (1 μg/mL). The ELISA also detected lipid-free apoA-I modified by 2e-oxidants (hydrogen peroxide, hypochlorous acid, peroxynitrite), and HDL oxidized by 1e- or 2e-oxidants and present in buffer or human plasma. Moreover, the extent of recognition of MetO by MOA−1 increased with increasing numbers of MetO in apoA−I, as assessed by the experiments with H2O2−oxidized forms of apoA−I mutants, in which one, two or three Met residues were replaced with Leu. Their detection was concentration-dependent, reproducible, and exhibited a linear response over a physiologically plausible range of concentrations of oxidized HDL. In contrast, MOA-I failed to recognize native apoA-I, native apoA-II, apoA-I modified by hydroxyl radicals or metal ions, or LDL modified by 2e-oxidants. Furthermore, MOA−1 did not detect other Met−containing proteins oxidized by either hypochlorous acid or hydrogen peroxide. Taken together, the results showed that recognition of oxidized proteins by MOA−1 is limited to MetO contained in apoA−I. Finally, in a pilot study, plasma samples obtained from subjects with coronary artery disease (CAD) proven by angiography, and samples from CAD patients undergoing percutaneous coronary intervention (PCI) were analyzed by the ELISA. The preliminary data obtained showed elevated levels of MetO-containing apoA-I in plasma samples of CAD patients compared to those of corresponding control subjects. Unexpectedly, levels of MetOcontaining apoA-I decreased PCI compared to before PCI. A possible explanation for these results is that HDL−associated apoA−I become displaced by acute phase proteins, such as serum amyloid A, in response to PCI. In summary, the ELISA developed here specifically detects apoA-I containing MetO in HDL and human plasma. As such it may provide a useful tool for investigating the relationship between oxidized HDL and CAD.
138

Hidrogéis contendo tretinoína associada a nanocápsulas de núcleo lipídico : influência da secagem das suspensões nas propriedades físico-químicas e biofarmacêuticas

Zuglianello, Carine January 2015 (has links)
Este estudo tem como objetivo central avaliar a influência da secagem por aspersão de nanocápsulas de núcleo lipídico contendo tretinoína nos perfis in vitro de liberação e de penetração cutânea deste fármaco a partir de hidrogéis. Esses experimentos foram conduzidos empregando-se células de difusão de Franz, pele de abdome de porcos (fêmeas), regime de aplicação de doses infinitas e meio receptor composto por tampão fosfato pH 7,4 e etanol (70:30). A secagem por aspersão das suspensões de nanocápsulas, utilizando PVP e lactose (1:1, m/m) a 10% como adjuvantes, forneceu produtos com bons perfis de dispersão em água, bons rendimentos (próximos a 70%), baixos teores de substâncias voláteis, e teores do fármaco acima de 92%. O tipo de produto intermediário, suspensão aquosa ou respectivo pó, utilizado na produção de hidrogéis (G-LNC-TTN e G-LNC-TTN-SD, respectivamente) não influenciou no perfil de liberação in vitro da tretinoína, que se ajustou ao modelo de Higuchi. No estrato córneo houve diferenças nas quantidades de tretinoína penetradas a partir das duas formulações. O G-LNC-TTN levou a uma retenção exponencial do fármaco nessa camada, enquanto para o G-LNC-TTN-SD isso não ocorreu. Essa diferença foi associada à forma de organização das nanocápsulas na matriz do gel. Na epiderme e na derme, ambas as formulações permitiram a chegada de pequenas e constantes quantidades de tretinoína. No compartimento receptor da célula de Franz o fármaco não foi detectado. A pequena permeação da tretinoína para as camadas mais profundas da pele e para o meio receptor são indicativos de baixa absorção sistêmica, e também podem contribuir para a diminuição dos efeitos adversos associados à terapia tópica com essa substância. A secagem das suspensões de nanocápsulas de núcleo lipídico, nas condições utilizadas, forneceu um intermediário em potencial para a produção de formas farmacêuticas semissólidas contendo tretinoína. / This study’s central goal is to assess the influence of spray-drying lipid core nanocapsules on tretinoin in vitro release profiles as well as skin penetration/permeation from hydrogels. These experiments were conducted employing Franz diffusion cells, pig abdominal skin (female), infinite doses regimen and receptor medium composed of phosphate buffer pH 7.4 and ethanol (70:30). Spray-drying of the nanocapsules suspensions, using PVP and lactose (1:1, m/m) at 10% (m/v) as drying adjuvant provided powders with good water dispersion profiles, good yields (around 70%), low volatile substances contents, in addition to drug contents above 92%. Interchanging intermediate products, aqueous suspension or respective powder, used in hydrogel formulation (G-LNC-TTN and G-LNC-TTN-SD, respectively) caused no influence on tretinoin in vitro release profile which was adjusted by Higuchi model. In corneum stratum there were differences in tretinoin quantities which penetrated from those formulations. The G-LNC-TTN provided an exponential retention of the drug on this skin’s layer, although G-LNC-TTN-SD did not. This difference was associated with the nanocapsules organization form in hydrogel matrix. In epidermis and dermis both formulations allowed permeation of constant and low tretinoin quantities. Moreover, at receptor fluid the drug was not detected. The low tretinoin permeation for deeper skin layers and for receptor fluid is low systemic absorption indicative, furthermore, may contribute in reducing adverse effects associated with tretinoin topical therapy. In given conditions, spray-drying of lipid core nanocapsules provided a potential intermediate for production of semi solids pharmaceutical forms containing tretinoin.
139

Structural and functional characterisation of a novel signalling molecule in Arabidopsis thaliana

Mulaudzi, Takalani January 2011 (has links)
Philosophiae Doctor - PhD / Nitric Oxide (NO) influences a wide range of physiological processes in plants including growth and development, responses to abiotic and biotic stress and pathogen responses. NO binds to the heme group of the mammalian soluble guanylyl cyclase, which activates the enzyme to convert guanosine 5’ triphosphate (GTP) to a second messenger guanosine 3’, 5’ cyclic monophosphate (cGMP). Cyclic GMP further activates other signalling cascades including the regulation of protein kinases, ion gated channels and phosphodiesterases. In plants, a few GCs have been identified and these include AtGC1, AtBRI1, AtWAKL10, and AtPSKR1, however, a GC that contains a heme binding motif that senses NO has yet to be identified. In order to identify such molecules, a search motif based on conserved HNOX domains and the conserved and functionally assigned amino acid residues in the catalytic centres of annotated GCs was designed and used to search the Arabidopsis thaliana proteome. Several candidate molecules were identified including a flavin-containing monooxygenase (FMO)-like protein and the At5g57690 which is currently annotated as a diacylglycerol kinase. FMOs found in bacteria, yeast, and animals are the most important monooxygenases since they are involved in xenobiotic metabolism and variability in drug response. FMOs in plants are implicated in catalysing specific steps in auxin biosynthesis,metabolism of glucosinolates and pathogen defense mechanisms. The human diacylglycerol kinase acts as a lipid kinase that mediates a wide range of biological processes which include cell proliferation, differentiation and turmogenesis. In prokaryotes, the structure of Escherichia coli lipid kinase has been solved however, its function has not yet been demonstrated. So far, the occurrence of the diacylglycerol kinases in plants has not yet been reported, and their structure and function also remain elusive. The domain architecture of the 2 molecules (AtNOGC1 and At5g57690) identified by the HNOX-based search strategy revealed that these molecules contain a GC and a heme-binding motif that is conserved among all known heme-binding proteins.In this study, the role of AtNOGC1, a novel NO binding protein in higher plants was investigated and the results showed that this molecule contains an NO-dependant active GC domain. The sequence was first analysed and the location of the HNOX and the GC motifs highlighted. The protein was then recombinatly expressed as a His-SUMO fusion protein and the purification optimised by a second step of ion exchange chromatography. Electrochemical techniques such as cyclic voltammetry and square wave voltammetry were used to demonstrate the binding of NO and O2 to the AtNOGC1. Electrochemical data revealed that AtNOGC1 has a lower affinity for O2 and a higher affinity for NO, an important signalling molecule in plants.The presence of the GC activity in AtNOGC1 was investigated by conducting GC activity assays in vitro in the presence or absence of NO. The GC activity assays demonstrated that AtNOGC1 can synthesize cGMP from GTP in vitro. It was also noted that NO was required for the maximum activation of AtNOGC1 catalytic activity. NO-activated catalysis resulted in a >2 fold excess of cGMP production compared to an NO-independent GC activity assay. The effect of calcium in regulating the GC activity was also investigated and an increase in cGMP levels was observed however, this was just a preliminary finding that requires further experimentation.3 Homology models for both the FMO-like (AtNOGC1) and the diacylglycerol kinase(At5g57690) were built using Modeller program, and important amino acid residues underlying the heme-binding and GC motifs were identified. Residues corresponding to the motifs, which give signature to AtNOGC1 as an FMO, were also noted. In addition,computational functional prediction also suggested the role of AtNOGC1 in a number of processes which include ion binding and functioning as an FMO.Taken together, these findings suggest that AtNOGC1 is a novel Arabidopsis thaliana hemebinding protein that senses NO with higher affinity than for O2. Though AtNOGC1 is currently annotated as a FMO-like protein, it contains a NO-sensitive GC activity and shares limited sequence similarities with mammalian sGC and the recently identified HNOX domains. Homology modelling strongly suggests that AtNOGC1 and At5g57690 belong to the families of FMOs and diacylglycerol kinases respectively. The domain organisation of AtNOGC1 suggests that more of its functions still remain to be identified. The cloning and characterisation of the At5g57690 gene will provide possible means for further experimentation as well as affording more insights into the exact functions of lipid kinases in plants.
140

Spegling, härbärgering och grundning : en studie av tre begrepp i det terapeutiska rummet

Nygren, Elin January 2016 (has links)
Spegling, härbärgering och grundning - En studie av tre begrepp i det terapeutiska rummet, av Elin Nygren, är en uppsats inom ramen för Magisterprogrammet i musikpedagogik med inriktning musikterapi vid Kungl. Musikhögskolan i Stockholm. Syftet med uppsatsen har varit att i litteraturstudier samt i intervjuer undersöka begreppen spegling, härbärgering och grundning. Intervjuerna har haft i fokus att utforska hur fyra terapeuter kliniskt använder begreppen och hur musik kan utveckla dessa. Uppsatsen grundar sig i de utvecklingspsykologiska teorierna och i Wigrams teorier om musikterapeutiska improvisationstekniker. Resultatdelen i uppsatsen är en sammanställning av intervjuerna efter att de bearbetats enligt modellen Tematisk analys. I denna del redovisas hur terapeuterna beskriver det metodiska användandet av begreppen anpassat efter de olika målgrupper som de arbetar med. Vid sammanställning av intervjuerna blev det tydligt att de fyra terapeuterna har en överensstämmande syn kring de tre begreppens funktion för terapeuten och en överensstämmelse i sina definitioner av dem. Det framkom också att musik i många delar är analogt med Sterns vitalitetsaffekter och kompatibelt med hur vi människor kommunicerar. / Reflecting, containing and grounding – A study of three concepts used in therapy, by Elin Nygren is a study carried out within the context of Master Program in Music Education, with orientation Music Therapy at The Royal College of Music in Stockholm. The purpose with this paper has been to look into the concepts reflecting, containing and grounding in literature and in interviews. The main focus of these interviews has been to explore how four therapists in therapy uses the concepts and how music can develop these. The paper is based on the developmental psychology theories and Wigram’s theories of improvisation techniques in music therapy. The result of this paper is a compilation of the interviews, after being processed according to the model of Thematic Analysis. In the result it is reported how the therapists describes the methodological use of the concepts adapted to the different audiences they work with. In the compilation it was clear that the four therapists have equivalent perspectives about the three concepts function for the therapist and an equivalent definition of them. It also appeared that music is analogue to Sterns dynamic forms of vitality and compatible with how humans communicate.

Page generated in 0.1208 seconds