• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 19
  • 10
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 100
  • 32
  • 17
  • 17
  • 16
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Role of Small GTPase RhoG in Focal Adhesion Dynamics and Contractility.

Hoover, Ashtyn 29 August 2019 (has links)
No description available.
62

The Novel Role of Hematopoietic Lyn Substrate-1 Associated Protein X-1 in Cardiac Contractility and Cardioprotection

Lam, Chi Keung January 2012 (has links)
No description available.
63

The influence of the hormonal milieu on functional prostaglandin and oxytocin receptors and their downstream signal pathways in isolated human myometrium.

Fischer, Deborah P. January 2010 (has links)
Although prostaglandins (PG) and oxytocin are crucial mediators of uterine contractility, their receptor-mediated effects during the menstrual cycle, pregnancy and labour are not fully understood. The aim of this thesis was to elucidate the functional expression of EP, FP, TP and oxytocin receptors in isolated human myometrium relative to myocyte mRNA and signal transduction pathways. Myometrial samples were obtained from consenting non-pregnant and pregnant donors. Functional techniques were used to determine isometric muscle contractions. Primary uterine myocytes and fibroblasts were cultured at term to identify stimulated changes in calcium (Ca2+), cyclic adenosine monophosphate (cAMP) and mRNA. Myometrial strips exhibited spontaneous contractions, which were most active midcycle under oestrogenic conditions. At this time intrinsic contractility and responsiveness to uterotonins decreased towards the fundus. PGE2 produced bellshaped responses with predominant utero-relaxant effects mediated via the EP2 subtype. Although activity was partially restored by PGE2 through EP3/1 receptors, tissue excitation was more pronounced at FP, TP and oxytocin receptors. Despite high FP mRNA expression, the lower segment uterus was particularly responsive to U46619 and oxytocin at term pregnancy. Even so, Ca2+ mobilisation by oxytocin was greater via principal release from intracellular stores. Incubations with atosiban, progesterone and a rho-kinase inhibitor reduced oxytocin-stimulated Ca2+ transients. EP2 also attenuated oxytocic effects but this appeared to be mediated through cAMP rather than Ca2+ signalling pathways. With advancing labour, intrinsic myogenic activity declined in parallel with oxytocin desensitisation. However, TP-induced contractions were continued in the lower parturient uterus. These findings demonstrate that PG and oxytocin receptor expression are regulated in a hormone-dependent temporal and spatial manner. EP2-mediated cAMP formation appears to promote uterine quiescence, whilst TP receptors may control muscle tonus during parturition. These receptors and their messenger systems represent effective tocolytic targets for uterine hypercontractile disorders, such as dysmenorrhoea and preterm labour. / Allergan Inc.
64

MICRODOMAIN BASED CALCIUM INFLUX PATHWAYS THAT REGULATE PATHOLOGICAL CARDIAC HYPERTROPHY AND CONTRACTILITY

Makarewich, Catherine Anne January 2014 (has links)
Pathological cardiac stressors, including persistent hypertension or damage from ischemic heart disease, induce a chronic demand for enhanced contractile performance of the heart. The cytosolic calcium (Ca2+) transient that regulates myocyte contraction must be persistently increased in disease states in order to maintain cardiac output to sustain the metabolic requirements of the body. Associated with this enhanced intracellular Ca2+ ([Ca2+]i) state is pathological cardiac myocyte hypertrophy, which results in large part from the activation of Ca2+-dependent activation of calcineurin (Cn)-nuclear factor of activated T cells (NFAT) signaling. The puzzling feature of this hypertrophic signaling is that the cytosolic [Ca2+] that controls contractility appears to be separate from the [Ca2+] which activates Cn-NFAT signaling. The overarching theme of this dissertation is to explore the source and spatial constraints of pathological hypertrophic signaling Ca2+ and to investigate how it is possible that sensitive and finely tuned Ca2+-dependent signaling pathways are regulated in the background of massive Ca2+ fluctuations that oscillate between 100nM and upwards of 1-2μM during each cardiac contractile cycle. L-type Ca2+ channels (LTCCs) are a major source of Ca2+ entry in cardiac myocytes and are known to play an integral role in the initiation of myocyte excitation contraction-coupling (EC-coupling). We performed a number of experiments to show that a small population of LTCCs reside outside of EC-coupling domains within caveolin (Cav-3) signaling microdomains where they provide a local source of Ca2+ to activate Cn-NFAT signaling. We designed a Cav-targeted LTCC blocker that could eliminate Cn-NFAT activation but did not reduce myocyte contractility. The activity of Cav-targeted LTCCs could also be upregulated to enhance hypertrophic signaling without affecting contractility. Therefore, we believe that caveolae-localized LTCCs do not participate in EC-coupling, but instead act locally to control the coordinated activation of Cn-NFAT signaling that drives pathological remodeling. Transient Receptor Potential (TRP) channels are also thought to provide a source of Ca2+ for activation of hypertrophic signaling. The canonical family of TRP channels (TRPC) is expressed at low levels in normal adult cardiac tissue, but these channels are upregulated in disease conditions which implicates them as stress response molecules that could potentially provide a platform for hypertrophic Ca2+ signaling. We show evidence that TRPC channel abundance and function increases in cardiac stress conditions, such as myocardial infarction (MI), and that these channels are associated with hypertrophic responses, likely through a Ca2+ microdomain effect. While we found that TRPC channels housed in caveolae membrane microdomains provides a source of [Ca2+] for induction of cardiac hypertrophy, this effect also requires interplay with LTCCs. We also found that TRPC channels have negative effects on cardiac contractility, which we believe are due to local activation of Ca2+/calmodulin-dependent protein kinase (CaMKII) and subsequent modulation of ryanodine receptors (RyRs). Further, we found that inhibiting TRPC channels in a mouse model of MI led to increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling, as well as increased survival. Collectively, the data presented in this dissertation provides comprehensive evidence that Ca2+ regulation of Cn-NFAT signaling and resultant pathological hypertrophy can be coordinated by spatially localized and regulated Ca2+ channels. The compartmentalization of LTCCs and TRPC channels in caveolae membrane microdomains along with pathological hypertrophy signaling effectors makes for an attractive explanation for how Ca2+-dependent signaling pathways are regulated under conditions of continual Ca2+ transients that mediate cardiac contraction during each heart beat. Elucidation of additional Ca2+ signaling microdomains in adult cardiac myocytes will be important in more comprehensively resolving how myocytes differentiate between signaling versus contractile Ca2+. / Molecular and Cellular Physiology
65

INCREASING MYOCYTE CONTRACTILITY EXACERBATES CARDIAC INJURY AND PUMP DYSFUNCTION AND ABLATION OF PHOSPHORYLATION

Zhang, Hongyu January 2010 (has links)
Myocardial infarction (MI) leads to heart failure (HF) and premature death. The respective roles of myocyte death and depressed myocyte contractility in the induction of HF after MI have not been clearly defined. Cardiac ryanodine receptor (RyR2) has been linked to cardiac arrhythmias and HF. It has been controversial that protein kinase A (PKA) hyperphosphorylation of the RyR2 at a single residue, Ser-2808 is a critical mediator of progressive cardiac dysfunction after MI. We developed two mouse models. In one model with beta2a (LTCC subunit) overexpression we could prevent depressed myocyte contractility after MI and use it to test the idea that preventing depression of myocyte Ca2+ handling defects could avert post MI cardiac pump dysfunction. In the other model, mice with Ser2808 in RyR2 replaced by alanine (S2808A) to prevent the phosphorylation at this site were used to determine whether loss of functional PKA phosphorylation site at Ser2808 could protect against cardiac dysfunction progression after MI. beta2a myocytes had increased Ca2+ current; contraction and Ca2+ transients (versus controls) and beta2a hearts had increased performance before MI. After MI, ventricular dilation, myocyte hypertrophy, and depressed cardiac pump function was greater in beta2a versus control hearts. There was also an increased rate of myocyte death in beta2a hearts after MI and survival was significantly reduced in these animals. We concluded that maintaining myocyte contractility after MI, by increasing Ca2+ influx, depresses rather than improves cardiac pump function. Baseline cardiac function was similar in wild type (WT) and RyR-S2808A mice before MI. After MI, there was no significant difference between WT and RyR-S2808A mice in EF and FS at 4 weeks. ICa-L € in WT and RyR-S2808A myocytes was not significantly different. There were significant ISO responses in all myocytes, and no appreciable differences in responsiveness were found. Contractions and Ca2+ transients were not significantly different in WT and RyR-S2808A myocytes after MI. In conclusion, preventing PKA phosphorylation of RyR at Ser2808 after MI does not protect the heart or its myocytes. The role of RyR phosphorylation at other sites on abnormal Ca2+ handling in diseased hearts is yet to be defined. / Physiology
66

Die Wirkung von Adrenomedullin auf die Kontraktilität des Rattenherzens

Boyé, Philipp 21 November 2005 (has links)
In der vorliegenden Arbeit wurde erstmals mit Hilfe von drei unterschiedlichen experimentellen Modellen der Einfluß von Adrenomedullin (ADM) auf die myokardiale Kontraktilität des Rattenherzens untersucht. Die Methodik umfaßte die Verwendung des isolierten Herzen nach Langendorff, des isolierten Papillarmuskelpräparats und der konfokalen Laserscan Mikroskopie bei adulten Kardiomyozyten. In keinem der Ansätze konnte ein direkter Effekt von ADM auf die Kontraktilität nachgewiesen werden. An isolierten adulten Kardiomyozyten hatte ADM weder Einfluß auf die systolische Zellverkürzung noch auf den gleichzeitig registrierten zytosolischen Kalziumgehalt. Auch an isolierten Papillarmuskeln verursachte ADM keine Änderung der maximalen Kraftentwicklung oder Kraftanstiegsgeschwindigkeit. Endothelin-1 wurde sowohl am Papillarmuskelpräparat als auch an isolierten, adulten Kardiomyozyten als Positiv-Kontrolle verwendet und verursachte in beiden Versuchsaufbauten einen deutlichen Anstieg der kontraktilen Parameter. Als dritte Methode wurde das isoliert perfundierte Herz nach Langendorff verwendet. Unter Gabe von ADM zeigte sich ein Abfall des koronaren Perfusionsdrucks, entsprechend den bereits bekannten vasodilatierenden Eigenschaften des Peptids. Dieser Effekt war zwar begleitet von einer Abnahme der kontraktilen Parameter der Herzen, allerdings ist am isoliert und flußkonstant perfundierten Herz eine Abnahme des koronaren Perfusionsdrucks aufgrund des Gregg-Phänomes mit einer Abnahme der Kontraktilität vergesellschaftet. Aus den Ergebnissen dieser Arbeit kann daher der Schluß gezogen werden, das Adrenomedullin keinen Einfluß auf die Kontraktilität des Rattenherz hat. / The objective of this study was to investigate the influence of Adrenomedullin (ADM) on myocardial contractility of the rat heart in three different experimental models. First in the isolated rat heart preparation (Langendorf), second on the isolated papillary muscle preparation and third with confocal laserscan microscopy of isolated adult cardiomyocytes. None of these experimental models could show a direct effect of ADM on the contractility of the rat heart. In isolated adult cardiomyocytes, ADM had no influence on systolic cell shorting or on the simultaneously registered cytosolic calcium concentration. In isolated papillary muscle preparation ADM administration did not change maximal contractile force or time constants of contraction. Endothelin-1 was used as a positive control in both experimental setups and induced a marked increase in contraction parameters. In the isolated rat heart preparation (Langendorff), ADM induced a decrease of the coronary perfusion pressure, reflecting the already well described vasodilatatory properties of this peptide. This decrease was paralleled by a reduction of the contractile parameters of the heart, but in isolated rat heart preparations with constant coronary flow, a reduction of coronary perfusion pressure is always paralleled by a decrease of contractility due to the Gregg-Phenomenon. In conclusion the results of this study show that Adrenomedullin has no influence on myocardial contractility in the rat heart.
67

Charakterisierung negativ inotroper Substanzen nach Myokardischämie

Stangl, Verena 23 April 2002 (has links)
Kardialen Strukturen, wie dem koronaren oder endokardialen Endothel, dem Myokard und auch dem Perikard werden unter physiologischen und pathophysiologischen Bedingungen zunehmend autokrine oder parakrine Funktionen zugesprochen. Es ist gut belegt, dass das Herz durch Freisetzung von löslichen Mediatoren nach Myokardischämie einen entscheidenden Anteil an der postischämischen Regulation der Vasomotion hat. Allerdings weniger bekannt ist die Bedeutung einer Mediator-vermittelten kardialen Autoregulation bei postischämischen Veränderungen der Myokardkontraktilität. In dieser Arbeit wird eine neue negativ inotrope Substanz(en) (NIS) beschrieben, die nach myokardialer Ischämie aus isolierten Herzen freigesetzt wird und die an sequentiell perfundierten Herzen, die als Bioassay eingesetzt werden, einen deutlichen kardiodepressiven Effekt hervorruft. In isolierten Feld-stimulierten Rattenkardiomyozyten reduziert NIS dosisabhängig die systolische Zellverkürzung und den Ca2+-Transienten (Konfokale Laser Scan Mikroskopie). Der negativ inotrope Effekt setzt sowohl in isolierten Herzen als auch Kardiomyozyten schnell ein und ist reversibel. Katecholamine maskieren und überspielen den negativ inotropen Effekt in Abhängigkeit von der Ischämiedauer. Voltage clamp Untersuchungen auf Einzelzellebene zeigten, dass NIS den Ca2+-Einstrom Ica über die L-Typ Ca2+-Kanäle reduziert. Somit scheint NIS die Myokardkontraktilität und Zellverkürzung über eine Verminderung der intrazellulären systolischen Ca2+-Konzentrationen durch Blockade der L-Typ Ca2+-Kanäle zu reduzieren und nicht etwa über eine Ca2+-Desensitivierung. Derzeit ist noch nicht geklärt, über welchen Mechanismus NIS den Ca2+-Einstrom blockiert. Da weder die Gewebsspiegel von cGMP und cAMP noch die PKA Aktivität durch NIS moduliert werden, ist es unwahrscheinlich, dass eine Dephosphorylierung von Untereinheiten des L-Typ Ca2+-Kanals der Funktionsweise von NIS zu Grunde liegt. Die Ergebnisse legen nahe, dass NIS direkt mit dem Ca2+-Kanal interagiert, z.B. durch Bindung an ein Kanalprotein. Die chemische Struktur von NIS ist derzeit noch ungeklärt, allerdings gibt es Hinweise, dass es sich nicht um ein Protein handelt. Die Substanz(en) ist stabil, Hitze-resistent (56°) und ein dialysierbares Molekül mit einem geringen Molekulargewicht (< 0.5 kDa). Die kardiodepressorische Substanz(en) wird nicht vom Koronarendothel freigesetzt. Eine abschließende Bewertung, ob NIS durch Aggravation der kontraktilen Dysfunktion myokardschädigend oder durch Senkung des myokardialen Sauerstoffverbrauches kardioprotektiv wirkt, ist derzeit noch nicht möglich. / Autocrine and paracrine functions are increasingly being attributed under physiological and pathophysiological conditions to cardiac structures such as the coronary or endocardial endothelium, the myocardium, and the pericardium as well. Reliable evidence exists to confirm that the heart, through the release of soluble mediators after myocardial ischemia, plays a decisive role in post-ischemic regulation of vasomotion. Less well-known, however, is the significance of mediator-effected cardiac autoregulation in cases of post-ischemic changes of myocardial contractility. This study describes a new negative inotropic substance or substances, NIS, released from isolated hearts after myocardial ischemia. NIS elicits marked cardiodepressive effects on sequentially perfused hearts used as bioassays. In isolated field-stimulated rat cardiomyocytes, NIS reduces, as a function of dose, systolic cell shortening and Ca2+ transients (as detected by confocal laser-scan microscopy). The negative inotropic effect occurs quickly both in isolated hearts as well as in cardiomyocytes, and is reversible. Catecholamines counteract the negative inotropic effect, as a function of ischemia duration. Voltage-clamp investigations on the single-cell level have disclosed that NIS reduces Ca2+ inflow Ica via L-type Ca2+ channels. NIS appears to decrease myocardial contractility and cell shortening through reduction of intracellular systolic Ca2+ concentration, by blockade of L-type Ca2+ channels: and not, say, by Ca2+ desensitization. It has not yet been definitely established by which mechanism NIS blocks Ca2+ inflow. Since NIS modulates neither the tissue level of cGMP and cAMP, nor PKA activity, it is improbable that NIS acts by dephosphorization of sub-units of the L-type Ca2+ channel. The results of this study imply that NIS directly interacts with the Ca2+ channel, perhaps by binding to a channel protein. Although the chemical structure of NIS has not yet been elucidated, there are indications that it is not a protein. The substance(s) is/are stable, heat resistant (up to 56°C), and dialyzable as a molecule with low molecular weight (< 0.5 kDa). It is not yet possible to provide conclusive evaluation of whether NIS acts to damage the myocardium by aggravation of the contractile dysfunction, or whether it exerts cardioprotective action by diminishing myocardial oxygen consumption.
68

Etude du rôle des intégrines liant la laminine dans le développement et la tumorigenèse mammaires / Study of the role of laminin-binding integrins in mammary gland development and tumorigenesis

Cagnet, Stéphanie 26 November 2013 (has links)
Le développement de traitements thérapeutiques du cancer du sein reste limité par le niveau de connaissance des mécanismes moléculaires et cellulaires impliqués lors du développement normal et tumoral de la glande mammaire. L’épithélium mammaire est entouré d’une matrice extracellulaire (MEC) organisée, la membrane basale, dont le constituant principal est la laminine. Des études ont montré que les interactions entre les cellules mammaires et la MEC, dépendantes des intégrines, jouent un rôle majeur dans le développement et la tumorigenèse mammaires. Ces études n’ont cependant pas permis de déterminer les hétérodimères d’intégrine spécifiquement impliqués. Dans ce contexte, mon projet de thèse a visé à définir le rôle joué par les intégrines liant la laminine (dimères contenant les sous-unités 3 et/ou 6) dans le développement mammaire, dans le maintien de cellules souches mammaires fonctionnelles dans la glande adulte et dans le développement tumoral. Les résultats de mon travail suggèrent que :(i) l’intégrine 31 présente une fonction unique au cours de la lactation. Les mécanismes moléculaires impliqués en aval de 31 font intervenir la voie FAK/Rac1/PAK1 menant à l’inhibition de la MLCK, nécessaire à la relaxation des cellules myoépithéliales mammaires et permettant de nouveaux cycles de contraction. (ii) les interactions régulées par les intégrines entre les cellules basales mammaires et la laminine sont essentielles pour régénérer l’épithélium mammaire. Cependant, les intégrines 3 et 6 présentent des fonctions redondantes dans les cellules souches mammaires. (iii) l’intégrine 31 joue un rôle clef dans le développement tumoral mammaire. L’intégrine 31 active des voies de signalisation intracellulaires FAK/Rac1/PAK1, MAPK et JNK qui favorisent la survie et la prolifération des cellules tumorales. Ensembles, ces données permettent une meilleure compréhension des mécanismes moléculaires impliqués dans le développement mammaire, la fonction de la glande adulte et la tumorigenèse. / The improvement of breast cancer therapy requires thorough analysis of the pathways leading to tumorigenesis and clear understanding of the molecular and cellular mechanisms involved in normal mammary gland development. Mammary epithelium is surrounded by a specifically organized extracellular matrix (ECM), basement membrane, and secreted glycoproteins, laminins, are among its major constituents. Integrin-mediated interactions between mammary epithelial cells and ECM have been shown to play an essential role in the control of mammary development and tumorigenesis. However, specific roles played by distinct integrin heterodimers are yet poorly understood. My thesis project aimed to define the functions of laminin-binding integrins, i.e., heterodimers, containing 3 or 6 subunits, in normal mammary gland development, in control of mammary stem and progenitor cell functions in adult gland, and in mammary tumorigenesis. The results of my work suggest that: (i31 integrin has a unique function in the control of the myoepithelial cell contractile activity during lactation; it contributes to the activation of the FAK/Rac1/PAK1 pathway leading to MLCK inhibition required for myoepithelial cell relaxation, thereby, permitting further contractile cycles. (ii) integrin-mediated interactions of mammary basal cells with laminins are essential for the regeneration of the mammary epithelium. However, 31 and 6-contaning integrins have redundant functions in mammary stem cells.(iii) 31 integrin plays a major role in mammary tumorigenesis, it promotes survival and proliferation of tumor cells activating intracellular signaling pathways involving FAK/Rac1/PAK1, MAPK and JNK pathways. Altogether, these data provide new insights into the molecular mechanisms of mammary development, adult gland function and tumorigenesis.
69

RALlying through cell motility and invasion / RALlying entre motilité et invasion cellulaire

Biondini, Marco 25 September 2014 (has links)
La formation des métastases est un processus en plusieurs étapes à travers lequel les cellules néoplasiques se détachent de la tumeur primaire pour constituer des tumeurs secondaires à distance. Les capacités à migrer et à envahir, des cellules tumorales sont cruciales dans la cascade métastatique. Selon le type cellulaire et les stimuli présents dans le microenvironnement tumoral, les cellules peuvent se déplacer collectivement ou individuellement selon un programme de migration mésenchymateuse ou amiboïde. Différentes voies de signalisation sont liées à la régulation de la motilité cellulaire. Les GTPases Rho (Rac1, Cdc42 et RhoA) contrôlent la migration en régulant la dynamique du cytosquelette d’actine, la contraction acto-myosine et les microtubules. Rac1 régule la motilité mésenchymateuse en favorisant la formation des lamellipodes via un complexe multiprotéique, le « Wave Regulatory Complex (WRC) » et RhoA contrôle la motilité amiboïde en favorisant la contraction du cytosquelette d'acto-myosine. Les protéines Ral (RalA et RalB) appartenant à une autre famille de petites G, ont été récemment impliquées dans la régulation de la migration cellulaire. RalB, à travers le complexe « Exocyst » joue un rôle essentiel dans la motilité. Dans ce travail de thèse, nous avons étudié les mécanismes moléculaires par lesquels la voie RalB/Exocyste contrôle la motilité et l'invasion cellulaire. La première partie de ce travail démontre que l’Exocyste interagit avec SH3BP1, une protéine GAP (GTPase Activating Protein) (projet 1). Nous montrons que l’interaction entre SH3BP1 et Rac1 est nécessaire à l’activité de Rac1 au front de migration. Dans le projet 2, nous montrons que l’Exocyste interagit directement avec WRC, ce qui est un élément clé de la polymérisation de l'actine. Cette interaction est nécessaire à la localisation du complexe WRC au front de migration où il contrôle la formation de protrusions membranaires. Dans de nombreux carcinomes, la transition épithélio-mésenchymateuse (EMT) joue un rôle important dans la promotion de la migration, l’invasion et la formation des métastases. Le projet 3 a permis de mieux caractériser la plasticité de migration et l’invasion des cellules cancéreuses post-EMT et d’étudier la contribution de Ral dans l'invasion des cellules post-EMT. Nous montrons qu’après l’EMT les cellules envahissent la matrice individuellement ? en utilisant la contraction du cytosquelette d'acto-myosine. Nous montrons que RalB est nécessaire à l’invasion des cellules post-EMT, et à la contractilité cellulaire. Nous proposons que le rôle de RalB dans l'invasion passe par GEF-H1 qui est une protéine GEF (Guanine Nucleotide Exchange Factor) de Rho associée à l’Exocyste. Dans la dernière partie de ce manuscrit, nous présentons le logiciel « AVeMap » que nous avons développé afin d’automatiser la quantification des paramètres de la migration cellulaire.En résumé, dans ce travail de thèse nous montrons que la voie Ral/Exocyste est un organisateur moléculaire nécessaire à l’exécution à la fois de la motilité cellulaire contrôlée par Rac1 et à la motilité contrôlée par Rho. / Metastasis is a multistep process by which cancer cells migrate away from the primary neoplastic mass to give rise to secondary tumors at distant sites. Thus, the acquisition of motility and invasive traits by tumor cells is a crucial step for metastasis to occur. Depending on the cell type and the environment, cells can move collectively keeping stable cell-cell contacts or as individual cells, which translocate by exploiting either mesenchymal or amoeboid motility programs.Different molecules and pathways have been linked to the regulation of cell motility. Rho small GTPases (Rac1, Cdc42 and RhoA) control cell migration through their actions on actin assembly, actomyosin contractility and microtubules. Rac1 drives mesenchymal-type motility by promoting lamellipodia formation via the Wave Regulator Complex (WRC). On the contrary, amoeboid motility is governed by RhoA which promotes cell movement via the generation of actomyosin contractile force. Another family of small GTPases, the Ral proteins, was recently involved in the regulation of cell migration. RalB, through the mobilization of its main effector the Exocyst complex, was shown to play an essential role in cell motility. In this work of thesis we investigated the molecular mechanisms through which RalB/Exocyst pathway controls cell motility and invasion.In the first part of this manuscript we show that Exocyst interacts with the RacGAP SH3BP1 (project 1). In mesenchymal moving cells Exocyst/SH3BP1 interaction is required to organize membrane protrusion formation by spatially regulating the activity of Rac1 at the cellular front. In addition, in project 2, we show that the Exocyst binds to the wave regulator complex (WRC), a key promoter of actin polymerization. We provide evidences for Exocyst to be involved in driving the WRC to the leading edge of motile cells, where it can stimulate actin polymerization and membrane protrusions. Reactivation of a developmental program termed epithelial-mesenchymal transition (EMT) was recently shown to promote motility, invasion and metastasis of neoplastic cells. Tumor cells undergoing EMT loose cell-cell contacts acquire a fibroblastoid phenotype and invade the surrounding tissues as individual cells. In project 3 we characterized the invasion plasticity of cancer cells after EMT and we investigated the molecular contribution of Ral to post-EMT invasion. We showed that upon EMT cells disseminate individually in a Rho-driven fashion exploiting the generation of actomyosin force to deform the extracellular matrix. We document that RalB silencing severely impairs actomyosin contractility and dissemination of post-EMT cells. We hypothesize that RalB regulates invasion by controlling the dynamics of the Rho pathway via the Exocyst-associated RhoGEF GEF-H1 in post-EMT cells. Finally, in the last part of this thesis manuscript, we present the PIV-based “AVeMap” software which has been developed to quantify in a fully automated way cell migration and its parameters (Project 4).Taken together the results presented in this thesis manuscript point out the Ral/Exocyst pathway as a key molecular organizer of the execution of both Rac1- and Rho-driven motility programs.
70

Regulation of Myosin-II activation and planar polarity during epithelial morphogenesis in Drosophila embryo / Etude des méchanismes de régulation de l'activation et de la popularité planaire de la myosin-II au cours de la morphogénèse épithéliale dans l'embryon de drosophile

Paduano, Vanessa 14 December 2015 (has links)
Les épithéliums jouent le rôle de barrière physique et chimique chez les Métazoires. Les épithéliums subissent des remodelages pendant l’embryogénèse. La morphogénèse des tissus est dirigée par des déformations cellulaires coordonnées fonctionnant grâce à des réseaux contractiles intracellulaires constitués d’actine et de myosine. Ce réseau d’actomyosine peut être soit pulsatile, soit stable. Un exemple est l’élongation de l’ectoderme ventro-latéral par intercalation cellulaire, le long de l’axe antéro-postérieur (AP) de l’embryon de la Drosophile. Les jonctions parallèles à l’axe dorso-ventral (DV) rétrécissent et forment de manière irréversible de nouvelles jonctions parallèles à l’axe AP. Des pulsations de myosine-II (Myo-II) médio-apicale se déplacent de manière anisotrope vers les jonctions parallèles à l’axe DV. Ceci provoque le rétrécissement graduel des jonctions, rétrécissement stabilisé par une population de Myo-II polarisée dans le plan du tissu et enrichie au niveau de ces jonctions. Les mécanismes cellulaires qui régulent la pulsatilité, la stabilité et la polarité de la Myo-II restent à élucider. Lors de ma thèse, j’ai identifié de nouveaux effecteurs régulant l’activation et la polarité planaire de la voie Rho1-Rok-Myo-II aux niveaux des jonctions. J'ai d'abord caractérisé le rôle de la kinase Misshapen dans l’activation polarisée de la voie Rho1 au niveau des jonctions. Misshapen agit en aval de la signalisation GPCR afin de favoriser l’activation de Rho1 et contrôle la polarisation de cette activation en transmettant l’information des récepteurs Toll. Puis j'ai identifié Pebble comme la RhoGEF régulant Rho1 et l'accumulation de Myo-II aux jonctions. / Epithelial build up strong mechanical and chemical barriers in Metazoans. Epithelia can be dramatically remodeled during embryogenesis. Tissue morphogenesis is driven by coordinated cellular deformations which are powered by intracellular contractile networks constituting actin and Myosin. Actomyosin networks can either be pulsatile or stable. One example is the elongation of the ventral-lateral ectoderm by cell intercalation, along antero-posterior (AP) axis of Drosophila embryo. Junctions parallel to the dorso-ventral (DV) axis shrink and form new junctions along AP axis. Medial apical Myosin-II (Myo-II) pulses flow anisotropically towards junctions aligned in DV axis, resulting in steps of junction shrinkage which are stabilized by a planar-polarized pool of Myo-II enriched at these junctions. Sequential deformation and stabilization drive irreversible tissue deformations akin to a ratchet. The cellular mechanisms that regulate Myo-II pulsatility, stability and polarity remained to be unfurled. During my PhD, I identified new regulators for Rho1-Rok-Myo-II pathway at junctions, and Myo-II planar polarity. On the one hand, I characterized the function of Misshapen kinase in polarized activation of Rho1 pathway at junctions. Misshapen acts downstream GPCR signaling to enhance Rho1 activation, and controls the polarization of this activation by transducing information from Toll receptors. Also, I identified Pebble as RhoGEF regulating Rho1 at junctions and Myo-II accumulation.

Page generated in 0.0748 seconds