• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • Tagged with
  • 11
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation fonctionnelle de FRABIN : protéine mutée dans la maladie de Charcot-Marie-Tooth de type 4H

Baudot, Cécile 29 November 2011 (has links)
La maladie de Charcot-Marie-Tooth de type 4H est une neuropathie héréditaire sensitivo-motrice démyélinisante à transmission récessive. Elle est causée par à des mutations dans le gène FGD4 codant la protéine FRABIN, RhoGEF comportant cinq domaines fonctionnels : un domaine FAB de liaison à l’actine, un domaine DH à activité d’échange GDP/GTP sur les petites RhoGTPases, deux domaines PH et un domaine FYVE impliqués tous trois dans la liaison aux polyphosphoinositides. D’une part, nous avons pu identifier trois nouvelles mutations, portant à dix le nombre de mutations dans FGD4. D’autre part, des études transcriptionnelles ont permis de caractériser huit transcrits alternatifs pouvant coder pour différentes isoformes de FRABIN, dépourvues de différents domaines. Ces résultats suggèrent que FRABIN pourrait être une protéine modulaire. J’ai pu montrer que, dans les fibroblastes des patients, la protéine FRABIN était absente. Dans les lymphoblastes, nous supposons que l’isoforme FRABIN présente est dépourvue du domaine de liaison à l’actine, mais nous n’avons pas pu analyser l’effet des mutations sur la production de la protéine. Dans les fibroblastes et les lignées lymphoblastoïdes des patients, j’ai pu mettre en évidence une diminution drastique de l’activation des RhoGTPases CDC42 et RAC1. Cependant, cette diminution n’a pas pu être corrélée avec des anomalies du cytosquelette ou de la migration des fibroblastes des patients. Toutefois, ces RhoGTPases sont primordiales pour la myélinisation, il est donc fort possible que dans les cellules du système nerveux périphérique, la perte de FRABIN résultant en une diminution de plus de 50% de l’activation des RhoGTPases entraîne des défauts majeurs dans le processus de « radial sorting ». L’arrivée des souris KO conditionnelles pour fgd4 dans les cellules de Schwann ou dans les motoneurones, devrait nous permettre de valider ou d’infirmer plusieurs hypothèses qui ont été émises durant ce travail et ainsi de mieux comprendre la physiopathologie de la maladie. / CMT4H is an autosomal recessive demyelinating CMT due to mutations in FGD4, which encodes FRABIN. FRABIN has five functional domains: a F-actin binding domain, a RhoGEF domain with GDP/GTP exchange activity, two PH and one FYVE domains which interact with polyphosphoinositides. In this study, we identified three novel FGD4 mutations, bringing to ten the number of mutations in this gene. Moreover, I characterized eight alternative transcripts, and all of them could lead to a functional FRABIN isoform, deprived of one or more functional domains. This led us to consider FRABIN as a modular protein. In patient’s fibroblasts, I have been able to show that FRABIN is degraded. Unlike in patient’s lymphoblastoïd cells line where we were unable to characterize the mutation effect on the protein. In these cells, we proposed that FRABIN is present without the F actin binding domain. Nevertheless, in patient’s fibroblasts and lymphoblastoïde cells line, I showed a major diminution of the CDC42 and RAC1 active forms, which is not in correlation with the absence of abnormalities in cytoskeleton and migration of patient‘s fibroblasts. We suggested that, in peripheral nerve system cells, the diminution of these RhoGTPases activation is damaging for the myelination. We are waiting for two fgd4 conditional KO mice model (one in Schwann cells and one in neuron). Exploration of these models will allow us to explain the physiopathological mechanism of CMT4H.
2

Rôles biologiques de l'histone désacétylase 8 chez le parasite Schistosoma mansoni / Biological roles of Schistosoma mansoni Histone deacetylase 8

Pagliazzo, Lucile 27 September 2018 (has links)
La schistosomiase est la seconde endémie parasitaire mondiale après le paludisme puisqu’en 2016, environ 200 millions de personnes ont été traitées pour cette parasitose. Plusieurs espèces de schistosomes peuvent être la cause de cette maladie dont Schistosoma mansoni, responsable de la schistosomiase intestinale. Son cycle de vie est complexe et comprend deux hôtes : un hôte définitif vertébré, l’Humain et un hôte intermédiaire qui est un mollusque d’eau douce. Actuellement, un seul médicament, le praziquantel, est utilisé contre toutes les espèces de schistosomes, mais son utilisation de façon massive et répétée à favoriser l’émergence de souches parasitaire tolérantes et/ou résistantes. La nécessité de trouver de nouveaux médicaments et de nouveaux traitements est donc devenue impérative.Les lysines désacétylases ou KDAC(s) constituent des cibles thérapeutiques intéressantes, notamment parce que ce sont des enzymes impliquées dans des processus cellulaires essentiels tels que la régulation de l'expression des gènes et du cycle cellulaire, ou encore la différenciation cellulaire. À ce jour, des inhibiteurs de KDAC(s) sont déjà approuvés dans le traitement du cancer et d’autres sont en essais cliniques.Chez S. mansoni, trois KDAC(s) de classe I ont été identifiées: HDAC 1, 3 et 8. D'autre part, l'utilisation d'inhibiteurs de KDAC(s) a démontré qu'il était possible d'induire l'apoptose et la mort des parasites en culture. Des études réalisées sur la protéine HDAC8 humaine et SmHDAC8 ont montré qu'il existait des différences significatives au niveau de la poche catalytique entre ces deux protéines. Ces données soulignent l’intérêt de développer des inhibiteurs sélectifs de SmHDAC8. Il est devenu, néanmoins essentiel de déterminer le rôle de SmHDAC8 dans la biologie du parasite et notamment ses partenaires protéiques. De ce fait, la première partie de ce travail de thèse s’est focalisé sur la mise en évidence de l’interactome de l’enzyme parasitaire SmHDAC8. Par l’utilisation du système en double hybride chez la levure et de la co-immunoprécipitation couplée à la spectrométrie de masse, nous avons identifié plusieurs partenaires de SmHDAC8 qui sont impliqués dans des processus essentiels à la cellule tel que la régulation de la transcription et de la traduction, le cycle cellulaire, le métabolisme, la réparation de l’ADN, la protéolyse ou encore le transport des protéines. Parmi ces interactants, nous avons également retrouvé la GTPase SmRho1 suggérant que l’enzyme SmHDAC8 serait impliqué dans la modulation de l’organisation du cytosquelette.Dans une seconde partie, nous nous sommes donc intéresser à l’interaction entre SmHDAC8 et la SmRho1. Nous avons initialement démontré que cette interaction était bien présente chez le parasite et notamment chez les vers adultes et les schistosomules. L’acétylation de SmRho1 sur la lysine K136 a également été mise en évidence par spectrométrie de masse et nous avons aussi pu observer un effet de l’inhibition de SmHDAC8 sur l’organisation du cytosquelette d’actine chez le parasite.Deux isoformes de SmRho1 (SmRho1.1 et SmRho1.2) ont été identifiées et caractérisées. La technique du double hybride chez la levure et la co-immunoprécipitation en ovocytes de xénope, a permis de démontrer que seule SmRho1.1 pouvait interagir avec SmHDAC8. Enfin, la caractérisation des motifs d'interaction entre SmHDAC8 et SmRho1.1, par co-immunoprécipitation en ovocytes de xénope, suggère que le domaine C-terminal de SmRho1 serait impliqué dans cette interaction. Ces données sont en faveur d’un rôle potentiel de SmHDAC8 dans la modulation du cytosquelette d’actine via son interaction spécifique avec la GTPase SmRho1.1. / Schistosoma mansoni is the major parasitic platyhelminth species causing intestinal schistosomiasis, for which around 200 million people are in need of treatment. The schistosome life cycle is complex and includes two hosts: a definitive mammalian host, mainly humans in the case of S. mansoni, and an intermediate snail host. Currently one drug, praziquantel, is the treatment of choice against all species of schistosomes, but tolerant/resistant strains have been isolated in endemic areas following its extensive use in mass treatment programs, as well as in laboratory studies. The need to find new drugs and new treatments is therefore imperative.Lysine deacetylases (KDACs) form a family of enzymes that are conserved in metazoans. They are attractive therapeutic targets in a variety of pathologies, particularly cancer, because they are involved in the regulation of gene transcription and several KDAC inhibitors have already been approved as drugs. Our previous studies identified and characterized three class I KDACS in Schistosoma mansoni: HDAC 1, 3 and 8. Invalidation of the transcription of SmHDAC8 by RNAi led to the impaired survival of the worms after the infection of mice, showing that it is a valid therapeutic target.The analysis of the 3D structure of SmHDAC8 by X-ray crystallography showed that the catalytic domain structure diverges significantly from that of human HDAC8 and this was exploited to identify selective inhibitors that induce apoptosis and death of the worms and are thus lead compounds for the development of novel anti-schistosomal drugs.The precise biological roles of mammalian or schistosomal HDAC8 are unknown and in order to determine why SmHDAC8 knockdown or inhibition causes apoptosis and death it is essential to study the cellular signaling pathways involving SmHDAC8. In the first part of the work described in this thesis, protein partners of SmHDAC8 were characterized by screening a yeast two-hybrid cDNA library and co-immunoprecipitation/mass spectrometry (MS) analysis. SmHDAC8 partners are involved in different processes, included transcriptional and translational regulation, cell cycle, metabolism, DNA repair, proteolysis or protein transport. Among the partners thus identified the schistosome orthologue of the human RhoAGTPase, suggesting that SmHDAC8 may be involved in the modulation of the organization of the cytoskeleton.The second part of the work focused on the interaction between SmHDAC8 and SmRho1. In adult worms and schistosomula S. mansoni, SmHDAC8 interacts with SmRho1 GTPase which is acetylated on lysine K136. Treatment with an SmHDAC8 inhibitor caused massive disruption of the worm and schistosomula actin cytoskeleton. We have also identified two closely related isoforms of SmRho1 (SmRho1.1 and SmRho1.2). By using two heterologous expression systems (the yeast two hybrid assay and Xenopus oocytes), we have demonstrated a specific interaction between SmHDAC8 and SmRho1.1 involving its C-terminal moiety. Our results show that SmHDAC8 is potentially involved in cytoskeleton organization via its interaction with the SmRho1.1 isoform.
3

RALlying through cell motility and invasion / RALlying entre motilité et invasion cellulaire

Biondini, Marco 25 September 2014 (has links)
La formation des métastases est un processus en plusieurs étapes à travers lequel les cellules néoplasiques se détachent de la tumeur primaire pour constituer des tumeurs secondaires à distance. Les capacités à migrer et à envahir, des cellules tumorales sont cruciales dans la cascade métastatique. Selon le type cellulaire et les stimuli présents dans le microenvironnement tumoral, les cellules peuvent se déplacer collectivement ou individuellement selon un programme de migration mésenchymateuse ou amiboïde. Différentes voies de signalisation sont liées à la régulation de la motilité cellulaire. Les GTPases Rho (Rac1, Cdc42 et RhoA) contrôlent la migration en régulant la dynamique du cytosquelette d’actine, la contraction acto-myosine et les microtubules. Rac1 régule la motilité mésenchymateuse en favorisant la formation des lamellipodes via un complexe multiprotéique, le « Wave Regulatory Complex (WRC) » et RhoA contrôle la motilité amiboïde en favorisant la contraction du cytosquelette d'acto-myosine. Les protéines Ral (RalA et RalB) appartenant à une autre famille de petites G, ont été récemment impliquées dans la régulation de la migration cellulaire. RalB, à travers le complexe « Exocyst » joue un rôle essentiel dans la motilité. Dans ce travail de thèse, nous avons étudié les mécanismes moléculaires par lesquels la voie RalB/Exocyste contrôle la motilité et l'invasion cellulaire. La première partie de ce travail démontre que l’Exocyste interagit avec SH3BP1, une protéine GAP (GTPase Activating Protein) (projet 1). Nous montrons que l’interaction entre SH3BP1 et Rac1 est nécessaire à l’activité de Rac1 au front de migration. Dans le projet 2, nous montrons que l’Exocyste interagit directement avec WRC, ce qui est un élément clé de la polymérisation de l'actine. Cette interaction est nécessaire à la localisation du complexe WRC au front de migration où il contrôle la formation de protrusions membranaires. Dans de nombreux carcinomes, la transition épithélio-mésenchymateuse (EMT) joue un rôle important dans la promotion de la migration, l’invasion et la formation des métastases. Le projet 3 a permis de mieux caractériser la plasticité de migration et l’invasion des cellules cancéreuses post-EMT et d’étudier la contribution de Ral dans l'invasion des cellules post-EMT. Nous montrons qu’après l’EMT les cellules envahissent la matrice individuellement ? en utilisant la contraction du cytosquelette d'acto-myosine. Nous montrons que RalB est nécessaire à l’invasion des cellules post-EMT, et à la contractilité cellulaire. Nous proposons que le rôle de RalB dans l'invasion passe par GEF-H1 qui est une protéine GEF (Guanine Nucleotide Exchange Factor) de Rho associée à l’Exocyste. Dans la dernière partie de ce manuscrit, nous présentons le logiciel « AVeMap » que nous avons développé afin d’automatiser la quantification des paramètres de la migration cellulaire.En résumé, dans ce travail de thèse nous montrons que la voie Ral/Exocyste est un organisateur moléculaire nécessaire à l’exécution à la fois de la motilité cellulaire contrôlée par Rac1 et à la motilité contrôlée par Rho. / Metastasis is a multistep process by which cancer cells migrate away from the primary neoplastic mass to give rise to secondary tumors at distant sites. Thus, the acquisition of motility and invasive traits by tumor cells is a crucial step for metastasis to occur. Depending on the cell type and the environment, cells can move collectively keeping stable cell-cell contacts or as individual cells, which translocate by exploiting either mesenchymal or amoeboid motility programs.Different molecules and pathways have been linked to the regulation of cell motility. Rho small GTPases (Rac1, Cdc42 and RhoA) control cell migration through their actions on actin assembly, actomyosin contractility and microtubules. Rac1 drives mesenchymal-type motility by promoting lamellipodia formation via the Wave Regulator Complex (WRC). On the contrary, amoeboid motility is governed by RhoA which promotes cell movement via the generation of actomyosin contractile force. Another family of small GTPases, the Ral proteins, was recently involved in the regulation of cell migration. RalB, through the mobilization of its main effector the Exocyst complex, was shown to play an essential role in cell motility. In this work of thesis we investigated the molecular mechanisms through which RalB/Exocyst pathway controls cell motility and invasion.In the first part of this manuscript we show that Exocyst interacts with the RacGAP SH3BP1 (project 1). In mesenchymal moving cells Exocyst/SH3BP1 interaction is required to organize membrane protrusion formation by spatially regulating the activity of Rac1 at the cellular front. In addition, in project 2, we show that the Exocyst binds to the wave regulator complex (WRC), a key promoter of actin polymerization. We provide evidences for Exocyst to be involved in driving the WRC to the leading edge of motile cells, where it can stimulate actin polymerization and membrane protrusions. Reactivation of a developmental program termed epithelial-mesenchymal transition (EMT) was recently shown to promote motility, invasion and metastasis of neoplastic cells. Tumor cells undergoing EMT loose cell-cell contacts acquire a fibroblastoid phenotype and invade the surrounding tissues as individual cells. In project 3 we characterized the invasion plasticity of cancer cells after EMT and we investigated the molecular contribution of Ral to post-EMT invasion. We showed that upon EMT cells disseminate individually in a Rho-driven fashion exploiting the generation of actomyosin force to deform the extracellular matrix. We document that RalB silencing severely impairs actomyosin contractility and dissemination of post-EMT cells. We hypothesize that RalB regulates invasion by controlling the dynamics of the Rho pathway via the Exocyst-associated RhoGEF GEF-H1 in post-EMT cells. Finally, in the last part of this thesis manuscript, we present the PIV-based “AVeMap” software which has been developed to quantify in a fully automated way cell migration and its parameters (Project 4).Taken together the results presented in this thesis manuscript point out the Ral/Exocyst pathway as a key molecular organizer of the execution of both Rac1- and Rho-driven motility programs.
4

Caractérisation de Fam65b, un nouvel effecteur de FoxO1 dans la régulation de la quiescence / Characterization of Fam65b, a new effector of FoxO1 in the regulation of quiescence

Froehlich, Jeanne 27 October 2016 (has links)
Le comportement et le devenir des lymphocytes T (LT) est conditionné par l’intégration de nombreux signaux solubles et cellulaires. Lorsque les LT ne sont pas stimulés, les facteurs de transcription FoxO orchestrent un réseau moléculaire important participant au maintien de la quiescence et à la capacité migratoire des LT. Longtemps considéré comme un état par défaut, le maintien des LT dans cet état quiescent est hautement régulé par un ensemble de signaux parmi lesquels la signalisation via le récepteur à l’interleukine 7 (IL7) et le récepteur à l’antigène (TCR) activé par des molécules du complexe majeur d’histocompatibilité (CMH) chargées avec des peptides du soi. Etonnamment, ces mêmes signaux sont nécessaires pour induire l’entrée des cellules dans le cycle cellulaire. L’inhibition de la prolifération des LT est donc un mécanisme actif qui peut être levé par des signaux externes. Le mécanisme moléculaire permettant le maintien de cet état quiescent reste très peu décrit. Mon projet de thèse a consisté à étudier les conséquences fonctionnelles de l’expression de Fam65b, une nouvelle cible transcriptionnelle de FoxO, sur la prolifération. Au cours de mon travail, j’ai montré que dans des cellules transformées, ayant donc perdu la capacité de réguler leur prolifération, l’expression forcée de Fam65b perturbe la mise en place du fuseau mitotique, induisant un arrêt en phase G 2 /M et la mort des cellules. Au cours de ce processus, Fam65b agit avec deux partenaires connus pour leur implication dans le cycle cellulaire, l’histone déacétylase 6 (HDAC6) et la protéine d’échafaudage 14-3-3. J’ai également pu établir que, dans les LT primaires humains, Fam65b est un facteur de quiescence. En effet, l’engagement du TCR induit une diminution d’expression de Fam65b et le maintien de son expression bloque la prolifération des LT, suggérant que l’inhibition de son expression est un pré-requis à la prolifération. Inversement, l’inhibition de l’expression de Fam65b dans des LT naïfs diminue leur seuil d’activation. L’ensemble de ces résultats désigne donc Fam65b comme une nouvelle cible pour le contrôle de la prolifération des cellules primaires et transformées. Nous avons également développé au laboratoire un modèle murin invalidé pour Fam65b dans le lignage T afin d’étudier son rôle dans un modèle plus intégré. J’ai pu initier l’analyse du phénotype de ces souris en l’absence de toute stimulation. L’ensemble de ces travaux, en complément de ceux précédemment obtenus au laboratoire, laissent apparaître Fam65b comme un nouvel effecteur de FoxO capable d’interagir avec divers partenaires afin de contrôler conjointement des fonctions cellulaires majeures. / T cell fate is conditioned by the integration of many soluble and cellular signals. When T cells are not stimulated, FoxO transcription factors orchestrate an important molecular network involved in maintaining the quiescent state and migratory ability of the cells. Considered as a "default" state, it is now known that maintenance of T cell quiescence is a process highly regulated by a set of signals including IL7 signaling and sustained contact with MHC molecules presenting self-peptides. Surprisingly, these same signals are required to induce entry of cells into the cell cycle. Inhibition of T cell proliferation is an active mechanism that can be lifted by external signals. The molecular mechanism maintaining this quiescent state is poorly described. My thesis project was studying the functional consequences of Fam65b expression, a new transcriptional target of FoxO, on proliferation. I showed that, in transformed cells, that have lost the ability to regulate their proliferation, forced expression of Fam65b disrupts the establishment of the mitotic spindle, inducing an arrest in G 2 /M phase and cell death. During this process, Fam65b acts with two partners, known to be involved in the cell cycle process, the histone deacetylase HDAC6 and the 14-3-3 protein scaffold. I have also been able to establish that in human primary T cell, Fam65b is a quiescence factor. Indeed, the TCR stimulation induces a reduction of Fam65b expression and maintaining its expression blocks the proliferation of T cells, suggesting that inhibition of Fam65b expression is a prerequisite for proliferation. Conversely, inhibition of Fam65b expression in naive T cells reduces their activation threshold. Altogether these results show that Fam65b is a new target for the control of the proliferation of primary and transformed cells. We have also developed, in the laboratory, a mouse model invalidated for Fam65b in T cell lineage. I initiated the phenotype analysis of these mice in the absence of any stimulation. This work, in addition to the previous results obtained in the laboratory, reveal that Fam65b is a new effector of FoxO factors, able to interact with various partners to jointly control major cellular functions.
5

Localisation et fonction des lipides anioniques dans l'organisation cellulaire et le développement des plantes / Localization and function of anionic lipids in cell organization and plant development

Platre, Matthieu 01 December 2017 (has links)
Les cellules eucaryotes possèdent un territoire membranaire dit « électrostatique » qui est définit par la présence de phospholipides négativement chargés sur la face cytosolique des membranes. Cette propriété permet le recrutement de protéine cytosolique contenant des motifs/domaines positivement chargés au niveau des membranes via des interactions électrostatiques. Nous nous sommes demandés si le territoire électrostatique est présent chez les cellules végétales et quel est son organisation ? Quels sont le(s) lipide(s) anionique(s) impliqués dans son maintien ? Et quel est son (ces) rôle(s) dans la signalisation et le développement des plantes ? Premièrement, nous avons mis en avant que la membrane plasmique est le compartiment intracellulaire le plus électronégativement chargé (Simon, Platre et al., 2016 Nature Plants). Ce champ électrostatique est gouverné par trois lipides anioniques différents, l’acide phosphatidique, la phosphatidylserine et le phosphatidylinositol-4-phosphate. Nous avons montré que cette propriété unique de la membrane plasmique permet de réguler des voies de signalisation hormonale, tel que celle de l’auxine et des brassinostéroïdes. Notamment, la phosphatidylserine régule la dynamique spatiotemporelle des petites GTPases de la famille Rho. En réponse à l’auxine, ce lipide permet de regrouper les protéines Rho dans des domaines membranaires. La formation de ces domaines est requise pour l’activité de ces protéines permettant de contrôler l’endocytose, la dynamique du cytosquelette mais également régule la morphogenèse cellulaire ainsi que la réponse gravitropique de la racine. / The « electrostatic territory» is part of the eukaryotic membrane organization and is defined by the enrichment of negatively charged phospholipids at the membrane cytosolic face. This feature is involved in the membrane recruitment of cytosolic proteins, which contain positively charged motifs and/or domains. In this work, we used Arabidopsis thaliana as a model and explored the existence of an electrostatic territory in plant cells. We found that the plasma membrane is the most anionic intracellular membrane (Simon, Platre et al., 2016 Nature Plants). This electrostatic field is maintained by lipid cooperation between, phosphatidic acid, phosphatidylserine and phosphatidylinositol-4-phosphate. The cell surface unique feature is involved in the regulation of hormonal signalling such as auxin and brassinosteroids pathways. We found that phosphatidylserine tunes the spatiotemporal dynamics of small GTPases from the Rho family. During auxin response, PS is required to cluster Rho into specialized membrane domains. We show that nanocluster formation is required for Rho-mediated auxin signaling including the regulation of endocytosis, cytoskeleton organization, morphogenesis and the root gravitropic response.
6

Identification and validation of small molecule inhibitors for the Tiam1/SDC1 interaction

Lopez, Josue Alan 01 May 2014 (has links)
No description available.
7

Roles of mammalian Scribble in polarity signaling, virus offense and cell-fate determination

Wigerius, Michael January 2010 (has links)
Mammalian Scribble is a target for proteins encoded by human papilloma virus, retro- and flaviviruses. Tick-borne encephalitis virus (TBEV) is a flavivirus that have evolved distinct strategies to escape antiviral responses. Information of how flaviviruses intrude on cell integrity comes from understanding of the roles that host-factors play when they interfere with viruses. The first part of this thesis describes a novel interaction between the TBEVNS5 protein and Scribble. The importance of the interaction was demonstrated by RNAi-mediated depletion of Scribble, which prevented suppression of JAK-STAT signaling by NS5. Together, these results define Scribble as a novel target for NS5. TBEV is known to cause central nervous system disease TBE in humans that can lead to cognitive dysfunction. A unifying theme in CNS related diseases are defects in neuronal extensions. We therefore addressed the effects of TBEV expression in PC12 cell differentiation, which is characterized by extensive neurite growth. Our data show that TBEVNS5 suppresses neurite outgrowth through the Rho GTPase Rac1. These findings provide evidence that Rac1 is an indirect target of NS5 in neurite inhibition. Scribble was recently implicated in spine morphogenesis. Thus, we tested the role of Scribble in neurite elongation. Depletion of Scribble in PC12 cells, reduced neurite density but increased length of those remaining. Moreover, Scribble bound components in the Ras/ERK cascade in a growth factor dependent manner. Together, these results demonstrate that Scribble controls neurite elongation by scaffolding MAPK components. Moreover, as loss of dendritic spines, actin-rich protrusions on neurons, is a feature in cognitive dysfunction we speculate that cognitive dysfunction in TBE might involve disturbed Scribble expression by NS5. We also investigated the binding between NS1 of Influenza A virus and Scribble. The PDZ domains of Scribble are usually selective for specific C-terminal motifs in proteins. Because NS1 has a canonical PDZ motif we tested if binding to Scribble depends on this motif. We found that Scribble binds NS1; the association is dependent on the NS1 C-terminus that is recognized by PDZ3-4 of Scribble. Together, these results suggest that Scribble is a target for the H5N1 NS1 protein / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 3: Manuscript. Paper 4: Manuscript.
8

Auxiliary Wnt3A Signaling in Cell Fate Decisions of C3H10T1/2 Mesenchymal Stem Cells

Rossol-Allison, Jessica K. January 2011 (has links)
<p>Activation of Wnt signaling pathways is critical to a variety of developmental events across all animal taxa. These highly evolutionarily conserved pathways are also important in the adult organism for maintaining homeostasis of self-renewing tissues. Because of its role in such important physiological processes, deregulation of Wnt signaling can have severe consequences; indeed, inappropriate activation of this pathway has been implicated in multiple human diseases, including cancer.</p><p>Upon binding their cellular receptors, canonical Wnt ligands, like Wnt 3A, stimulate the stabilization, accumulation, and nuclear translocation of a multifunctional cellular protein &#946;catenin, the consequence of which is induction of &#946;catenin-dependent transcription. This work describes the identification and characterization of two Wnt3A-stimulated intracellular signaling pathways activated in parallel to &#946;catenin stabilization: the RhoA pathway and the ERK pathway. These two auxiliary pathways do not affect &#946;catenin stability, accumulation, or subcellular localization; rather, they modulate &#946;catenin -dependent transcriptional activity through other mechanisms. As a result of their influence on &#946;catenin-dependent transcription, these pathways instruct cell fate decisions in C3H10T1/2 mesenchymal stem cells, in particular inhibition of adipogenesis and promotion of osteoblastogenesis.</p><p>Expression microarray analysis and biochemical and pharmacological techniques were used to further characterize the two Wnt3A-stimulated auxiliary pathways in C3H10T1/2 cells. Remarkably, each pathway influences &#946;catenin function via a novel mechanism. In the Wnt3A/RhoA pathway, Wnt3A-stimulated trimeric G proteins activate a RhoA-ROCK-SRF cascade. Activated SRF can cooperate with &#946;catenin to enhance the induction of Wnt3A target genes, like Ctgf, that also contain SRF binding sites within regulatory elements. In the Wnt3A/ERK pathway, Wnt3A transactivates the EGFR in a concentration-dependent manner, leading ultimately to ERK activation, which interacts with and promotes &#946;catenin/Tcf4 interaction and enhances induction of &#946;catenin/Tcf4 target genes. </p><p>These data emphasize the complexity of Wnt signaling and have intriguing implications regarding cross-regulation of the pathway, especially in stem cells. Also, since not all cells are capable of responding to Wnt3A by activation of these auxiliary pathways, this work identifies novel mechanisms that could underlie cell type-specific responses to Wnts and provides mechanistic insight into cellular responses to Wnt concentration gradients. Moreover, this work identifies novel transcriptional mechanisms important for promoting osteogenic cell fate specification, which could ultimately provide new therapeutic targets in disease states with bone loss or ineffective bone formation.</p> / Dissertation
9

Structure-Activity Relationship Analyses of Rhosin, a RhoA GTPase Inhibitor, Reveals a New Class of Antiplatelet Agents

Dandamudi, Akhila 06 June 2023 (has links)
No description available.
10

RhoGTPase Signaling in Cell Polarity and Gene Regulation

Johansson, Ann-Sofi January 2006 (has links)
<p>RhoGTPases are proteins working as molecular switches as they bind and hydrolyze GTP. They are in their active conformation when GTP is bound and are then able to interact with their effector proteins, which relay the downstream signaling. When the GTP is hydrolyzed to GDP, the RhoGTPase is inactivated. RhoGTPases have been shown to be activated by a variety of stimuli and they are implicated in regulation of diverse cellular processes, including cell migration, cell cycle progression, establishment of cell polarity and transformation. </p><p>We identified mammalian Par6 as a novel effector protein for the RhoGTPases Cdc42 and Rac1. The <i>Caenorhabditis elegans</i> homologue of Par6 had previously been shown to be essential for cell polarity development in the worm embryo. We found that endogenous Par6 colocalized with the tight junction protein ZO-1 in MDCKII epithelial cells. Par6 also interacted with mammalian Par3, another member of the <i>par</i> (for partitioning defective) gene family, first identified in <i>C.elegans</i>. Endogenous Par3 also localized to tight junctions in epithelial cells. This suggested that Par6 and Par3 are part of a complex regulating cell polarity also in mammalian cells. The interaction between Par6 and activated Cdc42 and Rac1 suggested a role for these RhoGTPases in the regulation of this complex.</p><p>Co-expression of Par6 together with PKCζ, induced a dramatic change in cell morphology. The cells rounded up and long cellular extensions, resembling neurites, were formed. The ability to induce these changes in cell morphology was found to be dependent on the direct interaction between Par6 and PKCζ, as well as on the kinase activity of PKCζ. We observed that cells co-expressing mPar6C and PKCζ contained bundled microtubules and microtubules that hade been acetylated, indicating that the microtubules were stabilized. </p><p>To investigate the roles of RhoGTPases in PDGF-induced gene expression we performed cDNA microarray analyses on AG01518 human foreskin fibroblasts in which we over-expressed the dominant negative forms of Cdc42, Rac1 and RhoA. We found that the expression of 16 genes, out of the 45 up-regulated by PDGF-BB, were inhibited ≥50% in the presence of dominant negative Cdc42, Rac1 or RhoA. 19 other genes were down-regulated by one or two of the dominant RhoGTPases. Our data implied that the expression of many PDGF-BB induced genes can be affected by RhoGTPase signaling. </p><p>In conclusion, the work presented here has increased the knowledge of the involvement of RhoGTPase signaling in establishment of cell polarity and gene regulation.</p>

Page generated in 0.0293 seconds