• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 19
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 65
  • 65
  • 25
  • 20
  • 19
  • 16
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Simulação do escoamento miscível decorrente da injeção de ácido em um meio poroso com dissolução parcial do meio / Flow simulation of the acid injection in porous media with partial dissolution of the porous media

Lucimá Barros da Rocha 28 September 2007 (has links)
Formulamos um modelo simplificado para o estudo do processo de injeção de solvente em reservatórios de petróleo, onde o fluido injetado (um ácido) tem a capacidade de dissolver parcialmente a matriz sólida. Como hipóteses principais, consideramos que o solvente e o soluto (componente químico que constitui o meio poroso) são espécies totalmente miscíveis, a viscosidade da mistura solvente + soluto não varia com a concentração de soluto, há significativa transferência de massa entre as fases e a permeabilidade do meio poroso varia linearmente com a porosidade. O modelo é formado por duas Equações Diferenciais Parciais, uma do tipo Convecção-Difusão a outra é do tipo Convecção-Reação. Para resolução numérica, desenvolvemos uma metodologia que denominamos de EPEC (Explícita Porosidade e Explícita Concentração). Tal metodologia se baseia em um limitador de fluxo do tipo TVD e em diferenças finitas centradas de segunda ordem. Em adição, o EPEC emprega uma técnica de separação de operadores. Deste modo, em cada passo de tempo, realizamos inicialmente o cálculo explícito da porosidade seguido do cálculo explícito da concentração do solvente. Assim, obtemos um desacoplamento natural das equações que descrevem o problema. Resultados de simulações são apresentados para um meio poroso bidimensional, após sessenta dias de injeção de solvente. / We formulate a simplified Model to study the process of solvent injection in petroleum Reservoir, where the injected fluid (an acid) can partially dissolve a solid matrix. As prime hypotheses, we considered that solvent an soluble component are completely mixed, the viscosity of the fluid does not vary with the concentration of the soluble component, theres significant transfer of mass between the parts and, the permeability of media porous changes linearly with porosity. The model is formed by two Partial Differential Equation, one is convection-diffusion type and another is a convection-reaction type. The Numerical Resolution weve developed a method called EPEC (Explicit Porosity Explicit Concentration). Such methodology is based upon a Limiting of Flow of TVD type and, used Centered Finite Differences of second order. In addition, the EPEC use a operators separation technique. This way, every time, first we clearly calculate the porosity and then the concentration of solvent is calculated. Thus we obtain a natural decoupling of the equations that describe the problem. Simulation results are presented to a two dimensional media porous after sixty days of solvent injection.
62

Simulação do escoamento miscível decorrente da injeção de ácido em um meio poroso com dissolução parcial do meio / Flow simulation of the acid injection in porous media with partial dissolution of the porous media

Lucimá Barros da Rocha 28 September 2007 (has links)
Formulamos um modelo simplificado para o estudo do processo de injeção de solvente em reservatórios de petróleo, onde o fluido injetado (um ácido) tem a capacidade de dissolver parcialmente a matriz sólida. Como hipóteses principais, consideramos que o solvente e o soluto (componente químico que constitui o meio poroso) são espécies totalmente miscíveis, a viscosidade da mistura solvente + soluto não varia com a concentração de soluto, há significativa transferência de massa entre as fases e a permeabilidade do meio poroso varia linearmente com a porosidade. O modelo é formado por duas Equações Diferenciais Parciais, uma do tipo Convecção-Difusão a outra é do tipo Convecção-Reação. Para resolução numérica, desenvolvemos uma metodologia que denominamos de EPEC (Explícita Porosidade e Explícita Concentração). Tal metodologia se baseia em um limitador de fluxo do tipo TVD e em diferenças finitas centradas de segunda ordem. Em adição, o EPEC emprega uma técnica de separação de operadores. Deste modo, em cada passo de tempo, realizamos inicialmente o cálculo explícito da porosidade seguido do cálculo explícito da concentração do solvente. Assim, obtemos um desacoplamento natural das equações que descrevem o problema. Resultados de simulações são apresentados para um meio poroso bidimensional, após sessenta dias de injeção de solvente. / We formulate a simplified Model to study the process of solvent injection in petroleum Reservoir, where the injected fluid (an acid) can partially dissolve a solid matrix. As prime hypotheses, we considered that solvent an soluble component are completely mixed, the viscosity of the fluid does not vary with the concentration of the soluble component, theres significant transfer of mass between the parts and, the permeability of media porous changes linearly with porosity. The model is formed by two Partial Differential Equation, one is convection-diffusion type and another is a convection-reaction type. The Numerical Resolution weve developed a method called EPEC (Explicit Porosity Explicit Concentration). Such methodology is based upon a Limiting of Flow of TVD type and, used Centered Finite Differences of second order. In addition, the EPEC use a operators separation technique. This way, every time, first we clearly calculate the porosity and then the concentration of solvent is calculated. Thus we obtain a natural decoupling of the equations that describe the problem. Simulation results are presented to a two dimensional media porous after sixty days of solvent injection.
63

Stabilité de l'équation d'advection-diffusion et stabilité de l'équation d'advection pour la solution du problème approché, obtenue par la méthode upwind d'éléments-finis et de volumes-finis avec des éléments de Crouzeix-Raviart / Stability for the convection-diffusion problem and stability for the convection problem discretized by Crouzeix-Raviart finite element using upwind finite volume-finite element method / Stabilität des diffusions-konvektions-problems und stabilität des konvektions-problems für die losüng mittels upwind finite-elemente finte-volume methoden mit Crouzeix-Raviart elemente

Mildner, Marcus 30 May 2013 (has links)
On considère le problème d’advection-diffusion stationnaire v(∇u, ∇v)+( β•∇u, v) = (f, v) et non stationnaire d/dt (u(t), v) + v(∇u, ∇v)+( β•∇u, v) = (g(t), v), ainsi que le problème d’advection (β•∇u, v) = (f, v) sur un domaine polygonal borné du plan. Le terme de diffusion est approché par des éléments de Crouzeix Raviart et le terme de convection par une méthode upwind sur des volumes barycentriques finis avec un maillage triangulaire. Pour le problème stationnaire d’advection-diffusion, la L²-stabilité (c’est-à-dire indépendante du coefficient de diffusion v) est démontrée pour la solution du problème approché obtenue par cette méthode d’éléments finis et de volumes finis. Pour cela une condition sur la géométrie doit être satisfaite. Des exemples de maillages sont donnés. Toujours avec cette condition géométrique sur le maillage, une inégalité de stabilité (où la discrétisation en temps n’est pas couplée à une condition sur la finesse du maillage) est obtenue pour le cas non-stationnaire. La discrétisation en temps y est faite par un schéma d’Euler implicite. Une majoration de l’erreur, proportionnelle au pas en temps et à la finesse du maillage, est ensuite proposée et exprimée explicitement en fonction des données du problème. Pour le problème d’advection, une approche utilisant la théorie des graphes est utilisée pour obtenir l’existence et l’unicité de la solution, ainsi que le résultat de stabilité. Comme pour la stabilité du problème d’advection-diffusion, une condition géométrique - qui est équivalente pour les points intérieurs du maillage à celle du problème d’advection-diffusion - est nécessaire. / We consider the stationary linear convection-diffusion equation v(∇u, ∇v)+( β•∇u, v) = (f, v), the time dependent d/dt (u(t), v) + v(∇u,∇v)+( β•∇u, v)= (g(t), v) equation and the linear advection equation (β•∇u, v) = (f, v) on a two dimensional bounded polygonal domain. The diffusion term is discretized by Crouzeix-Raviart piecewise linear finite elements, and the convection term by upwind barycentric finite volumes on a triangular grid. For the stationary convection-diffusion problem, L²-stability (i.e. independent of the diffusion coefficient v) is proven for the approximate solution obtained by this combined finite-element finite-volume method. This result holds if the underlying grid satisfies a condition that is fulfilled, for example, by some structured meshes. Using again this condition on the grid, stability is shown for the time dependent convection-diffusion equation (without any link between mesh size and time step). An implicit Euler approach is used for the time discretization. It is shown that the error associated with this scheme decays linearly with the mesh size and the time step. This result holds without any link between mesh size and time step. The dependence of the corresponding error bound on the diffusion coefficient is completely explicit. For the stationary advection equation, an approach using graph theory is used to obtain existence, uniqueness and stability. As in the stationary linear convection-diffusion equation, the underlying grid must satisfy some geometric condition. / Gegenstand der Arbeit ist die zweidimensionale stationäre Konvektion-Diffusionsgleichung v(∇u, ∇v)+( β•∇u, v) = (f, v), die zeitabhängige Konvektion-Diffusionsgleichung d/dt (u(t), v) + v(∇u,∇v)+( β•∇u, v)= (g(t), v), sowie die Konvektionsgleichung (β•∇u, v) = (f, v). Der Diffusionsterm ist diskretisiert mittels Crouzeix-Raviart stückweise lineare Finite Elemente. Das Gebiet ist in Dreiecke unterteilt und der Konvektionsterm ist mittels einer upwind Methode auf Baryzentrische Finite Volumenelemente definiert. Für die stationäre Konvektion-Diffusionsgleichung, wird (d.h. von v unabhängige) L²-Stabilität der numerischen Lösung bewiesen. Voraussetzung dafür, ist die Erfüllung gewisser geometrischer Bedingungen an die Unterteilung des Gebiets. Beispiele von Unterteilungen die diese Bedingungen erfüllen, werden gegeben. Wieder an dieser geometrischen Bedingung geknüpft, wird Stabilität (d.h. die Zeitdiskretisierung ist entkoppelt von der Netzweite) für die zeitabhängige Konvektion-Diffusionsgleichung, bewiesen. Für die Zeitableitung wird dabei eine Implizite Euler Diskretisierung verwendet. Eine obere Schranke für den Diskretisierungsfehler, proportional zum Zeitdiskretisierungsparameter und zur Netzfeinheit, ausgedrückt als Funktion der Daten der Differenzialgleichung, wird gezeigt. Für die Konvektionsgleichung wird ein graphentheoretischer Zugang verwendet, der es ermöglicht Existenz, Eindeutigkeit und Stabilität, zu bekommen. Für die Stabilität, werden ähnliche geometrische Bedingungen an die Unterteilung des Gebiets gestellt, wie beim stationären Konvektion-Diffusionsproblem.
64

Error analysis of the Galerkin FEM in L 2 -based norms for problems with layers / Fehleranalysis der Galerkin FEM in L2-basierten Normen für Probleme mit Grenzschichten

Schopf, Martin 20 May 2014 (has links) (PDF)
In the present thesis it is shown that the most natural choice for a norm for the analysis of the Galerkin FEM, namely the energy norm, fails to capture the boundary layer functions arising in certain reaction-diffusion problems. In view of a formal Definition such reaction-diffusion problems are not singularly perturbed with respect to the energy norm. This observation raises two questions: 1. Does the Galerkin finite element method on standard meshes yield satisfactory approximations for the reaction-diffusion problem with respect to the energy norm? 2. Is it possible to strengthen the energy norm in such a way that the boundary layers are captured and that it can be reconciled with a robust finite element method, i.e.~robust with respect to this strong norm? In Chapter 2 we answer the first question. We show that the Galerkin finite element approximation converges uniformly in the energy norm to the solution of the reaction-diffusion problem on standard shape regular meshes. These results are completely new in two dimensions and are confirmed by numerical experiments. We also study certain convection-diffusion problems with characterisitc layers in which some layers are not well represented in the energy norm. These theoretical findings, validated by numerical experiments, have interesting implications for adaptive methods. Moreover, they lead to a re-evaluation of other results and methods in the literature. In 2011 Lin and Stynes were the first to devise a method for a reaction-diffusion problem posed in the unit square allowing for uniform a priori error estimates in an adequate so-called balanced norm. Thus, the aforementioned second question is answered in the affirmative. Obtaining a non-standard weak formulation by testing also with derivatives of the test function is the key idea which is related to the H^1-Galerkin methods developed in the early 70s. Unfortunately, this direct approach requires excessive smoothness of the finite element space considered. Lin and Stynes circumvent this problem by rewriting their problem into a first order system and applying a mixed method. Now the norm captures the layers. Therefore, they need to be resolved by some layer-adapted mesh. Lin and Stynes obtain optimal error estimates with respect to the balanced norm on Shishkin meshes. However, their method is unable to preserve the symmetry of the problem and they rely on the Raviart-Thomas element for H^div-conformity. In Chapter 4 of the thesis a new continuous interior penalty (CIP) method is present, embracing the approach of Lin and Stynes in the context of a broken Sobolev space. The resulting method induces a balanced norm in which uniform error estimates are proven. In contrast to the mixed method the CIP method uses standard Q_2-elements on the Shishkin meshes. Both methods feature improved stability properties in comparison with the Galerkin FEM. Nevertheless, the latter also yields approximations which can be shown to converge to the true solution in a balanced norm uniformly with respect to diffusion parameter. Again, numerical experiments are conducted that agree with the theoretical findings. In every finite element analysis the approximation error comes into play, eventually. If one seeks to prove any of the results mentioned on an anisotropic family of Shishkin meshes, one will need to take advantage of the different element sizes close to the boundary. While these are ideally suited to reflect the solution behavior, the error analysis is more involved and depends on anisotropic interpolation error estimates. In Chapter 3 the beautiful theory of Apel and Dobrowolski is extended in order to obtain anisotropic interpolation error estimates for macro-element interpolation. This also sheds light on fundamental construction principles for such operators. The thesis introduces a non-standard finite element space that consists of biquadratic C^1-finite elements on macro-elements over tensor product grids, which can be viewed as a rectangular version of the C^1-Powell-Sabin element. As an application of the general theory developed, several interpolation operators mapping into this FE space are analyzed. The insight gained can also be used to prove anisotropic error estimates for the interpolation operator induced by the well-known C^1-Bogner-Fox-Schmidt element. A special modification of Scott-Zhang type and a certain anisotropic interpolation operator are also discussed in detail. The results of this chapter are used to approximate the solution to a recation-diffusion-problem on a Shishkin mesh that features highly anisotropic elements. The obtained approximation features continuous normal derivatives across certain edges of the mesh, enabling the analysis of the aforementioned CIP method.
65

Error analysis of the Galerkin FEM in L 2 -based norms for problems with layers: On the importance, conception and realization of balancing

Schopf, Martin 07 May 2014 (has links)
In the present thesis it is shown that the most natural choice for a norm for the analysis of the Galerkin FEM, namely the energy norm, fails to capture the boundary layer functions arising in certain reaction-diffusion problems. In view of a formal Definition such reaction-diffusion problems are not singularly perturbed with respect to the energy norm. This observation raises two questions: 1. Does the Galerkin finite element method on standard meshes yield satisfactory approximations for the reaction-diffusion problem with respect to the energy norm? 2. Is it possible to strengthen the energy norm in such a way that the boundary layers are captured and that it can be reconciled with a robust finite element method, i.e.~robust with respect to this strong norm? In Chapter 2 we answer the first question. We show that the Galerkin finite element approximation converges uniformly in the energy norm to the solution of the reaction-diffusion problem on standard shape regular meshes. These results are completely new in two dimensions and are confirmed by numerical experiments. We also study certain convection-diffusion problems with characterisitc layers in which some layers are not well represented in the energy norm. These theoretical findings, validated by numerical experiments, have interesting implications for adaptive methods. Moreover, they lead to a re-evaluation of other results and methods in the literature. In 2011 Lin and Stynes were the first to devise a method for a reaction-diffusion problem posed in the unit square allowing for uniform a priori error estimates in an adequate so-called balanced norm. Thus, the aforementioned second question is answered in the affirmative. Obtaining a non-standard weak formulation by testing also with derivatives of the test function is the key idea which is related to the H^1-Galerkin methods developed in the early 70s. Unfortunately, this direct approach requires excessive smoothness of the finite element space considered. Lin and Stynes circumvent this problem by rewriting their problem into a first order system and applying a mixed method. Now the norm captures the layers. Therefore, they need to be resolved by some layer-adapted mesh. Lin and Stynes obtain optimal error estimates with respect to the balanced norm on Shishkin meshes. However, their method is unable to preserve the symmetry of the problem and they rely on the Raviart-Thomas element for H^div-conformity. In Chapter 4 of the thesis a new continuous interior penalty (CIP) method is present, embracing the approach of Lin and Stynes in the context of a broken Sobolev space. The resulting method induces a balanced norm in which uniform error estimates are proven. In contrast to the mixed method the CIP method uses standard Q_2-elements on the Shishkin meshes. Both methods feature improved stability properties in comparison with the Galerkin FEM. Nevertheless, the latter also yields approximations which can be shown to converge to the true solution in a balanced norm uniformly with respect to diffusion parameter. Again, numerical experiments are conducted that agree with the theoretical findings. In every finite element analysis the approximation error comes into play, eventually. If one seeks to prove any of the results mentioned on an anisotropic family of Shishkin meshes, one will need to take advantage of the different element sizes close to the boundary. While these are ideally suited to reflect the solution behavior, the error analysis is more involved and depends on anisotropic interpolation error estimates. In Chapter 3 the beautiful theory of Apel and Dobrowolski is extended in order to obtain anisotropic interpolation error estimates for macro-element interpolation. This also sheds light on fundamental construction principles for such operators. The thesis introduces a non-standard finite element space that consists of biquadratic C^1-finite elements on macro-elements over tensor product grids, which can be viewed as a rectangular version of the C^1-Powell-Sabin element. As an application of the general theory developed, several interpolation operators mapping into this FE space are analyzed. The insight gained can also be used to prove anisotropic error estimates for the interpolation operator induced by the well-known C^1-Bogner-Fox-Schmidt element. A special modification of Scott-Zhang type and a certain anisotropic interpolation operator are also discussed in detail. The results of this chapter are used to approximate the solution to a recation-diffusion-problem on a Shishkin mesh that features highly anisotropic elements. The obtained approximation features continuous normal derivatives across certain edges of the mesh, enabling the analysis of the aforementioned CIP method.:Notation 1 Introduction 2 Galerkin FEM error estimation in weak norms 2.1 Reaction-diffusion problems 2.2 A convection-diffusion problem with weak characteristic layers and a Neumann outflow condition 2.3 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 2.3.1 Weakly imposed characteristic boundary conditions 2.4 Numerical experiments 2.4.1 A reaction-diffusion problem with boundary layers 2.4.2 A reaction-diffusion problem with an interior layer 2.4.3 A convection-diffusion problem with characteristic layers and a Neumann outflow condition 2.4.4 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 3 Macro-interpolation on tensor product meshes 3.1 Introduction 3.2 Univariate C1-P2 macro-element interpolation 3.3 C1-Q2 macro-element interpolation on tensor product meshes 3.4 A theory on anisotropic macro-element interpolation 3.5 C1 macro-interpolation on anisotropic tensor product meshes 3.5.1 A reduced macro-element interpolation operator 3.5.2 The full C1-Q2 interpolation operator 3.5.3 A C1-Q2 macro-element quasi-interpolation operator of Scott-Zhang type on tensor product meshes 3.5.4 Summary: anisotropic C1 (quasi-)interpolation error estimates 3.6 An anisotropic macro-element of tensor product type 3.7 Application of macro-element interpolation on a tensor product Shishkin mesh 4 Balanced norm results for reaction-diffusion 4.1 The balanced finite element method of Lin and Stynes 4.2 A C0 interior penalty method 4.3 Galerkin finite element method 4.3.1 L2-norm error bounds and supercloseness 4.3.2 Maximum-norm error bounds 4.4 Numerical verification 4.5 Further developments and summary References

Page generated in 0.0661 seconds