• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 15
  • 9
  • 7
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 92
  • 56
  • 20
  • 20
  • 18
  • 15
  • 15
  • 14
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Characterisation and phase compensation of a coplanar waveguide to coplanar strip line balun

Du Toit, Johannes Bartholomeus 20 August 2010 (has links)
A uniplanar balun that transforms unbalanced coplanar waveguide (CPW) to balanced coplanar strip line (CPS) is characterised through simulation and measurement. By illustrating the effect of many of the critical design parameters, the operation of this balun is discussed and a set of design criteria is defined. The parameter study discusses the size and shape of the radial open, the type and length of the CPW taper and the thickness and type of the bond wires. Newly developed etched bond wires are implemented to provide better manufacturing repeatability and reliability. A complete balun testing procedure is developed and described, consisting of three separate tests. The balun is tested in the normal back-to-back configuration, as a terminated single balun, and the magnitude and phase imbalance is also determined by using a three-port test circuit connected to the balun. The advantages of implementing this full test procedure, and thus fully characterising the balun under test, are emphasised throughout. Results obtained by using this procedure show that the basic balun works well over the full operating band, except for the phase imbalance, which is usable but not optimal. A simple technique to correct the phase imbalance of the balun is introduced, and validated through measurements of the balun connected to the three-port test circuit. As a final validation the balun is connected as feed for an etched dipole antenna for which good impedance matching and pattern results are shown. AFRIKAANS : ’n Enkelvlak balon (BALans-na-ONbalans) wat van ongebalanseerde enkelvlak golfgeleier (CPW) na gebalanseerde enkelvlak strooklyn (CPS) transformeer, word gekarakteriseer deur simulasie en metings. Deur die effek van baie van die kritiese ontwerpsparameters te demonstreer, word die werking van die balon bespreek en ’n stel ontwerpskriteria opgestel. Die parameter studie bespreek die radiale ope struktuur se vorm en grote, die tipe en lengte van die CPW transformator and die dikte en tipe van die konneksie drade. Nuut ontwikkelde geëtste konneksie drade word geïmplementeer om beter vervaardigingsherhaalbaarheid en betroubaarheid te verseker. ’n Volledige balon toetsprosedure word ontwikkel en beskryf en bestaan uit drie aparte toetse. Die balon word getoets in die normale rug-aan-rug konfigurasie, as ’n enkel getermineerde balon en die grote asook fase van die wanbalans word bepaal deur die gebruik van ’n drie-poort toetsbaan wat aan die balon gekoppel word. Die voordele verbonde daaraan om hierdie volledige toetsprosedure toe te pas, en daardeur die balon volledig te karakteriseer, word deurlopend beklemtoon. Die resultate wat hierdie prosedure oplewer wys dat die basiese balon goed werk oor die volledige frekwensieband, behalwe vir die fase-wanbalans parameter, wat bruikbaar, maar nie ideaal is nie. ’n Eenvoudige tegniek om die fase-wanbalans van die balon te korrigeer word bekend gestel en getoets deur die drie-poort toetsbaan weer te gebruik. As ’n finale validasie word die balon aan ’n geëtste dipool gekoppel word, waarvan goeie impedansie aanpassings en patrone gewys word. Copyright / Dissertation (MEng)--University of Pretoria, 2010. / Electrical, Electronic and Computer Engineering / unrestricted
22

Design and modelling of beam steering antenna array for mobile and wireless applications using optimisation algorithms. Simulation and measrement of switch and phase shifter for beam steering antenna array by applying reactive loading and time modulated switching techniques, optimised using genetic algorithms and particle swarm methods.

Abusitta, M.M. January 2012 (has links)
The objectives of this work were to investigate, design and implement beam steering antenna arrays for mobile and wireless applications using the genetic algorithm (GA) and particle swarm optimisation (PSO) techniques as optimisation design tools. Several antenna designs were implemented and tested: initially, a printed dipole antenna integrated with a duplex RF switch used for mobile base station antenna beam steering was investigated. A coplanar waveguide (CPW) to coplanar strip (CPS) transition was adopted to feed the printed dipole. A novel RF switch circuit, used to control the RF signal fed to the dipole antenna and placed directly before it, was proposed. The measured performance of the RF switch was tested and the results confirmed its viability. Then two hybrid coupled PIN diode phase shifters, using Branchline and Rat-Race ring coupler structures, were designed and tested. The generation of four distinct phase shifts was implemented and studied. The variations of the scattering parameters were found to be realistic, with an acceptable ±2 phase shift tolerance. Next, antenna beam steering was achieved by implementing RF switches with ON or OFF mode functions to excite the radiating elements of the antenna array. The switching control process was implemented using a genetic algorithm (GA) method, subject to scalar and binary genes. Anti-phase feeding of radiating elements was also investigated. A ring antenna array with reflectors was modelled and analysed. An antenna of this type for mobile base stations was designed and simulation results are presented. Following this, a novel concept for simple beam steering using a uniform antenna array operated at 2.4 GHz was designed using GA. The antenna is fed by a single RF input source and the steering elements are reactively tuned by varactor diodes in series with small inductors. The beam-control procedure was derived through the use of a genetic algorithm based on adjusting the required reactance values to obtain the optimum solution as indicated by the cost function. The GA was also initially used as an optimisation tool to derive the antenna design from its specification. Finally, reactive loading and time modulated switching techniques are applied to steer the beam of a circular uniformly spaced antenna array having a source element at its centre. Genetic algorithm (GA) and particle swarm optimisation (PSO) processes calculate the optimal values of reactances loading the parasitic elements, for which the gain can be optimised in a desired direction. For time modulated switching, GA and PSO also determine the optimal on and off times of the parasitic elements for which the difference in currents induced optimises the gain and steering of the beam in a desired direction. These methods were demonstrated by investigating a vertically polarised antenna configuration. A prototype antenna was constructed and experimental results compared with the simulations. Results showed that near optimal solutions for gain optimisation, sidelobe level reduction and beam steering are achievable by utilising these methods. In addition, a simple switching process is employed to steer the beam of a horizontally polarised circular antenna array. A time modulated switching process is applied through Genetic Algorithm optimisation. Several model examples illustrate the radiation beams and the switching time process of each element in the array.
23

Coplanar Waveguide-based Low Pass Filter Design with Non-uniform Signal Trace and Ground Planes Using Different Optimization Algorithms

Qizhen Li (6659816) 11 June 2019 (has links)
<p>In this study, a novel and systematic methodology for the design and optimization of conductor-backed coplanar waveguide (CB-CPW) based low pass filter (LPF) is proposed. The width of the signal trace is continuously varied using a truncated Fourier series, and the adjacent gaps are designed in several types established on a specific optimization setup to obtain predefined electrical characteristics with maximum compactness taking into account physical constraints. Trust-region-reflective algorithm (TRRA), genetic algorithm (GA), and particle swarm optimization algorithm (PSO) are taken into account to minimize the developed bound-constrained non-linear objective function respectively.<br></p><p>All types are programmed and analytically verified in MATLAB. Solutions include design parameters such as the physical length and width of the structure, which will be drawn in AutoCAD later on. Also, the optimized layouts are exported to Ansys High Frequency Structure Simulation (HFSS) software for simulation and validation. Non-uniform CB-CPW LPFs are optimized and simulated over a frequency range of 0-6 GHz with a cutoff frequency of 2 GHz. Simulation results show a good agreement with the analytical ones.<br></p>
24

Etude théorique et expérimentale de micro-OLEDs rapides sur électrodes coplanaires en régime d'impulsions à haute densité de courant / Theoretical and experimental studie of µ-OLED on coplanar waveguide electrodes in nanosecond scale pulses width under high current densities

Chime, Alex Chamberlain 20 December 2017 (has links)
Ce travail de thèse explore l’excitation électrique de micro-OLEDs en régime d’impulsion afin d’évaluer la possibilité d’atteindre le seuil laser dans les diodes laser organiques qui restent encore à démontrer. Ils’agit d’identifier des solutions scientifiques et techniques ouvrant la voie vers des densités d’excitations électriques équivalentes aux seuils laser observés en pompage optique. Dans la littérature, les seuils les plus bas sont équivalents à des densités de courant entre 0.72 et 4kA/cm² si on suppose une efficacité quantique externe de 1%. De telles densités de courant imposent un régime d’excitation électrique impulsionnel pour s’affranchir des risques de destructions par effet thermique et des pertes par annihilation singulet-triplet dès lors que l’on travaille avec des durées d’impulsion de l’ordre de la nanoseconde. Et pour espérer des réponses électriques et optiques efficaces à de telles durées d’impulsions, il est proposé ici de combiner l’électronique hyperfréquence et l’optoélectronique organique. A cet effet, un modèle électrique équivalent de l’OLED permettant d’accéder à son temps de réponse en mode tout-ou-rien est développé. De plus, des électrodes spécifiques sont dimensionnées et structurées sous forme de lignes coplanaires d’impédance caractéristique 50Ω afin de maîtriser l’impédance du circuit d’excitation et d’assurer le transfert du maximum d’énergie de l’impulsion d’excitation vers celui-ci. Après dépôts de l’hétéro-structure organique basée sur le système hôte-dopant Alq3:DCM, les composants ainsi réalisés sont caractérisés électriquement et optiquement avec différentes techniques par analyse vectorielle, en régime continu et en régime d’impulsion. En régime d’impulsion de très courtes durées (2.5~20ns) et à faible taux de répétition (100Hz), des temps de réponse de 330ps etdes densités de courant maximales entre 4 et 6kA/cm² ont été mesurés alors que le maximum de luminance culmine à 4.11x10⁶ cd/m². / This thesis explores the pulsed electrical excitation of micro-OLEDs in order to evaluate the possibility of reaching the laser threshold in organic laser diodes that have not yet be demonstrated. The main goal is the identification of the scientific and technical solutions towards high electrical excitation current densities equivalent to the laser thresholds observed under optical pumping. In the literature, the lowest reported thresholds are equivalent to current densities between 0.72 and 4kA/cm², assuming an external quantum efficiency of 1%. Such current densities imply a pulsed electrical excitation regime to prevent the risks of device breakdown by Joule heating effects and to avoid losses by excitons annihilation processes, as long as the pulses duration are in nanosecond range. To expect efficient electrical and optical responses to such pulse durations, it is suggested to combine microwave electronics and organic optoelectronics. For this purpose, an equivalent electrical model of the organic light emitting device, allowing access to its on-off mode time response, is developed. Additionally, specific electrodes are designed and patterned in the coplanar waveguide configuration with characteristic impedance of 50Ω, inorder to control the impedance of the excitation circuit and to ensure the maximum energy transfer of the excitation pulse to the device. After deposition of organic hetero-structure based on the Alq3:DCM host-guest system, the device is characterized electrically and optically with different techniques by vector network analysis, in continuous mode and in pulse mode. In pulse excitation regime with very short pulses durations (2.5~20ns) and low repetition rate (100Hz), time response of 330ps and maximum current densities between 4 and 6kA/cm² are recorded while the maximum of luminance peaks at 4.11x10⁶ cd/m².
25

LIGA-micromachined tight microwave couplers

Kachayev, Anton 19 December 2003
There are a significant number of microwave applications, including active antenna arrays, wireless communication systems, navigational applications, etc., where improvement of such qualities as manufacturing costs, size, weight, power consumption, etc. is still on the agenda of todays RF design. In order to meet these requirements, new technologies must be actively involved in fabrication of RF components with improved characteristics. One of such fabrication technologies is called LIGA, used before primarily in fluidics, photonics, bioengineering, and micromechanics, and only recently receiving growing attention in RF component fabrication. One of the RF components suffering limitations in performance due to limitations in fabrication capabilities is the compact single metal layer (SML) coupled-line 3-dB coupler, also called hybrid, required in some applications thanks to its ability to divide power equally and electrically isolate the output from the input. In todays practical edge-coupled SML coupler designs, the level of coupling is limited by the capabilities of the photolithographic process to print the coupled lines close enough for tight coupling and it is usually no tighter that 8 dB. A promising way to overcome this limitation is increasing the area of metallic interface of the coupled lines, thus increasing the mutual capacitance of the lines, and inherently the coupling between them. This should be preferably done with keeping the coupler compact with respect to the footprint area, which is attained by making taller conductors, i.e. employing the third dimension. In contrast with previously used RF component fabrication processes, LIGA is the technology that allows the designer to explore the third dimension and build tall conductors while being also able to use small features. When the two-dimensional edge-coupled SML couplers are extended into the three-dimensional structures, they rather become the side-coupled SML couplers. Tall-conductor coupled lines have been characterized in this work to reveal their dependence on their geometry and a 3-dB SML coupler with tall conductors has been developed and fabricated using LIGA at the Institute for Microstructure Technology (IMT), Karlsruhe, Germany. The simulation and measurement results demonstrate the potentially superior performance of LIGA couplers, and the promising capabilities of LIGA for fabrication of RF microstructures.
26

LIGA-micromachined tight microwave couplers

Kachayev, Anton 19 December 2003 (has links)
There are a significant number of microwave applications, including active antenna arrays, wireless communication systems, navigational applications, etc., where improvement of such qualities as manufacturing costs, size, weight, power consumption, etc. is still on the agenda of todays RF design. In order to meet these requirements, new technologies must be actively involved in fabrication of RF components with improved characteristics. One of such fabrication technologies is called LIGA, used before primarily in fluidics, photonics, bioengineering, and micromechanics, and only recently receiving growing attention in RF component fabrication. One of the RF components suffering limitations in performance due to limitations in fabrication capabilities is the compact single metal layer (SML) coupled-line 3-dB coupler, also called hybrid, required in some applications thanks to its ability to divide power equally and electrically isolate the output from the input. In todays practical edge-coupled SML coupler designs, the level of coupling is limited by the capabilities of the photolithographic process to print the coupled lines close enough for tight coupling and it is usually no tighter that 8 dB. A promising way to overcome this limitation is increasing the area of metallic interface of the coupled lines, thus increasing the mutual capacitance of the lines, and inherently the coupling between them. This should be preferably done with keeping the coupler compact with respect to the footprint area, which is attained by making taller conductors, i.e. employing the third dimension. In contrast with previously used RF component fabrication processes, LIGA is the technology that allows the designer to explore the third dimension and build tall conductors while being also able to use small features. When the two-dimensional edge-coupled SML couplers are extended into the three-dimensional structures, they rather become the side-coupled SML couplers. Tall-conductor coupled lines have been characterized in this work to reveal their dependence on their geometry and a 3-dB SML coupler with tall conductors has been developed and fabricated using LIGA at the Institute for Microstructure Technology (IMT), Karlsruhe, Germany. The simulation and measurement results demonstrate the potentially superior performance of LIGA couplers, and the promising capabilities of LIGA for fabrication of RF microstructures.
27

A Monolithic Phased Array Using Rf Mems Technology

Topalli, Kagan 01 July 2007 (has links) (PDF)
This thesis presents a novel monolithic phased array implemented using the RF MEMS technology. The structure, which is designed at 15 GHz, consists of four linearly placed microstrip patch antennas, 3-bit distributed RF MEMS low-loss phase shifters, and a corporate feed network. The RF MEMS phase shifter employed in the system consists of three sections with a total of 28 unit cells, and it occupies an area of 22.4 mm &amp / #61620 / 2.1 mm. The performance of the phase shifters is improved using high-Q metal-air-metal capacitors in addition to MEMS switches as loading elements on a high-impedance coplanar waveguide transmission line. The phased array is fabricated monolithically using an in-house surface micromachining process, where a 1.2-&amp / #61549 / m thick gold structural layer is placed on a 500-&micro / m thick glass substrate with a capacitive gap of 2 &amp / #61549 / m. The fabrication process is simple, requires only 6 masks, and allows the implementation of various RF MEMS components on the same substrate, such as RF MEMS switches and phase shifters. The fabricated monolithic phased array occupies an area of only 6 cm &amp / #61620 / 5 cm. The measurement results show that the phase shifter can provide nearly 20&amp / #61616 / /50&amp / #61616 / /95&amp / #61616 / phase shifts and their eight combinations at the expense of 1.5 dB average insertion loss at 15 GHz. The phase shifters can be actuated with 16 V, while dissipating negligible power due to its capacitive operation. It is also shown by measurements that the main beam can be steered to 4&amp / #61616 / and 14&amp / #61616 / by suitable settings of the RF MEMS phase shifters.
28

Ferrite-ferroelectric thin films with tunable electrical and magnetic properties

Heindl, Ranko 01 June 2006 (has links)
A growing need for developing new multi-functional materials operating at microwave frequencies is demanding a better understanding of ferroelectric and ferrimagnetic materials and their combinations. Some of these materials exhibit tunable physical properties, giving an extra degree of freedom in the device design. New multifunctional ferroelectric and ferrimagnetic thin film structures are investigated in this dissertation research, in which dielectric and magnetic properties can separately be tuned over a certain frequency range. The materials of choice, Ba0.5Sr0.5TiO3 (BST) and BaFe12O19 (BaM), both well studied and used in many microwave applications, were prepared using rf magnetron sputtering and pulsed laser ablation. Thin-film bilayers, multilayers and composite thin films were grown on various substrates, and their underlying microstructure and crystallographic properties were analyzed and optimized. After identifying the most successful growth conditions,dielectric and magnetic properties were measured. Unusual features in magnetic hysteresis loops in both sputtered and laser ablated films grown under different conditions were observed. Microcircuits were fabricated using optical lithography and microwave properties and tunability were tested in the range 1-65 GHz.
29

Ultra-wideband antenna in coplanar technology

Lam, Hung-Jui 22 December 2007 (has links)
Ultra-wideband (UWB) antennas are one of the most important elements for UWB systems. With the release of the 3.1 - 10.6 GHz band, applications for short-range and high-bandwidth handheld devices are primary research areas in UWB systems. Therefore, the realization of UWB antennas in printed-circuit technologies within relatively small substrate areas is of primary importance. This thesis focuses on the design of a new UWB antenna based on coplanar technology. Compared with microstrip circuitry, coplanar technology achieves easier fabrication and wider antenna bandwidth. Two professional full-wave field solver software packages, HFSS and MEFiSTo-3D, are used as analysis tools to obtain antenna performances. A new printed-circuit antenna in coplanar technology for UWB systems is introduced. The frequency of operation is 3.1 GHz to 10.6 GHz with a VSWR < 2. Nearly omni-directional characteristics in vertical polarization are demonstrated at selected frequencies. Relatively good group delay characteristics are obtained and compare well with other published UWB antenna designs.
30

A tunable coplanar patch antenna, a polymer MEMS based tunable bandpass filter, and a chip-In-polymer packaging technology

Holland, Brian Russell, Ramadoss, Ramesh. January 2007 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references (p.40-41).

Page generated in 0.0464 seconds