• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 56
  • 51
  • 18
  • 11
  • 8
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 323
  • 323
  • 93
  • 44
  • 42
  • 40
  • 35
  • 34
  • 33
  • 29
  • 28
  • 28
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Interaction Between Microgels and Oppositely Charged Proteins

Johansson, Christian January 2009 (has links)
This thesis reports on interactions between microgels and oppositely charged proteins. Two types of negatively charged microgels are investigated: poly(acrylic acid) microgels of 60-80 µm in diameter, and colloidal poly(NIPAM-co-acrylic acid) microgels of around 1 µm in diameter. The proteins used are lysozyme and cytochrome c, which both have positive net charge. The experimental techniques used in the studies of the larger microgels are mainly micromanipulator-assisted microscopy and confocal microscopy, while the smaller microgels are studied mainly with dynamic light scattering. It is observed that large amounts of protein are absorbed by the microgels, and that the uptake involves a substantial deswelling of the microgel. The uptake generally decreases as the ionic strength is increased, which is characteristic of electrostatic interactions. An ionic strength optimum is however observed in the case of lysozyme and poly(acrylic acid) microgels, where the highest uptake (10 gram lysozyme / gram microgel) is observed at ionic strength 40 mM. Cytochrome c uptake in poly(acrylic acid) microgels results in homogenous cytochrome c distribution throughout the microgel, whereas lysozyme uptake results in core-shell formation; the lysozyme concentration becomes much higher in the shell (outer part of the microgel) than in the core (inner part of the microgel). The shell constitutes a stress-bearing network which is sufficiently porous to allow protein diffusion through the shell. The different protein distributions are associated with different protein-protein interactions; strong protein-protein attraction promotes shell formation. In the case of colloidal microgels, lysozyme uptake decreases the electrophoretic mobility and the colloidal stability of the microgels. The microgels flocculate as the uptake reaches charge ratio 0.6-0.7 (positive lysozyme charges/negative microgel charges), largely independent of ionic strength. Initial experiments on the combination of cytochrome c and colloidal microgels show that colloidal stability is maintained at a range of conditions (ionic strength, protein concentration) where flocculation occurred in the case of lysozyme.
92

Energy Transfer Dynamics and Dopant Luminescence in Mn-Doped CdS/ZnS Core/Shell Nanocrystals

Chen, Hsiang-Yun 14 March 2013 (has links)
Mn-doped II-VI semiconductor nanocrystals exhibit bright dopant photoluminescence that has potential usefulness for light emitting devices, temperature sensing, and biological imaging. The bright luminescence comes from the 4T1→6A1 transition of the Mn2+ d electrons after the exciton-dopant energy transfer, which reroutes the exciton relaxation through trapping processes. The driving force of the energy transfer is the strong exchange coupling between the exciton and Mn2+ due to the confinement of exciton in the nanocrystal. The exciton-Mn spatial overlap affecting the exchange coupling strength is an important parameter that varies the energy transfer rate and the quantum yield of Mn luminescence. In this dissertation, this correlation is studied in radial doping location-controlled Mn-doped CdS/ZnS nanocrystals. Energy transfer rate was found decreasing when increasing the doping radius in the nanocrystals at the same core size and shell thickness and when increasing the size of the nanocrystals at a fixed doping radius. In addition to the exciton-Mn energy transfer discussed above, two consecutive exciton-Mn energy transfers can also occur if multiple excitons are generated before the relaxation of Mn (lifetime ~10^-4 - 10^-2 s). The consecutive exciton-Mn energy transfer can further excite the Mn2+ d electrons high in conduction band and results in the quenching of Mn luminescence. The highly excited electrons show higher photocatalytic efficiency than the electrons in undoped nanocrystals. Finally, the effect of local lattice strain on the local vibrational frequency and local thermal expansion was observed via the temperature-dependent Mn luminescence spectral linewidth and peak position in Mn-doped CdS/ZnS nanocrystals. The local lattice strain on the Mn2+ ions is varied using the large core/shell lattice mismatch (~7%) that creates a gradient of lattice strain at various radial locations. When doping the Mn2+ closer to the core/shell interface, the stronger lattice strain softens the vibrational frequency coupled to the 4T1→6A1 transition of Mn2+ (Mn luminescence) by ~50%. In addition, the lattice strain also increases the anharmonicity, resulting in larger local thermal expansion observed from the nearly an order larger thermal shift of the Mn luminescence compared to the Mn-doped ZnS nanocrystals without the core/shell lattice mismatch.
93

Synthesis of bi-magnetic core|shell and onion- like nanoparticles based on iron and manganese oxides

López Ortega, Alberto 27 September 2012 (has links)
Aquesta tesi engloba la síntesi i la caracterització estructural i magnètica de dos tipus de nanopartícules polymagnètiques: estructures nucli-escorça (core|shell, CS) i tipus ceba (onion-like). El primer sistema està format per un nucli-MnO|escorça-Mn 3O4 ( -Mn2O3) amb doble inversió, on el nucli i l'escorça mostren un comportament AFM i FiM, respectivament . Es de neix com estructuralment inversa ja que l'AFM es localitza al nucli i el FiM a l'escorça; a més, també es troba magnèticament invertida, és a dir, la temperatura de Néel de l'AFM presenta valors més elevats que la temperatura de Curie del FiM. Les nanopartícules nucli-escorça de MnO|Mn3O4 ( -Mn2O3) s'han obtingut a través de la passivació controlada de l'escorça de nanopartícules de MnO prèviament sintetitzades. Aquest procés permet controlar tant la grandària del nucli com el gruix de l'escorça. Es va con rmar que la composició de l'escorça un cop passivada depèn de la grandària inicial de les nanopartícules; conseqüentment, les nanopartícules més grans estan formades principalment per Mn3O4. No obstant, a mesura que es disminueix la grandària, la densitat de defectes augmenta obtenint, d'aquesta manera, una escorça més estable formada per la fase -Mn2O3. D'altra banda, nuclis AFM de MnO relativament petits poden induir un efecte magnètic de proximitat (magnetic proximity e ects) a l'escorça de FiM -Mn2O3 tot mantenint el seu ordre magnètic molt per sobre de la seva temperatura de Curie, TC; a més, aquest sistema presenta un augment de la temperatura de Néel de l'AFM. El segon sistema es basa en la síntesi de nanopartícules d'òxid de manganès i ferro del tipus nucli-escorça i ceba. Nanopartícules de dos òxids de ferro diferents (FeO|Fe3O4 CS i Fe3O4 monofàsica) s'han utilitzat com a llavors per a la posterior deposició d'òxid de manganès. A partir de les llavors nucli-escorça d'òxid de ferro s'han sintetitzat dos tipus de nanopartícules ceba (tres-components FeO|Fe 3O4|Mn3O4 i quatre-components FeO|Fe3O4|MnO|Mn3O4). D'altra banda, nanopartícules d'òxid de ferro monofàsiques han estat utilitzades com a llavors per a dipositar una capa na de manganès al seu voltant amb l'objectiu d'incentivar l'interdifusió del manganès-ferro i formar nanopartícules nucli-escorça de MnxFe3 ��xO4|FexMn3 ��xO4 amb una interfase graduada. S'ha observat que l'òxid de manganès creix epitaxialment en els plans (111) sobre les cares truncades del llavors cúbiques d'oxid de ferro. Finalment, nanopartícules nucli-escorça de MnxFe3 ��xO4|FexMn3 ��xO4 formades per una estructura tou-FiM/dur- FiM amb una composició gradual a l'interfase demostren un bon l'acoblament magnètic entre ambdues, tova i dura, fases FiM. / This thesis deals with the synthesis and magnetic and structural characterization of two di erent systems based in polymagnetic nanoparticles with core|shell (CS) and onion-like architectures. The rst system is formed by a double inverted core-MnO|shell- Mn3O4 ( -Mn2O3) where core and shell display an antiferromagnetic (AFM) and ferrimagnetic (FiM) behavior, respectively. It is de ned as structurally inverted since the AFM is placed in the core and the FiM in the shell (in contrast to conventional ferromagnetic( FM)/AFM CS systems); in addition, it is, also, magnetically inverted because the Néel temperature of the AFM is larger than the Curie temperature of the FiM (contrarily to standard exchange bias systems). MnO|Mn3O4 ( -Mn2O3) CS nanoparticles have been synthesized through the controlled shell passivation of pre-made MnO nanoparticles. This procedure allows reaching a good control over the nal core size and shell thickness. It was con rmed that the passivated shell composition depends on the nanoparticle size, where the larger nanoparticles presenting mainly Mn3O4. However, when the size diminishes, the density of defects in the MnO core increases and consequently -Mn2O3 is the more stable shell phase. Besides, small AFM MnO cores can induce a magnetic proximity e ect to the FiM -Mn2O3 shell, maintaining its magnetic order well above its Curie temperature, TC. Moreover, surface e ects in the MnO core can also lead an increase of the Néel temperature of the AFM. Further, given the AFM/FiM exchange coupling the system exhibits large coercivities and loop shifts along the eld axis, i.e., exchange bias. The second type of system comprises the synthesis of CS and onion-like nanoparticles based in manganese and iron oxides. Two di erent iron oxide nanoparticles (FeO|Fe3O4, AFM|FiM, CS and single phase FiM Fe3O4) have been used as seeds for the posterior manganese oxide deposition. From iron oxide CS seeds two di erent onion-like nanoparticles (three-components FeO|Fe3O4|Mn3O4 and four-components FeO|Fe3O4|MnO|Mn3O4) have been synthesized. The temperature dependence of the magnetization of these onion nanoparticles exhibits several magnetic transitions, in concordance with the presence of diverse magnetic phases. In addition, single phase iron oxide seeds were employed to deposit a manganese thin shells at high temperatures forcing a manganese-iron interdi usion to form the nal MnxFe3 �xO4|FexMn3 �xO4 CS nanoparticles with a graded interphase. The structural results show that the (111) planes of the manganese oxide grow epitaxially onto the (111) planes of the truncated faces of the initial cubic iron oxide seeds. Finally, the CS MnxFe3 �xO4|FexMn3 �xO4 nanoparticle, formed by soft-FiM|hard-FiM structure with a graded interphase composition, shows a strong exchange coupling between the hard and soft FiM phases.
94

Silver nanostructures: chemical synthesis of colloids and composites nanoparticles, plamon resonance properties and silver nanoparticles monolayer films prepared by spin-coating

Torres Heredia, Victor Elias 08 November 2011 (has links)
El presente trabajo tiene como objetivo desarrollar en solución acuosa y a tem-peratura ambiente, rutas de síntesis química coloidal de nanopartículas de plata y nano-partículas compuestas estables. Se obtienen nanopartículas de plata reproducibles, con un control morfológico de tamaño y forma durante el proceso de síntesis. Llevamos a cabo el estudio de las propiedades ópticas (espectros de absorción de las resonancias de plasmones superficiales (SPR)) que caracterizan a una determinada forma y tamaño. El análisis incluye estructuras nanométricas de plata de diferentes tamaños, en ambientes diversos y formas diferentes, como esferas, prolates, y prismas de diferente sección transversal, etc Se ha demostrado que la síntesis química produce coloides de nanopartículas de plata esféricas y anisotrópicas estables. La morfología y estabilidad de las nanopartícu-las coloidales son estudiadas mediante técnicas de espectroscopia y microscopía elec-trónica. El rol y concentración necesaria de cada uno de los reactivos para producir co-loides estables mediante síntesis química son determinadas. Se ha demostrado que, con-trariamente a las opiniones actualmente expresadas en la literatura, es posible controlar el tamaño de las nanopartículas de plata y obtener coloides de nanopartículas de plata esféricas y anisotrópicas estables por largo tiempo, utilizando una ruta de síntesis quí-mica sencilla y una baja concentración de reactivos estabilizadores (PVP). Recubrimientos de nanopartículas esféricas de plata estabilizadas con polivinilpirroli-dona (PVP) sobre substratos de vidrio óptico son preparados mediante el proceso de spin-coating y un posterior tratamiento térmico. Diferentes morfologías tipo core-shell de Ag@SiO2 son preparados mediante un método químico simple y rápido, sin necesidad de adicionar reactivos de acoplamiento o modificadores superficiales de la sílice. Proponemos mecanismos de reacción para la preparación de diferentes nano-estructuras tipo core-shell de plata-sílice. Las nanopartí-culas compuestas de sílice-plata muestran unas propiedades de absorción de resonancia plasmónica muy evidentes. El trabajo de éste capítulo ha sido realizado en colaboración con Juan C. Flores, quien desarrolló la ruta de síntesis como parte de sus estudios de doctorado. Por último, una modificación del método sol-gel es empleada para la prepara-ción de nanopartículas de TiO2, y partículas compuestas de Ag@TiO2, SiO2@TiO2-Ag y SiO2@Ag@TiO2. Diferentes morfologías tipo core-shell son preparadas mediante un método químico simple y rápido sobre un substrato óxido, sin necesidad de adicionar agentes de acoplamiento o modificaciones superficiales. Las evidentes propiedades de absorción plasmónica de las nanopartículas de plata mostradas por las partículas com-puestas han demostrado la presencia de plata metálica sobre la titania, sin la posterior oxidación de la capa de plata por el contacto directo con la titania (TiO2). Esta evidencia es confirmada por la técnica de microscopía electrónica de alta resolución. Las propie-dades de absorción plasmónica de las partículas compuestas hacen a estos materiales muy prometedores para aplicaciones foto-catalíticas. / The present work aims to develop chemical synthesis routes of stable colloidal silver nanoparticles and composites nanoparticles in aqueous solution at room tempera-ture. We obtain reproducible morphological control of silver nanoparticles size and shape during synthesis solely by solution chemistry and carry out the study of the opti-cal properties (surface plasmon resonances (RPS) absorption spectra) which character-ize a specific shape and size. The analysis includes silver nanosized bodies of different size, in diverse environments and of various shapes, as spheres, prolates, and prisms of different transversal section, etc. Synthetic wet chemistry routes yielding stable colloids of spherical and aniso-tropic silver nanoparticles are demonstrated, and the morphology and stability of the colloidal nanoparticles studied extensively through spectroscopy and electron micros-copy techniques. The role of each reagent and the concentrations required to obtain sta-ble colloid via these wet chemical routes is determined. It was shown that, contrary to commonly expressed opinions in the literature, it is possible to control the particle size of silver nanoparticles and obtain long-term sable colloids of both spherical and aniso-tropic silver nanoparticles using simple chemical routes and low concentration of stabi-lizing agent (PVP). Films of polyvinylpyrrolidone (PVP) stabilized spherical silver nanoparticles are also prepared, by using spin coating on standard optical glass plates and subsequent thermal processing. Different core-shell type morphologies of Ag@SiO2 are also produced using a simple and rapid chemical method, without using added coupling agents or surface modifications of silica. We propose reaction mechanisms for the formation of the dif-ferent silica-silver core-shell nanostructures. The silica-silver composite nanoparticle display clear plasmonic resonance absorption properties. This chapter work has been done in collaboration with PhD student Juan C. Flores who developed the synthesis route as part of his doctoral studies. Finally, a sol-gel chemistry approach was used to fabricate nanoparticles in the systems TiO2, Ag@TiO2, Ag@TiO2-SiO2 and TiO2@Ag@SiO2. Different core-shell morphologies are produced using a simple and rapid chemical method. without using added coupling agents or surface modifications of the oxide substrate. Clear silver na-noparticle plasmonic absorption properties shown by the composite nanoparticles demonstrate the formation of metallic Ag, without the oxidation of Ag nanoshell in di-rect contact with TiO2, evidence confirmed also by high resolution electron microscopy. The plasmonic absorption properties of the composites nanoparticles make them a promising material for photocatalytic applications.
95

Graft Polymers: From Dendrimer Hybrids to Latex Particles

Munam, Abdul January 2007 (has links)
The research presented focused on the synthesis and the characterization of graft polymers, of interest either as model systems or for large-scale applications. The materials selected as substrates for grafting reactions were carbosilane dendrimers, linear and branched polystyrenes, and cross-linked polystyrene latex particles. The synthesis of dendrimer-arborescent polymer hybrids was thus achieved by derivatization of the carbosilane dendrimers with dichlorosilane moieties and coupling with 1,4-polybutadiene side chains with Mn ≈ 1000. A second derivatization and coupling reaction with Mn ≈ 1500, 5000, or 30000 side chains yielded hybrid polymers with narrow molecular weight distributions (Mw/Mn ≤ 1.16). In the second part of the thesis, a procedure for the large-scale (100-g) synthesis of arborescent styrene homopolymers and copolymers incorporating poly(2-vinylpyridine) segments is presented. End-capping of the polystyryllithium chains with 1,1-diphenylethylene in the presence of LiCl, followed by the addition of 3 – 6 equivalents of 2-vinylpyridine per side chain, eliminated side reactions and led to grafting yields of up to 95 %. A systematic investigation of the solution properties of polyelectrolytes obtained by protonation of the poly(2-vinylpyridine) arborescent copolymers with a strong acid (trifluoroacetic acid) is also presented. The relative importance of the electrostatic repulsion and the elastic deformation forces on molecular expansion was investigated by examining the solution properties of the copolymers as a function of structure, protonation level, and the presence of salts in polar solvents (methanol, DMF, H2O). The viscosity of the arborescent copolymer solutions was also found to be much lower than for linear P2VP samples under the same conditions. In the last part of the thesis, the synthesis of model filler particles was achieved by grafting polyisoprene chains onto cross-linked polystyrene latex particles derivatized with acetyl coupling sites. These substrates, which can be viewed as an extreme case of a dense (hard-sphere) arborescent polymer structure, were used to investigate the influence of filler-matrix polymer interactions on the rheological behavior of filled polyisoprene samples. The influence of the filler structure on the rheological behavior of the blends was examined by dynamic mechanical analysis in terms of frequency-dependent complex viscosity, storage modulus, and damping factor. All the blends exhibited enhanced complex viscosity, storage modulus, and decreased damping factor values relative to the matrix polymer.
96

Graft Polymers: From Dendrimer Hybrids to Latex Particles

Munam, Abdul January 2007 (has links)
The research presented focused on the synthesis and the characterization of graft polymers, of interest either as model systems or for large-scale applications. The materials selected as substrates for grafting reactions were carbosilane dendrimers, linear and branched polystyrenes, and cross-linked polystyrene latex particles. The synthesis of dendrimer-arborescent polymer hybrids was thus achieved by derivatization of the carbosilane dendrimers with dichlorosilane moieties and coupling with 1,4-polybutadiene side chains with Mn ≈ 1000. A second derivatization and coupling reaction with Mn ≈ 1500, 5000, or 30000 side chains yielded hybrid polymers with narrow molecular weight distributions (Mw/Mn ≤ 1.16). In the second part of the thesis, a procedure for the large-scale (100-g) synthesis of arborescent styrene homopolymers and copolymers incorporating poly(2-vinylpyridine) segments is presented. End-capping of the polystyryllithium chains with 1,1-diphenylethylene in the presence of LiCl, followed by the addition of 3 – 6 equivalents of 2-vinylpyridine per side chain, eliminated side reactions and led to grafting yields of up to 95 %. A systematic investigation of the solution properties of polyelectrolytes obtained by protonation of the poly(2-vinylpyridine) arborescent copolymers with a strong acid (trifluoroacetic acid) is also presented. The relative importance of the electrostatic repulsion and the elastic deformation forces on molecular expansion was investigated by examining the solution properties of the copolymers as a function of structure, protonation level, and the presence of salts in polar solvents (methanol, DMF, H2O). The viscosity of the arborescent copolymer solutions was also found to be much lower than for linear P2VP samples under the same conditions. In the last part of the thesis, the synthesis of model filler particles was achieved by grafting polyisoprene chains onto cross-linked polystyrene latex particles derivatized with acetyl coupling sites. These substrates, which can be viewed as an extreme case of a dense (hard-sphere) arborescent polymer structure, were used to investigate the influence of filler-matrix polymer interactions on the rheological behavior of filled polyisoprene samples. The influence of the filler structure on the rheological behavior of the blends was examined by dynamic mechanical analysis in terms of frequency-dependent complex viscosity, storage modulus, and damping factor. All the blends exhibited enhanced complex viscosity, storage modulus, and decreased damping factor values relative to the matrix polymer.
97

Synthesis and Characterization of Core/Shell Hydrogel Nanoparticles and Their Application to Colloidal Crystal Optical Materials

McGrath, Jonathan G. 16 January 2007 (has links)
This dissertation describes the use of spherical micro- and nanoparticles as building blocks for the fabrication of colloidal crystals. The polymer component used in all of the projects that are described herein is poly-N-isopropylacrylamide (pNIPAm). The polymeric identity of particles composed of this soft, hydrogel material, which is also thermoresponsive, contributes to particle self-assembly to form ordered structures. Specifically, particles that possess a core/shell topology were investigated to allow for the localization of distinct polymeric properties. Chapter 2 examines a characterization technique using fluorescence resonance energy transfer (FRET) that was explored to investigate the structure of pNIPAm particles that possess this core/shell topology. Chapters 4-6 investigate strategies to impart both stability and flexibility to the particles so that these properties could assist in particle self-assembly as well as provide a stable construct for the production of robust crystalline materials. Styrene was used as the main monomer component in a copolymer synthesis with NIPAm to achieve poly(styrene-co-N-isopropylacrylamide particles (pS-co-NIPAm) that exhibited both hard and soft properties. Simple drying procedures were used to form crystal assemblies with these particles and the application of these pS-co-NIPAm particle suspensions as processable, photonic inks is also investigated. Chapter 7 examines the ability to physically cross-link colloidal crystals composed of pS-co-NIPAm particles by simple heating methods to produce robust films. The optical properties of these crystal films could be tuned by simple rehydration of the film due to the hydrogel character of the crystal building blocks. Chapters 3 and 5 examine the synthesis and self-assembly strategies of core/shell particles using the properties of pNIPAm shell layers that have been added to different types of core particles (silver or pS-co-NIPAm) for the purposes of fabricating colloidal crystals with enhanced properties using thermal annealing procedures. Chapter 8 explores the use of silver particles as tracers for the characterization of colloidal crystals composed of thermally annealed colloidal crystals composed of pNIPAm hydrogel particles.
98

Study on mechanical and electronic properties of one-dimensional zinc oxide nanostructure by Molecular Dynamics and Density Functional Theory

Lee, Chia-Hung 08 September 2010 (has links)
In this study, we employed density functional theory (DFT) and molecular dynamics (MD) to investigate the mechanical and electronic properties of one-dimensional zinc oxide nanostructure. This study can be arranged into two parts: In part I: We investigated the mechanical and electronic properties of one-dimensional zinc oxide nanostructure under axial mechanical deformations by density functional theory. In this case, we could find both the highest occupied molecular orbital and the lowest unoccupied molecular orbital gap (HOMO-LUMO gap) and value of radial buckling will decrease linearly with the increase of axial strain. The changes of bond lengths and bond angles show the variation of nanostructure dependence to the increase of axial strain. This study also used partial density of state (PDOS), bond order (BO) and deformation density to analyse the differences of the electronic properties between the zinc oxide nanotubes under axial strain. In part II: This study, which employed molecular dynamics combines Buckingham and Core-Shell potentials, shows the different physical parameters, such as yield stress, young¡¦s modulus and slip vector to research the mechanical behavior and variation of structure of nanotube under axial strain.
99

Magnetization Dynamics and Related Phenomena in Nanostructures

Chandra, Sayan 01 January 2013 (has links)
Collective magnetic behavior in nanostructures is a phenomenon commonly observed in various magnetic systems. It arises due to competing inter/intra–particle interactions and size distribution and can manifest in phenomena like magnetic freezing, magnetic aging, and exchange bias (EB) effect. In order to probe these rather complex phenomena, conventional DC and AC magnetic measurements have been performed along with radio–frequency transverse susceptibility (TS) measurements. We also demonstrate the magnetic entropy change as a parameter sensitive to subtle changes in the magnetization dynamics of nanostructures. The focus of this dissertation is to study the collective magnetic behavior in core-shell nanostructures of Fe/γ–Fe2O3 and Co/CoO, La0.5Sr0.5MnO3 nanowires, and LaMnO3 nanoparticles. In the case of core/shell Fe/γ–Fe2O3, we found the particles to critically slow down below the glass transition temperature, below which they exhibit aging effects associated with a superspin glass (SSG) state. We demonstrate that it is possible to identify individual magnetic responses of the Fe core and the γ–Fe2O3 shell. Consistently, a systematic study of the magnetocaloric effect (MCE) in the Fe/γ–Fe2O3 system reveals the development of inverse MCE with peaks associated with the individual magnetic freezing of the core and the shell. From these obtained results, we establish a general criterion for EB to develop in core/shell nanostructures, that is when the core is in the frozen state and the magnetic moments in the shell begin to block. This criterion is shown to be valid for both ferromagnetic/ferrimagnetic (FM/FIM) Fe/γ–Fe2O3 and ferromagnetic/antiferromagnetic (FM/AFM) Co/CoO core–shell nanostructures. We also elucidate the physical origin of the occurrence of asymmetry in field-cooled hysteresis loops and its dependence on magnetic anisotropy in the Co/CoO system by performing a detailed TS study. We have performed a detailed magnetic study on hydrothermally synthesized single crystalline La0.5Sr0.5MnO3 nanowires. The temperature and field dependent evolution of the different magnetic phases leading to development of the inverse MCE and EB in the nanowires is discussed. Finally, we have studied the collective magnetic behavior of LaMnO3 nanoparticles synthesized by the sol–gel technique. The nanoparticle ensemble shows the unusual co–existence of super-ferromagnetism (SFM), as well as the SSG state, which we term the 'ferromagnetic superglass' (FSG) state. The existence of FSG and the characteristics of its magnetic ground state are discussed.
100

Hybrid Photovolvoltaic Devices Based on Nanocrystals and Conducting Metallopolymers Using the Seeded Growth Method

Huynh, Uyen Nguyen Phuong 03 January 2013 (has links)
Described herein are two projects focusing on developing and investigating two types of nanoparticles (NPs) grown by the seeded growth method from a conducting metallopolymer for photovoltaic (PV) applications. Core/shell CdS/ZnS NPs are proven to resist the photo-oxidation of PV devices, while CuInxGa(1-x)Se2 (CIGS) NPs are expected to optimize the efficiency of PV devices. / text

Page generated in 0.1244 seconds