Spelling suggestions: "subject:"couplage excitationcontraction"" "subject:"couplage excitation:inhibition""
1 |
Mesure de la concentration totale du calcium ([Ca[indice inférieur T]]MUSCLE) dans le muscle cardiaque et squelettiqueKake, Sandrine Aurélie January 2014 (has links)
La contraction du muscle cardiaque et squelettique est activée par la libération du calcium (Ca²[indice supérieur +]) du réticulum sarcoplasmique (RS), en réponse à la dépolarisation du sarcolemme pendant la propagation du potentiel d'action (PA) le long des tubules transverses (tubules T). Ce processus s'appelle le couplage excitation-contraction (couplage EC). Le couplage EC dans le muscle cardiaque est différent de celui squelettique en ce sens qu'il nécessite du Ca²[indice supérieur +] extracellulaire ce qui n'est pas le cas dans le couplage EC dans le muscle squelettique. Le but de mon projet de Maîtrise a été principalement de développer et de perfectionner une nouvelle méthode de mesure de la concentration totale de Ca²[indice supérieur +] dans le muscle cardiaque et le muscle squelettique ([Ca[indice inférieur T]]MUSCLE) de différentes espèces (rats, souris et grenouilles); dont la plus grande fraction est emmagasinée à l'intérieur du RS. Cette mesure quantitative a pour objectif à long terme, dans le cas du muscle cardiaque de comprendre les résultats apparemment contradictoires concernant le mécanisme principal de couplage EC et dans le cas du muscle squelettique, de confirmer que la concentration totale de Ca²[indice supérieur +] dans la préparation des cellules isolées correspond au niveau physiologique. De surcroît, dans ce dernier cas, la [Ca[indice inférieur T]]MUSCLE dans les fibres musculaires squelettiques de grenouille obtenu avec la technique de EGTA-Rouge de phénol effectué par Pape et al. (1995) est similaire à celle obtenue à partir de cette nouvelle méthode dans le muscle squelettique entier. Les résultats obtenus en relation avec le poids du muscle sur les souris C57BL6 montrent qu'il y a une grande dépendance du contenu total de Ca²[indice supérieur +] sur le poids du muscle. En effet, le poids du muscle varie de 12.7 mg à 5.2 mg ce qui correspond à 1.34 mM et 4.14 mM respectivement. Ces résultats suggèrent la possibilité d'un mécanisme pour la régulation du [Ca[indice inférieur T]]MUSCLE où le plus petit muscle augmente [Ca[indice inférieur T]]MUSCLE afin d'augmenter sa force spécifique (force normalisée pour la grandeur) pour produire une force similaire aux muscles plus grands. La calséquestrine est une protéine qui tamponne le Ca²[indice supérieur +] à l'intérieur du RS est la source principale de Ca²[indice supérieur +] impliquée dans le couplage EC. En effet, Fenelon et al. (2012) ont estimé que 95% du Ca²[indice supérieur +] dans le RS est lié, avec 5% dans le forme libre (i.e. Ca²[indice supérieur +]), et que plus de 80% du Ca²[indice supérieur +] lié paraît être associé avec la calséquestrine. La raison principale pour développer cette nouvelle méthode a été d'évaluer si le contenu total de Ca intracellulaire est largement réduit dans les muscles KO en CSQ afin de mieux résoudre la controverse sur ce sujet. Contrairement à nos attentes [Ca[indice inférieur T]]MUSCLE a été proche de 2mM dans les muscles contrôles, ce qui est proche de la moyenne mesurée pour les muscles KO en CSQ. Notre hypothèse est qu'il y a une "uprégulation" d'une ou plusieurs protéines de liaison de Ca²[indice supérieur +] dans le RS.
|
2 |
Régulations monoaminergiques AMPc-dépendantes du coeur sain et pathologique / cAMP-dependent monoaminergic regulations of the healthy and failing heartMeschin, Pierre 01 December 2014 (has links)
La fonction cardiaque est finement régulée par des hormones de type monoamines qui constituent des régulateurs cruciaux de l’activité cardiaque (chronotropie et inotropie). Ces hormones dérivées d’acides aminés aromatiques comprenant les catécholamines et la sérotonine maintiennent l’activité du myocarde dans un cadre physiologique tout en lui permettant de s’adapter aux contraintes environnementales. Les récepteurs cellulaires des monoamines sont couplés à des voies de signalisation qui impliquent un nucléotide cyclique, l’AMPc, et modulent la contractilité des cardiomyocytes par l’intermédiaire de multiples phosphorylations des protéines régulatrices du cycle du calcium (canal calcique de type L, RyR2 ou phospholamban) par la protéine kinase A AMPc-dépendante. Lorsque les monoamines voient leurs activités dérégulées en contextes pathologiques tels que l’insuffisance cardiaque (IC) ou un lors d'un traitement antidépresseur, elles conduisent à une hyperstimulation de leurs récepteurs spécifiques. Cette dernière altère alors les voies impliquant l’AMPc et les flux calciques engendrant des évènements ectopiques proarythmogéniques nommés post-dépolarisations. Ces dysfonctions de la contractilité cellulaire et de l'homéostasie calcique peuvent être à l’origine d’arythmies tissulaires et de morts subites cardiaques. Les altérations de l’homéostasie calcique subsistent en dépit des approches thérapeutiques actuelles (!-bloquants, inhibiteurs de l’enzyme de conversion de l’angiotensine) qui vise à freiner le remodelage myocardique post-ischémique et constituent donc une cible active de la recherche cardiovasculaire. Les Rycals, stabilisateurs pharmacologiques du RyR2, représentent une nouvelle approche visant à remédier à ces altérations. Au sein de ces travaux de recherche, nous avons axé nos études sur les deux voies monoaminergiques AMPc cardiaques majeures, les voies adrénergiques et sérotoninergiques. Un premier axe d’étude a consisté en l’évaluation des bénéfices potentiels d’un nouveau Rycal, le S44121, sur la survenue d’arythmies cellulaires et tissulaires en comparaison d’un !-bloquant de référence, le métoprolol, dans un contexte d’IC post-infarctus chez le rat. L’étude n’a cependant pas mise en évidence de bénéfices du S44121 mais a confirmé la cardioprotection exercée par le métoprolol. Un deuxième axe d’étude a évalué l’implication potentielle au niveau cardiaque de la protéine S100A10 dans la modulation de la voie du récepteur à la sérotonine de type 4 (5-HT4R) en conditions physiologiques ou en contexte d’IC. Cette étude originale a mis en avant pour la première fois dans le coeur sain un rôle de la S100A10 dans l’apparition d’une voie 5-HT4R proarythmogène lorsque son expression est induite par une neurotrophine (Brain-derived neurotrophic factor) ou un antidépresseur (imipramine). En revanche, le rôle de la S100A10 dans la modulation de la voie 5-HT4R en contexte d’IC n’a pas été déterminé de façon certaine. / Cardiac function is tightly regulated by hormones such as monoamines which are substantial modulators of cardiac activity (chronotropy and inotropy). These hormones, derived from aromatic amino acids, maintain myocardial activity in a physiological range and allow the cardiac adaptation to environmental conditions. The cellular receptors to monoamines are coupled to signaling pathways involving a cyclic nucleotide, cAMP, and modulate cardiac activity by phosphorylating several key proteins of calcium handling (L-type calcium channel, RyR2 or phospholamban) by the cAMP-dependent protein kinase A. Deregulation of monoamines in pathological conditions such as heart failure (HF) or during antidepressanttreatment leads to a hyperstimulation of their specific receptors. It therefore induces alterations of the cAMP signaling pathway and calcium handling leading to the occurrence of proarrhythmogenic ectopic cellular events known as afterdepolarizations. These dysfunctions in cellular contractility and calcium handling may cause tissue arrhythmias andeven sudden cardiac death. Calcium handling alterations leading to cardiac arrhythmias remain a clinically relevant issue despite the current therapeutical approaches (!-blockers, angiotensin-converting-enzyme inhibitors) which slow the post-ischemic myocardial remodeling and thus represent an active target in the cardiovascular research field. Rycals, RyR2 pharmacological stabilisers, are a new approach to prevent these alterations. In this work, we focused on the two major monoaminergic cAMP-dependent pathways in the heart, the adrenergic and serotoninergic pathways. In the first part of this work, we aimed to evaluate the potential benefits of a new Rycal, S44121, on cellular and tissue arrhythmias occurrence in post-myocardial infarction rat model. These effects were compared to those of the well-known !-blocker, metoprolol. This study failed to show any strong benefit of S44121 but confirmed the cardioprotection associated with the metoprolol use. In a second part of the work presented here, we aimed to evaluate the potential involvement of the S100A10 protein in the modulation of the cardiac serotonin receptor 4 pathway (5-HT4R) in physiological conditions or during HF. This original study unraveled for the first time a new role for S100A10 in the healthy heart by revealing a functional 5-HT4R pathway when S100A10 expression is induced by neurotrophins such as brain-derived neurotrophic factor or by antidepressant drugs such as imipramine. However, we failed to conclude on a direct evidence for a role of S100A10 in the modulation of the 5-HT4R pathway in the failingheart.
|
3 |
Caractérisation des voies de mort cellulaire lors du remodelage cardiaque dans les cardiopathies d'origine ischémique / Characterization of cell death pathway during myocardial ischemia reperfusionRoberge, Stéphanie 09 December 2013 (has links)
L'ischémie se caractérise par l'obstruction d'une artère coronaire qui prive le tissu d'un apport en oxygène et nutriments. Bien que nécessaire, la reperfusion, c'est-à-dire la réouverture de l'artère, s'accompagne de lésions tissulaires, appelées lésions de reperfusion. Au cours de l'I/R, le TNF-α, cytokine pro-inflammatoire, augmente. Sa liaison sur son récepteur TNFR1 induit le recrutement des protéines FADD et procaspase-8 formant le complexe DISC qui permet l'activation de la caspase-8. La caspase-8 clive une protéine pro-apoptotique, Bid, qui induit une perméabilisation de la membrane mitochondriale entrainant une production excessive de radicaux libres et une libération de cytochrome c. Cette dernière associée à Apaf-1 et procaspase-9 sert de plateforme d'activation à la caspase-9, qui, une fois activée, clive et active la caspase-3. La caspase-2 est une caspase initiatrice, tout comme la caspase-8. Pourtant, son rôle dans l'I/R cardiaque est peu connu. La production de ROS via la voie TNF-α/caspase-8 provoque des dommages à l'ADN. Ceci entraine l'activation de PARP-1, une enzyme impliquée dans la réparation de l'ADN. En fonctionnant, PARP-1 produit de l'ADP-ribose qui peut se fixer sur le canal TRPM2 et ainsi l'activer. L'ouverture de ce canal cationique provoque une entrée de Ca2+ qui contribue à la mort cellulaire et aux lésions de reperfusion. L'objectif de ce travail est de déterminer les mécanismes de mort cellulaire faisant intervenir la caspase-8, la caspase-2 et TRPM2 et d'évaluer les effets d'une inhibition de ces protéines sur les lésions de reperfusion. Un modèle de rat I/R met en évidence une augmentation de TNF-α après seulement 1h de reperfusion suivie d'une activation de la caspase-8. Cette activation entraine une production de ROS qui altère la structure et la fonction du canal RyR2, favorisant la fuite de Ca2+ du reticulum sarcoplasmique vers le cytosol. La caspase-2, exprimée dans le ventricule gauche, est activée avant la caspase-8 et induit une voie apoptotique de type intrinsèque. L'inhibition de la caspase-8 ou de la caspase-2 diminue les lésions de reperfusion. Parallèlement, le TNF-α induit un courant de type TRPM2 via l'activation de la caspase-8 et la production de ROS. In vivo, l'inhibition de TRPM2 par le clotrimazole diminue les lésions de reperfusion chez un modèle de souris I/R. La caspase-8, la caspase-2 et TRPM2 contribuent aux lésions de reperfusion et apparaissent comme de bonnes cibles dans la cardioprotection. / Myocardial ischemia and reperfusion (I/R) lead to repefusion injury. TNF-α, a pro-inflammatory cytokine, increases during reperfusion and contributes to this injury. The binding TNF/TNFR1 leads to the recruitment of FADD, TRADD and procaspase-8 and form a complexe named DISC. This complexe activates caspase-8, which cleaves Bid, a pro-apoptotic member of Bcl-2 family. tBid disrupts the mitochondrial membrane and induces a ROS production and a release of cytochome c, localized in intermembrane space. In cytosol, a complexe named apoptosome is formed with cytochrome c, Apaf-1 and procaspase-9 to activate caspase-9, which cleaves and activates caspase-3. Like caspase-8, caspase-2 is an initiator caspase. But little data exists on the role of this caspase in myocardial I/R.The disruption of mitochondria induces a ROS production which causes DNA damage. The enzyme PARP-1, involved in DNA repair, is then activated. By operating, PARP-1 produces ADP-ribose which can bind on TRPM2, a non selective cationic channel of TRP family. The opening of TRPM2 causes an increase of cytosolic calcium promoting cell death and reperfusion injury. The goal of this study was to determine the mechanisms of cell death after I/R involving caspase-8, caspase-2 and TRPM2 and to test an inhibitor of each protein on reperfusion injury. With a model of rat I/R, we demonstrated that TNF-α increases after only 1h of reperfusion following by a caspase-8 activation and a ROS production. Oxidative stress causes a modification of RyR2 with a leak of calcium in cytosol. Caspase-2, also expressed in ventricles, is activated before caspase-8 and induces an intrinsic apoptotic pathway until caspase-3 activation. An inhibition of caspase-8 or caspase-2 decreases the reperfusion injury.In mouse cardiomyocytes, TNF-α induces a TRPM2-like current through caspase-8 activation and ROS production. TRPM2 inhibition by clotrimazole decreases cell death and reperfusion injury in vivo.In conclusion, caspase-2, caspase-8 and TRPM2 play an important role in cell death pathway ans should be good therapeutical tools.
|
4 |
Caractérisation de l'efflux calcique du réticulum sarcoplasmique du muscle squelettique normal et dystrophique / Characterization of sarcoplasmic reticulum calcium efflux in normal and dystrophic skeletal muscle fibersRobin, Gaëlle 20 September 2013 (has links)
La contraction du muscle squelettique est initiée par une libération de Ca2+ du réticulum sarcoplasmique (RS) en réponse à une dépolarisation du sarcolemme. Celle-ci induit un changement de conformation du récepteur des dihydropyridines (DHPR) localisé dans les tubules T entraînant l'ouverture du récepteur de la ryanodine de type 1 (RyR1), canal calcique du RS, et la libération du Ca2+ accumulé dans le RS. Au repos, RyR1 serait maintenu fermé par une action répressive du DHPR. Néanmoins, un efflux de Ca2+ continu se développe à travers la membrane du RS, constamment compensé par l'activité des pompes Ca2+-ATPases. Des études suggèrent que cet efflux pourrait être impliqué dans la perturbation de l'homéostasie calcique dans une des pathologies musculaires des plus fréquentes et sévères, la myopathie de Duchenne. Le travail présenté vise à caractériser l'efflux de Ca2+ du RS dans les fibres musculaires squelettiques de souris normales et mdx, modèle murin de la myopathie de Duchenne, en couplant la technique de potentiel imposé et la mesure fluorimétrique du Ca2+ intracellulaire. La mise au point d'une mesure directe des variations de Ca2+ du RS à l'aide du Fluo-5N a permis de révéler dans les fibres mdx une fuite calcique du RS exacerbée. Cette approche a permis de démontrer que l'efflux calcique du RS dans la fibre musculaire squelettique au repos n'est pas un phénomène incontrôlé à travers RyR1 mais un efflux étroitement contrôlé par le DHPR. Enfin, on s'est intéressée à l'efflux de Ca2+ du RS lors d'une stimulation musculaire prolongée. Nos résultats montrent que le déclin du signal calcique cytosolique dans ces conditions résulterait de la déplétion calcique du RS / Contraction of skeletal muscle is triggered by the release of Ca2+ from the sarcoplasmic reticulum (SR) in response to depolarization of the sarcolemma. Depolarization elicits a conformational change of the dihydropyridine receptor (DHPR) localized in the tubular membrane that controls the opening of the type 1 ryanodine receptor (RyR1), the SR Ca2+ release channel. At rest, RyR1s are kept in a closed state imposed by the repressive action of DHPRs. Yet, a resting Ca2+ efflux occurs across the SR membrane, constantly balanced by the pumping activity of SR Ca2+-ATPases. Several studies suggest that this SR Ca2+ efflux, considered as purely passive, may contribute to the alteration of Ca2+ homeostasis in one of the most common and severe skeletal muscle disease, namely the Duchenne Muscular Dystrophy. The present work aims at characterizing the SR Ca2+ efflux in skeletal muscle fiber from normal and mdx mice, the murine model of Duchenne Muscular Dystrophy, by combining voltage-clamp and intracellular Ca2+ measurements. The development of a methodology allowing direct monitoring of Ca2+ changes in the SR using the Fluo-5N led us to reveal an elevated SR Ca2+ leak in mdx fibers, which may contribute to the alteration of Ca2+ homeostasis. Still using this approach, we demonstrate that the resting SR Ca2+ efflux in normal skeletal muscle fiber is not, an uncontrolled process through RyR1 but is tightly controlled by DHPR. Finally, we investigates the SR Ca2+ efflux during long-lasting stimulation. Our data indicate that the decline of SR Ca2+ release in these conditions results from SR Ca2+depletion and does not involve voltage-dependent inactivation of SR Ca2+ release
|
5 |
Régulation du couplage excitation-contraction par le cholestérol et l'oxyde nitrique dans la fibre musculaire squelettique de sourisPouvreau, Sandrine 17 May 2005 (has links) (PDF)
Le couplage excitation-contraction (EC) du muscle squelettique s'articule sur les interactions entre le détecteur de potentiel membranaire (récepteur des dihydropyridines, DHPR), et le canal calcique du réticulum (récepteur de la ryanodine, RyR). Le DHPR est localisé dans les tubules transverses et les cavéoles, deux structures sarcolemmales enrichies en cholestérol. De plus, les cavéoles contiennent la synthase de l'oxyde nitrique (NO). Le travail présenté apporte des éléments nouveaux concernant la modulation fonctionnelle du couplage EC par le cholestérol et le NO, à l'aide d'une approche d'électrophysiologie cellulaire combinée à des mesures de fluorescence. La teneur membranaire en cholestérol régule les fonctions de canal calcique et de détecteur de potentiel du DHPR. Le NO cible spécifiquement le RyR. À des niveaux physiologiques, il module l'activation du canal lors d'une dépolarisation ; en excès, il maintient certains RyR en configuration activée
|
6 |
IDENTIFICATION DE NOUVEAUX DETERMINANTS MOLECULAIRES DE L'INTERACTION DU RECEPTEUR DES DIHYDROPYRIDINES AVEC LE RECEPTEUR A LA RYANODINEBichraoui, Hicham 30 September 2010 (has links) (PDF)
L'excitation nerveuse d'une cellule musculaire produit une libération massive dans le cytoplasme du Ca2+ stocké dans le réticulum sarcoplasmique (RS). L'augmentation de la concentration cytoplasmique de Ca2+ déclenche la contraction. Ce processus, appelé couplage excitation contraction (CEC), requiert des interactions physiques entre deux canaux calciques : (1) le récepteur des dihydropyridines (DHPR), un canal calcique activé par le voltage ; le DHPR est composé de plusieurs sous-unités, dont la sous-unité α1S, qui forme le canal et le détecteur de potentiel, et la sous-unité β1a, entièrement cytoplasmique; (2) le récepteur à la ryanodine (RyR1) responsable de la libération de Ca2+ hors du RS. La sous unité β1a interagit avec la sous-unité α1S et RyR1. Au cours de ma thèse, j'ai identifié de nouveaux déterminants moléculaires et structuraux de l'interaction DHPR/RyR1. J'ai ainsi démontré l'existence d'interactions intramoléculaires entre les différentes boucles cytoplasmiques de la sous-unité α1S du DHPR, centrées autour d'un domaine appelé domaine A. J'ai également localisé le site d'interaction de la cavéoline-3 sur une boucle cytoplasmique de la sous-unité α1S. L'étude de l'interaction de la sous-unité β1a avec RyR1 a montré (1) que la région C-terminale de β1a contrôle cette interaction, (2) que l'affinité apparente de β1a pour RyR1 est fortement augmentée par l'interaction de β1a avec α1S et (3) que l'interaction β1a/RyR1 régule la fermeture du RyR. L'utilisation d'une toxine, la maurocalcine (MCa) qui se comporte comme un analogue du domaine A m'a permis d'identifier un domaine minimal de RyR1 responsable de la fixation de la MCa et du domaine A. Une étude structurale par RMN de ce site a été réalisée. Enfin, j'ai étudié l'effet de la MCa sur des myotubes n'exprimant pas la sous-unité α1S. J'ai montré que la MCa est capable de restaurer, en absence de DHPR, une augmentation de la concentration de Ca2+ cytoplasmique induite par la dépolarisation de la membrane plasmique.
|
7 |
Signalisation calcique et couplage excitation-contraction dans le muscle squelettique : modulation par certains phosphoinositides et altérations associées dans deux myopathies centronucléaires / Calcium signaling and excitation-contraction coupling in skeletal muscle : modulation by some phosphoinositides and related alterations in two centronuclear myopathiesKutchukian, Candice 21 September 2018 (has links)
Le couplage excitation-contraction (EC) du muscle squelettique correspond à l’efflux de Ca2+ par le réticulum sarcoplasmique (RS) suite à une dépolarisation sarcolemmale. Des mutations dans les gènes MTM1 et DNM2 sont responsables respectivement de la forme sévère et modérée de la myopathie centronucléaire (CNM). Chez la souris Mtm1 KO, l’absence de la (PtdInsP) 3-phosphatase MTM1 est associée à une altération du couplage EC, propablement la cause majeure de la faiblesse musculaire. Le rôle du PdtIns(4,5)P2 dans la régulation du couplage EC a été étudié dans des fibres musculaires exprimant une PtdInsP phosphatase sensible au potentiel. Grâce à une combinaison d’électrophysiologie et d’imagerie confocale, nous avons montré une altération de l’efflux calcique en réponse à de fortes dépolarisations déplétant les stocks de PdtIns(4,5)P2 à la membrane.Dans un deuxième temps, une caractérisation complète des défauts de signalisation calcique et du couplage EC a été réalisée dans les fibres musculaires isolées de souris Mtm1 KO. Nos résultats indiquent que l’efflux calcique est d’amplitude réduite, est retardé et est spatialement hétérogène. L’inhibition pharmacologique de l’activité PtdInsP 3-kinase améliore ces défauts in vitro et la survie des souris in vivo, suggérant que l’accumulation des substrats de MTM1 participe au défaut du couplage EC. Ces résultats montrent le bénéfice thérapeutique d’une approche pharmacologique aux inhibiteurs d’activité PtdInsP 3-kinase.Enfin, nous avons montré que les fibres musculaires d’un modèle murin de la forme modérée de CNM (KI-Dnm2R465W) partagent certaines altérations du couplage EC avec le modèle Mtm1 KO (retard de l’efflux calcique) pouvant contribuer à la faiblesse musculaire. Cependant, d’autres défauts (altérations structurales, réduction de l’efflux calcique) affectent plus sévèrement le modèle Mtm1 KO, et pourraient être déterminants dans la différence de sévérité entre les deux formes de CNM / Excitation-contraction (EC) coupling is the process whereby a membrane depolarization leads to an increased cytosolic Ca2+ content, allowing contraction. Mutations in the genes MTM1 and DNM2 are responsible respectively for severe and moderate forms of centronuclear myopathy (CNM). In Mtm1 KO mouse model, MTM deficiency is associated with defective EC coupling, which makes probably the major contribution to muscle meakness.PdtIns(4,5)P2 involvement in regulating EC coupling has been investigated in muscle fibers expressing a voltage sensing PtdInsP phosphatase. Thanks to a combination of electrophysiology and confocal imaging techniques, we showed a reduction of SR Ca2+ release amplitude in response to strong depolarizations activating PdtIns(4,5)P2 depletion at plasma membrane.Secondly, we made a complete characterization of calcium signaling and EC coupling properties in isolated muscle fibers from Mtm1 KO mice. Our results demonstrate that SR Ca2+ release is depressed, delayed and spatially heterogeneous in diseased fibers. Moreover, we showed that pharmacological inhibition of PtdInsP 3-kinase activity improves these defects in vitro and mice survival in vivo, suggesting that accumulation of MTM1 substrates may participate to defective EC coupling. Overall, these results provide proof of concept for the use of PtdIns 3-kinase inhibitors in severe form of CNM.Finally, we showed that muscle fibers from murine model of moderate CNM form (KI-Dnm2R465W) share some of EC coupling defects with Mtm1 KO model (delayed SR Ca2+ release) that may contribute to muscle weakness. However, other defects (structural alterations, depressed SR Ca2+ release) affect more severely Mtm1 KO model, and may be critical in determining the severity of CNM
|
8 |
Biosenseurs fluorescents appliqués à l’étude de la fonction du réticulum sarcoplasmique dans le couplage excitation-contraction du muscle squelettique / Investigating sarcoplasmic reticulum function during skeletal muscle excitation-contraction coupling using fluorescent biosensorsSanchez, Colline 27 September 2019 (has links)
La cascade d’évènements permettant la contraction de la fibre musculaire striée squelettique en réponse à l’activité électrique de sa membrane plasmique est regroupée sous le terme de couplage excitation-contraction (EC). Le couplage EC a lieu au niveau des triades, domaines nanoscopiques au niveau desquels les invaginations transversales de la membrane plasmique (tubules-T) sont en contact étroit avec deux citernes terminales adjacentes de réticulum sarcoplasmique (RS). Plus précisément, lors de l’excitation d’une fibre musculaire, un potentiel d’action se propage dans toute la surface de la membrane plasmique et en profondeur de la cellule via les tubules-T. Cette dépolarisation y est détectée par les protéines membranaires sensibles au potentiel Cav1.1 qui en retour, par couplage mécanique, déclenchent l’ouverture des canaux calciques du RS que sont les récepteurs de la ryanodine de type 1 (RYR1s). Ceci est à l’origine de l’augmentation massive de Ca2+ intracellulaire qui déclenche l’activation des myofilaments et donc la contraction. La compréhension des mécanismes de contrôle et de régulation des canaux RYR1s reste encore aujourd’hui limitée. En particulier, la mesure de l’activité physiologique de ces canaux dans la fibre musculaire intacte est toujours réalisée de manière très indirecte. Par ailleurs le rôle éventuel de variations de potentiel de la membrane du RS pendant l’activité musculaire n’a jamais été révélé. Une connaissance approfondie de ces phénomènes est pourtant essentielle à la compréhension de la fonction musculaire squelettique normale et pathologique. Dans ce contexte, l’objectif général de mon projet de thèse a été de mettre au point et utiliser des biosenseurs fluorescents localisés spécifiquement à la membrane des citernes terminales du RS de fibres musculaires différenciées – par leur fusion à une séquence d’adressage appropriée. Grâce à la combinaison des techniques d’électrophysiologie et d’imagerie de la fluorescence des biosenseurs sur fibres musculaires isolées, nous avons pu étudier l’activité du RS au cours de la fonction musculaire. Plus particulièrement, mon travail de thèse aborde deux problèmes biologiques principaux : le potentiel de membrane du RS et la signalisation calcique du RS au cours du couplage EC. Le premier objectif a visé à caractériser les changements de potentiel de la membrane du RS pendant l’activation du couplage EC. Pour cela, nous avons utilisé des biosenseurs de FRET de la famille Mermaid. Nos résultats montrent qu’il n’y a pas de changement substantiel du potentiel transmembranaire du RS pendant l’activation du couplage EC. Ces données confirment – pour la première fois en condition physiologique – que le flux de Ca2+ à travers les canaux RYR1s est équilibré par des contre-flux ioniques compensatoires qui permettent le maintien du potentiel de membrane du RS. Ceci assure la pérennité du flux de Ca2+ et contribue à l’efficacité du couplage EC. Le deuxième objectif a visé à détecter les variations de concentration en Ca2+ à proximité immédiate des canaux RYR1s. Pour cela, nous avons utilisé le biosenseur fluorescent sensible au Ca2+ GCamP6f. Le biosenseur adressé à la membrane du RS fournit un accès unique à l’activité individuelle de populations distinctes de canaux RYR1s au sein de différentes triades d’une même fibre musculaire. Au-delà de la caractérisation détaillée des propriétés des sondes GCaMP6f dans cette préparation, nos résultats montrent la stupéfiante synchronisation de l’activité de libération de Ca2+ des triades d’une même fibre musculaire au cours du couplage EC. Les résultats ouvrent des perspectives particulièrement intéressantes pour les études de situations pathologiques d’altération de l’activité des canaux RYR1s / Excitation-contraction (EC) coupling in skeletal muscle corresponds to the sequence of events through which muscle fiber contraction is triggered in response to plasma membrane electrical activity. EC coupling takes place at the triads; these are nanoscopic domains in which the transverse invaginations (t-tubules) of the surface membrane are in closed apposition with two adjacent terminal cisternae of the sarcoplasmic reticulum membrane (SR). More precisely, EC coupling starts with action potentials fired at the endplate, propagating throughout the surface membrane and in depth into the muscle fiber through the t-tubules network. When reaching the triadic region, action potentials activate the voltage-sensing protein Cav1.1. In turns, Cav1.1 directly open up the type 1 ryanodine receptor (RYR1) in the immediately adjacent SR membrane, through intermolecular conformational coupling. This triggers RYR1-mediated SR Ca2+ release which produces an increase in cytosolic Ca2+ triggering contraction. Current understanding of the mechanisms involved in the control and regulation of RYR1 channels function is still limited. One reason is related to the fact that detection of RYR1 channel activity in intact muscle fibers is only achieved with indirect methods. Also, whether SR the membrane voltage experiences changes during muscle activity has so far never been experimentally assessed. Yet, deeper knowledge of these processes is essential for our understanding of muscle function in normal and disease conditions. In this context, the general aim of my PhD project was to design and use fluorescent protein biosensors specifically localized at the SR membrane of differentiated muscle fibers, by fusing them to an appropriate targeting sequence. Thanks to a combination of single cell physiology and biophysics techniques based on electrophysiology and biosensor fluorescence detection, we were able to study the SR activity during muscle fiber function. Specifically, my PhD work focused on two major issues: SR membrane voltage and SR calcium signaling during EC coupling. The first aim of my work was to characterize SR membrane voltage changes during muscle fiber activity. For this, we used voltage sensitive FRET-biosensors of the Mermaid family. Results show that the SR trans-membrane voltage experiences no substantial change during EC coupling. This provides the first experimental evidence, in physiological conditions, for the existence of ion counter-fluxes that balance the charge deficit associated with RYR1-mediated SR Ca2+ release. Indeed, this process is essential for maintaining the SR Ca2+ flux upon RYR1 channels opening and thus critically important for EC coupling efficiency. The second objective of my work aimed at detecting the changes in Ca2+ concentration occurring in the immediate vicinity of the RYR1 Ca2+ release channels during muscle fiber activation. For this, we took advantage of one member of the recent generation of genetically encoded Ca2+ biosensor: GCaMP6f. The SR-targeted biosensor provides a unique access to the individual activity of RYR1 channels populations within distinct triads of a same muscle fiber. Beyond allowing a detailed characterization of the biosensor properties in this preparation, results highlight the remarkable uniformity of SR Ca2+ release activation from one triad to another, during EC coupling. These results open up stimulating perspectives for the investigation of disease conditions associated with defective behavior of RYR1 channels.
|
9 |
Fonctions des triadines dans le muscle squelettique. Caractérisation de l'isoforme Trisk 32.Oddoux, Sarah 23 October 2009 (has links) (PDF)
La triadine est une famille de protéines du muscle squelettique. Quatre isoformes de la triadine ont été clonées: Trisk 95, Trisk 51, Trisk 49 et Trisk 32. Ce sont des protéines transmembranaires du reticulum sarcoplasmique (RS). Trisk 95 et Trisk 51 sont localisées dans la triade où elles sont associées au récepteur de la ryanodine (RyR), un canal calcique. Trisk 49 et Trisk 32 sont localisées dans le RS longitudinal. Il a été montré que Trisk 95 régule les relâchements de Ca2+ du RyR. L'objectif de ce travail de thèse a été d'étudier les fonctions des triadines dans le muscle squelettique grâce à différentes approches et techniques complémentaires. Dans un premier temps, Trisk 95 et de Trisk 51 ont été étudiées par surexpression in vivo dans les muscles de souris. La caractérisation de ces muscles a permis de mettre en évidence l'association du RyR avec la cavéoline, une protéine de la membrane plasmique. Dans un second temps, la fonction de Trisk 32 a été étudiée dans le muscle squelettique. L'étude précise de sa localisation a permis de montrer qu'elle est localisée dans la triade, dans le RS longitudinal, et à proximité des mitochondries. Des expériences de co-immunoprécipitation ont révélé qu'elle est associée avec le RyR et avec le récepteur de l'IP3. De par ses partenaires, Trisk 32 semble jouer un rôle dans la régulation de nombreux mécanismes impliquant le Ca2+. Enfin, le gène de la triadine a été invalidé chez la souris. Cette souris KO triadine présente une faiblesse musculaire et des défauts dans l'ultrastructure de la triade. Ces résultats indiquent qu'en plus de sa fonction de régulation des relâchements de Ca2+ la triadine pourrait avoir un rôle structural.
|
Page generated in 0.1463 seconds