• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 2
  • Tagged with
  • 24
  • 24
  • 17
  • 13
  • 12
  • 12
  • 11
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Hygorthermal performance assessment of damaged building materials

Rouchier, Simon 19 October 2012 (has links) (PDF)
An importantmatter in the field of building physics is the questioning of how wellbuildings sustain ageing, and how their overall efficiency evolves over their lifetime.Many causes for degradation are carried by moisture transfer through these porousmaterials. Indeed, infiltratedwatermay transport chemicals, altermechanical properties,and cause freeze thaw damage or mould development. It may also affect thermalproperties and energetic efficiency, as well as the health and comfort of the occupants.The understanding of how moisture transfer properties evolve during the lifespan ofbuildingmaterials is however far fromcomplete. The pore structure of amaterial itselfmay change over time, or be altered by cracks and defects caused bymechanical loadingand aggravated bymoisture-induced degradation. All sizes of fracturesmay have astrong impact on heat and moisture flow in the building envelope, and their influenceis to be accounted for in any long-termperformance assessment, not only of buildingand building components,but of any built structure in general. A considerable amountof work has already been performed in order to allow predicting the hygrothermal behaviourof buildings over longer periods of time. However, an accurate prediction of allranges of damage in a building component, from microscopic to macroscopic cracks,supposes an extensive knowledge of all damage-inducing, time-varying boundary conditionsof the problem during the simulation time. This also implies high computationalcosts, as well as important needs formaterial characterisation.As a complement to these predictive methods, a new approach was undertaken,combining experimental characterisation of crack patterns and numerical simulationsof coupled heat and moisture transfer. First, a preliminary study was conducted, consistingof measurements of the water vapour permeability of diffusely damaged constructionmaterials.This allowed identifying the experimental and numerical requirementsof the remainder of the work, which aimed at providing measurements of fracturenetwork geometries for their explicitmodelling in heat andmoisture transfer simulations.Digital image correlation and acoustic emission monitoring were then performedduring the degradation of cementitiousmaterials, in order to obtain quantitativedata on crack pattern geometries, and to assess the possibilities for damagemonitoringat the building scale. The optical technique, along with an appropriate imageprocessing procedure, was found suitable for providing precisemeasurements of fracturenetworks. Amethodwas also proposed for the interpretation of acoustic emissionrecordings in terms of damage quantification, localisation and identification.Then, a newmodel for coupled heat andmoisturemodelling in cracked porousmediawas developed, that allows including such measurements of fracture patterns intoa finite element mesh, and simulating flow accordingly. This model was validated onthe basis of experimentalmeasurements: digital image correlationwas performed duringthe fracturing of concrete samples, in which moisture uptake was then monitoredusing X-ray radiography. A good accordance was found between experimental and numericalresults in terms of 2-dimensional moisture concentration distributions. The validated code was then used for the simulation of test cases, in order to assess the hygrothermalperformance of damagedmulti-layered building components subjected toreal climatic conditions. The consequences of fractures on themoisture accumulationin walls, on the amplitude of sorption/desorption cycles and on the thermal performance,were observed.
12

Etude des transferts de masse et de chaleur au sein d'un absorbeur eau/bromure de lithium / Heat and mass transfer study in a Lithium Bromide absorber

Flores, Carolina 11 July 2014 (has links)
Les machines à absorption LiBr/H2O, appliquées aux systèmes de rafraîchissement par compression chimique présentent des avantages et des inconvénients à l'heure de leur intégration dans des bâtiments de basse consommation. Grandes tailles et coûts de mise en œuvre élevés les rendent peu attractives. Le développement de modules évapo-absorbeur et desorb-condenseur compacts et multifonctionnels, utilisant des échangeurs à film ruisselants couplés peuvent être une solution pour réduire les coûts de mise en œuvre, et augmenter la compacité et le rendement global du processus d'absorption. L'étude se centre autour de l'absorption de la vapeur d'eau à basse pression au sein d'un film de bromure de lithium qui ruisselle sur des échangeurs à plaques verticales. Les objectifs de la thèse sont le développement d'un modèle théorique simple décrivant le transfert de chaleur et de masse et sa validation à l'aide d'expériences de référence. Le modèle analytique est construit à l'aide des méthodes intégrales mettant en ouvre un écoulement laminaire établit à l'entrée de l'absorbeur et des conditions de saturation à l'interface Nous avons résolu le problème couplé de transfert de masse et de chaleur en prenant en compte couches limites thermiques et diffusives. Une représentation adimensionnelle des transferts à l'aide des nombres de Nusselt et de Sherwood en fonction du nombre de Graetz permet de décrire de manière générale les différentes zones thermiques et diffusives. Les variations de la température et la concentration à l'interface sont prises en compte, en considérant la linéarité des équations de transfert et, en appliquant la théorie des perturbations. Un banc d'essais a été spécifiquement développé pour l'étude de l'absorption de vapeur sur des films ruisselants de bromure de lithium à basse Reynolds (Re < 500). Il permet de fixer l'état de la solution LiBr à l'entrée (température, concentration et débit) ainsi que les conditions aux limites (pression de vapeur, condition adiabatique ou de température imposée à la paroi verticale). Différentes géométries de plaque sont comparées aux résultats du model en vu de quantifier l'impact des effets de bord et des instabilités. / Low pressure absorption machines, used in chemical compression refrigeration systems present several advantages and drawbacks in sustainable buildings integration. Large sizes and high implementation cost makes them unprofitable. Compact absorption machines with multifunctional absorption and desorption units using coupled falling film exchangers can be one solution to reduce implementation costs, increasing compactness and global machine performance. The present study is focused in the absorption process applied to vertical falling film exchangers and its improvement. The thesis objectives are: construction of a simple theoretical model; describing heat and mass transfer over a Lithium bromide falling film and model validation after data processing from a test bench build for this purpose. The analytic model is based on integral methods taking into account established flow conditions at the top of the plate, parabolic velocity profiles and saturation conditions at the interface. We solved the coupled heat and mass transfer problem considering thermal and diffusive boundary layers. Non dimensional representation of Nusselt (Sherwood) number as a function of the modified Graetz number, enables a general description of different transfer zones. Concentration and temperature evolution at the interface are studied considering the linearity of heat and mass transfer equations and applying perturbations theory. The test bench was created to study vapor absorption in a lithium bromide falling film at low Reynolds Numbers (Re < 500). Absorber inlet parameters (temperature, concentration and mass flow rate) and also boundary conditions (vapor pressure, adiabatic or isothermal condition at the vertical wall) can be varied. Different plate geometries were studied and compared with model results, to evaluate boundary conditions and instabilities. This study presents a simplified model for adiabatic and isothermal falling films absorbers with a local description of the absorption process. Influences of flow conditions and initial operation parameters were simulated, studied and compared with equivalent models and experimental data from literature;
13

Hygorthermal performance assessment of damaged building materials / Evaluation des performances hygrothermiques des matériaux de construction endommagés

Rouchier, Simon 19 October 2012 (has links)
Les transferts d’humidité dans les matériaux de construction ont une influenceimportante sur leur durabilité et sur les performances hygriques et thermiques desbâtiments. De nombreux mécanismes d’endommagement chimiques et physiquesde ces matériaux sont en effet dus à l’infiltration d’eau. En conséquence, leur structureporeuse peut évoluer au cours du temps, et des fissures microscopiques commemacroscopiques peuvent s’y développer. La description des matériaux à l’échelle microscopiqueest cependant une source d’erreur importante dans les codes de simulationactuels des transferts d’humidité et de chaleur, notamment en raison du faitque lesmilieux sont considérés comme homogènes, et que les effets du vieillissementdes matériaux sont négligés. Il importe donc de trouver un moyen d’inclure les effetsde l’endommagement dans les simulations de transferts d’humidité et de chaleurà l’échelle du bâtiment. Des méthodes existent pour la prédiction du comportementde milieux soumis à des sollicitations hygriques et mécaniques, mais supposent quel’ensemble des facteurs extérieurs influant sur l’endommagement soient connus toutau long des simulations.Une nouvelleméthodologie est proposée ici pour compléter ces approches prédictives,en combinant des mesures expérimentales d’endommagement avec la simulationde transferts couplés d’humidité et de chaleur. Une étude préliminaire a d’abordété menée, consistant à mesurer la perméabilité vapeur équivalente d’éprouvettes demortier multi-fissurées. Cette démarche a permis d’identifier les besoins expérimentauxet numériques de la suite du travail, visant à modéliser les écoulements dans unréseau discret de fissures sur la base de leur caractérisation. Une méthodologie expérimentalecombinant corrélation d’images numériques et émissions acoustiques aensuite été développée, permettant de disposer de cartographies d’endommagementet de proposer une démarche pour lamesure de réseaux de fissures dans lesmatériauxde construction en place. La méthode optique, associée à une procédure de traitementd’images, a permis de disposer de données précises de la géométrie de réseauxde fissures. De plus, une méthode a été proposée pour permettre l’interprétation desmesures d’émissions acoustiques en termes de quantification, localisation et identificationdes phénomènes d’endommagement.Un code de simulation a ensuite été écrit, permettant d’intégrer ces mesures defissuration dans la modélisation des écoulements couplés d’humidité et de chaleuren milieu poreux. Ce modèle a été validé sur la base de mesures expérimentales : lacorrélation d’images numériques a été appliquée durant la fracturation d’éprouvettesde béton, dans lesquelles l’infiltration d’eau a ensuite été suivie par radiographie auxrayons X. Les résultats numériques obtenus sont en bonne conformité avec lesmesuresexpérimentales en termes de prédiction de la concentration d’eau en deux dimensions.Enfin, laméthodologie a été appliquée à une série de cas test, dans le but demodéliserles performances hygrothermiques de parois multi-couches, incluant des matériauxendommagés, soumises à des conditions climatiques réelles. On a ainsi pu estimer les conséquences potentielles de l’endommagement sur l’accumulation d’eau dans desparois, sur l’amplitude des cycles de sorption et de séchage, ainsi que sur les transfertsthermiques. / An importantmatter in the field of building physics is the questioning of how wellbuildings sustain ageing, and how their overall efficiency evolves over their lifetime.Many causes for degradation are carried by moisture transfer through these porousmaterials. Indeed, infiltratedwatermay transport chemicals, altermechanical properties,and cause freeze thaw damage or mould development. It may also affect thermalproperties and energetic efficiency, as well as the health and comfort of the occupants.The understanding of how moisture transfer properties evolve during the lifespan ofbuildingmaterials is however far fromcomplete. The pore structure of amaterial itselfmay change over time, or be altered by cracks and defects caused bymechanical loadingand aggravated bymoisture-induced degradation. All sizes of fracturesmay have astrong impact on heat and moisture flow in the building envelope, and their influenceis to be accounted for in any long-termperformance assessment, not only of buildingand building components,but of any built structure in general. A considerable amountof work has already been performed in order to allow predicting the hygrothermal behaviourof buildings over longer periods of time. However, an accurate prediction of allranges of damage in a building component, from microscopic to macroscopic cracks,supposes an extensive knowledge of all damage-inducing, time-varying boundary conditionsof the problem during the simulation time. This also implies high computationalcosts, as well as important needs formaterial characterisation.As a complement to these predictive methods, a new approach was undertaken,combining experimental characterisation of crack patterns and numerical simulationsof coupled heat and moisture transfer. First, a preliminary study was conducted, consistingof measurements of the water vapour permeability of diffusely damaged constructionmaterials.This allowed identifying the experimental and numerical requirementsof the remainder of the work, which aimed at providing measurements of fracturenetwork geometries for their explicitmodelling in heat andmoisture transfer simulations.Digital image correlation and acoustic emission monitoring were then performedduring the degradation of cementitiousmaterials, in order to obtain quantitativedata on crack pattern geometries, and to assess the possibilities for damagemonitoringat the building scale. The optical technique, along with an appropriate imageprocessing procedure, was found suitable for providing precisemeasurements of fracturenetworks. Amethodwas also proposed for the interpretation of acoustic emissionrecordings in terms of damage quantification, localisation and identification.Then, a newmodel for coupled heat andmoisturemodelling in cracked porousmediawas developed, that allows including such measurements of fracture patterns intoa finite element mesh, and simulating flow accordingly. This model was validated onthe basis of experimentalmeasurements: digital image correlationwas performed duringthe fracturing of concrete samples, in which moisture uptake was then monitoredusing X-ray radiography. A good accordance was found between experimental and numericalresults in terms of 2-dimensional moisture concentration distributions. The validated code was then used for the simulation of test cases, in order to assess the hygrothermalperformance of damagedmulti-layered building components subjected toreal climatic conditions. The consequences of fractures on themoisture accumulationin walls, on the amplitude of sorption/desorption cycles and on the thermal performance,were observed.
14

Méthode de simulation appropriée aux systèmes complexes : preuve de concept auto-adaptative et auto-apprenante appliquée aux transferts thermiques / Suitable method for complex systems simulation : self-adaptive and self-learning proof-of-concept applied to coupled heat transfer

Spiesser, Christophe 20 June 2017 (has links)
L’augmentation de la puissance informatique disponible permet aux ingénieurs et designers d’aborder par simulation des problèmes de plus en plus complexes (multi-physiques, multi-échelles, géométries intriquées ...). Dans ce contexte, les quadratures à base de discrétisation (FDM, FEM, FVM) montrent leur limite : le besoin d’un grand nombre de sous-domaines qui implique des coûts RAM et CPU prohibitifs. La méthode de Monte-Carlo apparaît plus appropriée, mais son utilisation est verrouillée par la difficulté de générer des modèles probabilistes de systèmes complexes. Pour surpasser ceci, une approche systémique est proposée et implémentée pour créer une preuve de concept appliquée à la simulation des transferts thermiques couplés. Après une étape de validation vis-à-vis de solutions analytiques, l’outil est employé; sur des cas d’illustration (transferts thermiques au sein de bâtiments et dans une centrale solaire) pour étudier ses capacités. L’approche mise en œuvre présente un comportement particulièrement avantageux pour la simulation de systèmes complexes : son temps de calcul ne dépend que des parties influentes du problème. De plus, elles sont automatiquement identifiées, même en présence de géométries étendues ou intriquées, ce qui rend les simulations auto-adaptatives. Par ailleurs, ses performances de calcul ne sont pas corrélées avec le rapport d’échelle caractérisant le système simulé. Ceci en fait une approche douée d’une remarquable capacité à traiter les problèmes à la fois multi-physiques et multi-échelles. En parallèle de l’estimation d’une observable par des chemins d’exploration, l’outil analyse également ces derniers de manière statistique. Ceci lui permet de générer un modèle prédictif réduit de l’observable, procurant ainsi une capacité d’auto-apprentissage à la simulation. Son utilisation peut améliorer les processus d’optimisation et de contrôle-commande, ou simplifier les mesures par méthodes inverses. De plus, elle a aussi permis de mener une analyse par propagation d’incertitudes, affectant les conditions aux frontières, vers l’observable. Enfin, une démonstration d’optimisation, utilisant des modèles réduits générés, a été réalisée. / As computing power increases, engineers and designers tackle increasingly complex problems using simulation (multiphysics, multiscale, intricated geometries ...). In this context, discretization-based quadratures (FDM, FEM, FVM) show their limit: the need of a great number of sub-domains which induces prohibitive consumption of RAM and CPU power. The Monte Carlo method appears to be more appropriate, but the difficulty to build probabilistic models of complex systems forms a bottleneck. A systemic approach is proposed to alleviate it and is implemented to create a proof-of-concept dedicated to the coupled heat transfer simulation. After a successful validation step against analytical solutions, this tool is applied to illustrative cases (emulating heat transfer in buildings and in solar heating systems) in order to study its simulation capabilities.This approach presents a major beneficial behavior for complex systems simulation: the computation time only depends on the influential parts of the problem. These parts are automatically identified, even in intricate or extensive geometries, which makes the simulation self-adaptive. In addition, the computational performance and the system scale ratio are completely uncorrelated. Consequently, this approach shows an exceptional capacity to tackle multiphysics and multiscale problems. Each temperature is estimated using exploration paths. By statistically analyzing these paths during the process, the tool is able to generate a reduced predictive model of this physical quantity, which is bringing a self-learning capacity to the simulation. Its use can significantly improve optimization and control of processes, or simplify inverse measurements. Furthermore, based on this model, an uncertainty propagation analysis has been performed. It quantifies the effect of uncertainties affecting boundary conditions on the temperature. Finally a Particle Swarm Optimization (PSO) process, based on simulations done by the framework, is successfully carried out.
15

Transferts et réactivité de l’huile au cours du procédé de friture / Oil-related mass transfer and reactivities during deep frying process

Touffet, Maxime 29 August 2018 (has links)
La friture profonde de type batch a été étudiée dans le projet FUI Fry’In (Réf. AAP17, 2014-2018) dans le but de proposer des innovations de rupture pour des friteuses batch domestiques et professionnelles. La thèse a appuyé le projet sur la maîtrise de deux effets négatifs de la friture : i) la thermo-oxydation de l’huile responsable des mauvaises odeurs et produits de dégradation ainsi que ii) la prise d’huile généralement favorisée au détriment de son égouttage. L’étude a été réalisée en combinant des mesures directes (spectroscopie et imagerie infrarouges en mode ATR, photo-ionisation, mesures DSC, imagerie rapide…) et modélisation multi-échelle (écoulement de l’huile et égouttage lors du retrait, description lagrangienne des réactions en présence d’un écoulement, couplage avec les ciné-tiques de dissolution de l’oxygène). La complexité du processus de thermo-oxydation a été réduite en considérant les hydroperoxydes comme une forme de stockage organique de l’oxygène, qui propage l’oxydation dans des régions en anoxie. Leur décomposition produit de nombreux composés de scission, dont la nature est influencée par les conditions locales de température et de concentration en oxygène. La prise d’huile a été décrite comme le bilan net entre l’huile charriée au moment du retrait et l’huile égouttée. L’égouttage a été étudié sur des barreaux métalliques et des produits réels. Il se conduit à la formation de quatre à huit gouttes en quelques secondes. Les cinétiques de drainage anisothermes ont été prédites par un modèle mécanistique. Le mécanisme spécifique de prise d’huile en cours de friture a été aussi analysé ; il se produit uniquement dans le cas des produits préfrits congelés. / Batch deep-frying has been investigated within the collaborative project FUI Fry’In (ref. AAP17, 2014-2018) with the aim of proposing breakthrough innovations for small and medium size appliances. The PhD thesis was part of the project and focused on two specific adverse effects of deep-frying on food products: oil thermo-oxidation responsible for break-down products and off-flavors, and oil pickup process usually favored relatively to oil dripping. The work was carried out by combing direct measurements (FTIR-ATR spectroscopy and imaging, photoionization, DSC measurements, fast imaging…) and multiscale modeling (oil flow and oil dripping during product re-moval, Lagrangian description of reactions in aniso-thermal flows, coupling with oxygen dissolution kinetics). The complex problem of thermo-oxidation was split into simpler mechanisms by noticing that hydroperoxides are a kind of long-lived form of or-ganic oxygen, which trigger propagation in deep re-gions under anoxia. Their decomposition lead to various scission products, which were shown to be in-fluenced by both local temperature and oxygen con-centration. Oil uptake was described as the net balance between the amount of dragged oil during product removal and oil dripping at the tips of the product. The dripping process studied on both metal-lic sticks and real products occurs in less than few seconds and leads to a formation of four to eight drop-lets. The detailed drainage kinetics in anisothermal conditions were captured and predicted with the pro-posed mechanistic models. The specific mechanism of oil uptake during the immersion stage was eluci-dated and was shown to occur only in parfried frozen products.
16

Effets de la variabilité des propriétés de matériaux cimentaires sur les transferts hygrothermiques : développement d’une approche probabiliste / Variability impacts of cementitious materials properties on the hygrothermal tranfers : development of a probabilistic approach

Issaadi, Nabil 02 December 2015 (has links)
Ce travail concerne la modélisation numérique et expérimentale de la variabilité des propriétés thermo-hydriques de matériaux cimentaires en vue de l’évaluation de son impact sur la prédiction du comportement hygrothermique de parois de bâtiments. Une approche probabiliste qui prend en compte la variabilité spatiale des propriétés de matériaux lors des transferts couplés de chaleur et d’humidité a été développée. Elle est basée sur la génération, par la décomposition modale de Karhunen-Loève, de champs aléatoires spatialement corrélés. Une implémentation d’un modèle de transfert hygrothermique dans un code de simulation numérique a été ensuite réalisée en adoptant cette démarche stochastique. Cette dernière, qui considère comme variables d’entrée des champs aléatoires, permet de quantifier l’incidence de cette variabilité sur le comportement hygrothermique d’une paroi de bâtiment. Une étude préalable, dédiée à l’évaluation de l’incidence de la variabilité aléatoire du coefficient de diffusion, a été entreprise en considérant une variabilité de ±30% pour un mortier et de ±20% pour un BHP suivant une loi de distribution normale. Aussi, nous avons relevé un certain nombre d’incertitudes possibles de la teneur en eau à saturation tout en montrant leurs effets sensibles sur le résultat de la prédiction du comportement hygrothermique. Ces études ont permis de mettre en exergue l’importance de la prise en compte des incertitudes sur les données du matériau lors des simulations numériques des transferts hygrothermiques. Sur le plan expérimental, une campagne d’évaluation de la variabilité spatiale des paramètres les plus influents a été menée. Cette campagne a été réalisée sur un voile de dimension 2x1,2 m fabriqué au laboratoire. À l’issue de ce programme expérimental, l’espérance, la variance et la longueur de corrélation des propriétés étudiées (porosité à l’eau, perméabilité à la vapeur, isotherme de sorption et perméabilité au gaz) ont été déterminées. Ces trois paramètres sont indispensables pour la bonne mise en œuvre de la décomposition de Karhunen-Loève. Aussi, une autre campagne de caractérisation expérimentale a été menée sur des pâtes de ciment, mortiers et béton. Elle a été divisée en trois grandes parties selon les propriétés étudiées : (i) Les propriétés microstructurales et d’hydratation où l’on retrouve les mesures des porosités à l’eau et au mercure ainsi que les distributions de la taille des pores et une analyse de l’effet du taux d’hydratation de matériaux cimentaires sur leurs propriétés hygrothermiques. (ii) Les propriétés hydriques : dans cette partie, une analyse sous différents angles (évolution en fonction de l’âge des matériaux, en fonction de la température, effet des constituants des matériaux, etc.) a été réalisée sur les isothermes de sorption et sur la perméabilité à la vapeur d’eau. (iii) Les propriétés thermiques où des mesures de conductivités thermiques et de chaleurs spécifiques ont été effectuées. Les résultats de l’étude ont mis en exergue les limites des approches déterministes suite à leurs confrontations avec les résultats obtenus par l’approche probabiliste, mise en œuvre dans le cadre du présent travail. / This study deals with the experimental and the numerical modeling of the variability properties of cement based materials to evaluate their effects on the prediction of hygrothermal behavior of building envelops. A probabilistic approach taking into account the spatial variability of the materials properties during the coupled heat and mass transfer has been developed. It is based on the generation of spatially correlated random fields by the Karhunen Loève decomposition. The stochastic model’s program has been implemented in a numerical simulation code. Using this tool that considers the input variables as random fields, the impact of this variability on the hygrothermal behavior of building envelops was quantified. A prior study dealing with the assessment of the effect of the diffusion coefficient random variability was carried out by considering a variation of ±30% for mortar and ±20% for high performance concrete (HPC) according to a normal distribution. Also, we have identified some possible uncertainties of the water content at saturation and showed their significant impact on the prediction of hygrothermal behavior of the material. These studies highlight the importance of considering the data uncertainties of building materials during numerical simulation of hygrothermal transfers. At the experimental level, the spatial variability of the most influential parameters was evaluated. It was carried out by manufacturing a concrete wall in lab. At the end of this experimental program, the expected value, standard deviation and the correlation length of the studied properties (water porosity, water vapor permeability, sorption isotherm and gas permeability) were determined. These three parameters are important for the successful implementation of Karhunen Loeve decomposition. Also, another experimental program was conducted on cement pastes, mortars and concrete. It was divided into three parts according to the studied properties:(i) Hydrations and microstructural properties which include the measurement of water and mercury porosity, the pore size distributions and an analysis of some techniques for stopping cement hydration.(ii) Hydric properties: where an analysis of the sorption and the water vapor permeability was performed considering their evolution with materials ages, temperature…(iii) Thermal properties where measurement of specific heat and thermal conductivity were performed. The result of the study highlighted the limits of deterministic approaches after their confrontation with the obtained results using the probabilistic one developed in this work.
17

Etude expérimentale et modélisation physique des transferts couplés chaleur-humidité dans un isolant bio-sourcé. / Experimental study and physical modeling of simultaneous heat and moisture transfer in bio-sourced insulating materials.

Aghahadi, Mohammad 29 May 2019 (has links)
Le caractère fortement hydrophile des isolants thermiques bio-sourcés, a montré que les modèles classiques de transfert thermique ne sont pas suffisamment adaptés pour leur caractérisation thermique. Ce travail de thèse vise à répondre à cette problématique par des approches expérimentale et théorique des transferts couplés chaleur-humidité. Dans l’approche expérimentale, un isolant thermique en feutre de fibres de lin (FFL) a été développé puis caractérisé, dans différents états hygrométriques, au moyen d’un dispositif Plan Chaud asymétrique. Des isothermes d’adsorption de l’humidité corrélés aux modèles théoriques GAB, GDW et Park permettent une caractérisation hydrique de cet isolant. Dans l’approche théorique, un modèle physique, de transfert couplé chaleur-humidité au sein de l’isolant FFL humide, est proposé. Il est résolu numériquement, en configuration 3D transitoire, par la méthode de éléments finis sous COMSOL Multiphysics et par la méthode des différences finies, en configuration 1D transitoire, sous MATLAB. La méthode de Levenberg-Marquardt couplée avec le modèle direct 1D transitoire et les températures mesurées a permis d’estimer la conductivité thermique apparente de l'échantillon étudié avec une erreur relative inférieure à 6% par rapport aux mesures expérimentales, validant ainsi les modèles théoriques. / The conventional heat transfer models are not sufficiently suitable for thermal characterization of bio-sourced thermal insulating materials due to their strongly hydrophilic nature. The proposed work in this PhD thesis aims to answer this problem with experimental and theoretical approaches of coupled heat-moisture transfers. In the experimental approach, a thermal insulating material based on Flax Fiber Felt (FFF) is developed and then characterized at different hygrometric conditions with an asymmetric hot plate device. The humidity diffusion characterization of the samples is done using the GAB, GDW and Park theoretical moisture adsorption isotherm models. In the theoretical approach, a physical model of heat and mass transfer is proposed. It is solved numerically, in transient 3D configuration, by the finite element method under COMSOL Multiphysics and, in transient 1D configuration, by the finite difference method under MATLAB. The Levenberg-Marquardt method coupled with the 1D transient direct model and the measured temperatures made it possible to estimate the apparent thermal conductivity of the studied sample with a relative error of less than 6% compared to the experimental measurements, thus validating the theoretical models.
18

Investigation of microparticle to system level phenomena in thermally activated adsorption heat pumps

Raymond, Alexander William 20 May 2010 (has links)
Heat actuated adsorption heat pumps offer the opportunity to improve overall energy efficiency in waste heat applications by eliminating shaft work requirements accompanying vapor compression cycles. The coefficient of performance (COP) in adsorption heat pumps is generally low. The objective of this thesis is to model the adsorption system to gain critical insight into how its performance can be improved. Because adsorption heat pumps are intermittent devices, which induce cooling by adsorbing refrigerant in a sorption bed heat/mass exchanger, transient models must be used to predict performance. In this thesis, such models are developed at the adsorbent particle level, heat/mass exchanger component level and system level. Adsorption heat pump modeling is a coupled heat and mass transfer problem. Intra-particle mass transfer resistance and sorption bed heat transfer resistance are shown to be significant, but for very fine particle sizes, inter-particle resistance may also be important. The diameter of the adsorbent particle in a packed bed is optimized to balance inter- and intra-particle resistances and improve sorption rate. In the literature, the linear driving force (LDF) approximation for intra-particle mass transfer is commonly used in place of the Fickian diffusion equation to reduce computation time; however, it is shown that the error in uptake prediction associated with the LDF depends on the working pair, half-cycle time, adsorbent particle radius, and operating temperatures at hand. Different methods for enhancing sorption bed heat/mass transfer have been proposed in the literature including the use of binders, adsorbent compacting, and complex extended surface geometries. To maintain high reliability, the simple, robust annular-finned-tube geometry with packed adsorbent is specified in this work. The effects of tube diameter, fin pitch and fin height on thermal conductance, metal/adsorbent mass ratio and COP are studied. As one might expect, many closely spaced fins, or high fin density, yields high thermal conductance; however, it is found that the increased inert metal mass associated with the high fin density diminishes COP. It is also found that thin adsorbent layers with low effective conduction resistance lead to high thermal conductance. As adsorbent layer thickness decreases, the relative importance of tube-side convective resistance rises, so mini-channel sized tubes are used. After selecting the proper tube geometry, an overall thermal conductance is calculated for use in a lumped-parameter sorption bed simulation. To evaluate the accuracy of the lumped-parameter approach, a distributed parameter sorption bed simulation is developed for comparison. Using the finite difference method, the distributed parameter model is used to track temperature and refrigerant distributions in the finned tube and adsorbent layer. The distributed-parameter tube model is shown to be in agreement with the lumped-parameter model, thus independently verifying the overall UA calculation and the lumped-parameter sorption bed model. After evaluating the accuracy of the lumped-parameter model, it is used to develop a system-level heat pump simulation. This simulation is used to investigate a non-recuperative two-bed heat pump containing activated carbon fiber-ethanol and silica gel-water working pairs. The two-bed configuration is investigated because it yields a desirable compromise between the number of components (heat exchangers, pumps, valves, etc.) and steady cooling rate. For non-recuperative two-bed adsorption heat pumps, the average COP prediction in the literature is 0.39 for experiments and 0.44 for models. It is important to improve the COP in mobile waste heat applications because without high COP, the available waste heat during startup or idle may be insufficient to deliver the desired cooling duty. In this thesis, a COP of 0.53 is predicted for the non-recuperative, silica gel-water chiller. If thermal energy recovery is incorporated into the cycle, a COP as high as 0.64 is predicted for a 90, 35 and 7.0°C source, ambient and average evaporator temperature, respectively. The improvement in COP over heat pumps appearing in the literature is attributed to the adsorbent particle size optimization and careful selection of sorption bed heat exchanger geometry.
19

Etude des transferts couplés de chaleur et de masse dans les matériaux bio-sourcés : approches numérique et expérimentale / Study of heat and mas transfer within bio-based building materials : numerical and experimental approaches

Asli, Mounir 07 December 2017 (has links)
Le travail développé dans cette thèse a pour but d’étudier le comportement hygrothermique de matériaux isolants bio-sourcés, et plus particulièrement les fibres de bois, le béton de chanvre, la laine de lin, la laine de mouton, le métisse® et les anas de lin. Ces matériaux, par essence naturels, présentent des spécificités liées à leur origine (animale ou végétale) et à leur structure (fibres, paille, matrice solide…). Leur porosité, très élevée, les rend réactifs aux variations d’humidité relative ambiante, ce qui peut impacter leurs performances thermiques et leur durabilité (comme pour tous les matériaux), mais également leur conférer des capacités de régulation. Dans un souci d’améliorer la connaissance de ces matériaux particuliers, nous proposons tout d’abord d’étudier l’impact causé par l’humidité sur leurs caractéristiques thermiques, principalement la conductivité thermique et la chaleur spécifique. Ensuite les caractéristiques hygrothermiques sont étudiées, ce qui permet de mieux comprendre les phénomènes dépendant des capacités d’adsorption, de désorption, de perméabilité ou de résistance à la vapeur d’eau. On se rend compte également de l’importance du gradient de température sur l’évolution des transferts hygriques au sein des matériaux. En plaçant les isolants bio-sourcés sous sollicitations aléatoires ou en conditions réelles d’utilisation, nous pouvons suivre leur comportement d’un point de vue expérimental. Le couplage à une approche numérique permet d’identifier les paramètres d’influence prépondérants, dans l’optique de la prédiction des transferts couplés chaleur/masse par une simulation dans des conditions particulières d’utilisation, comme la rénovation d’un habitat existant. On constate à partir de mesures in situ que ces matériaux ont une grande capacité d’adaptation à des environnements dont l’humidité relative est évolutive. / The work developed in this thesis aims to study the hygrothermal behavior of bio-sourced insulating materials, and more particularly wood fibers, hemp concrete, linen wool, sheep wool, material made of textile recycling (metisse®) and flax shives. These materials, which are essentially natural, have specific characteristics linked to their origin (animal or vegetable) and their structure (fibers, straw, solid matrix, etc.). Their very high porosity makes them reactive to the relative humidity variations, which can affect their thermal performances and their durability (as for all materials), but also give them a regulation capacities. In order to improve the knowledge of these particular materials, first, we propose to study the impact caused by moisture on their thermal characteristics, mainly thermal conductivity and specific heat. Then the hygrothermal characteristics are studied, which makes it possible to better understand the phenomena depending on the capacities of adsorption, desorption, permeability or water vapor resistance. Also, we realize the importance of the temperature gradient impact on the evolution of the hygroscopic transfers within the materials. By placing the studied bio-sourced insulation materials under random loading or under real conditions, it will be possible to follow their hygrothermal behavior from an experimental point of view. The numerical approach makes it possible to identify the preponderant influence parameters, in the context of the prediction of coupled heat and mass transfers by simulation under particular conditions of use, such as the renovation of an existing habitat. On the basis of in situ measurements, it can be seen that these materials have a high adaptability to environments whose relative humidity is evolutionary.
20

Système de refroidissement sec et de production d'eau pour centrale électrosolaire thermodynamique à cycle de Rankine / Dry cooling and water producing system for Rankine cycle concentrated solar power processes

Espargilliere, Harold 08 March 2017 (has links)
Les centrales solaires à concentration industrielles consomment 4 m3/MWh d’eau pour le refroidissement de leur cycle thermodynamique. En environnement aride, cela est susceptible d'induire des conflits d’usages sur une ressource encore plus fondamentale que l’électricité, l'eau. Ce constat met en évidence la nécessité de concevoir des solutions alternatives de refroidissement sèches mais tout aussi efficaces. Le champ solaire d’une centrale CSP représente 50% de son coût d’investissement pour n’être utilisé que de jour pour la production de chaleur nécessaire au cycle thermodynamique. L'approche du sujet de thèse consiste à utiliser cette surface considérable comme macro-échangeur de chaleur avec son environnement via un transfert thermique couplé avec l'air ambiant (convectif) et avec l'espace extra-atmosphérique à 3K (radiatif). Après avoir démontré la pertinence des matériaux du champ solaire pour une telle application, le travail de thèse a montré expérimentalement qu'au-delà d'extraire les chaleurs fatales du cycle thermodynamique, il pouvait aussi produire du froid par transfert radiatif nocturne. Une solution alternative innovante pour le refroidissement des centrales solaires CSP offrant deux nouvelles fonctionnalités à leur champ solaire déjà existant au bénéfice de son amortissement. / Industrial concentrated solar power plants consume 4 m3/MWh of water to cool down their thermodynamic cycle. In arid area, it could induce conflicts of use on a more fundamental resource than electricity. This fact highlights the need to develop alternatives dry cooling technologies but equally effective. The solar field represents 50% of the investment cost of a CSP plant to be used only daily for the heat production needed for the thermodynamic cycle. The approach of the project is to use this huge area as macro-heat exchanger with its surrounding environment through a coupled heat transfer with the ambient air (convective) and with outer space at 3K (radiative). After validating the compatibility of solar field materials for a such application, these research works has shown experimentally that in addition to extract the waste heat of the thermodynamic cycle, it could also produce cold by night radiative cooling. An innovative alternative solution for cooling CSP plants offering two new features to their already existing solar field for the benefit of its paying off.

Page generated in 0.2578 seconds