• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 10
  • 5
  • Tagged with
  • 27
  • 27
  • 15
  • 15
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Interaction plante-microorganismes : Implication de la rhizobactérie Phyllobacterium brassicacearum dans les réponses d’Arabidopsis thaliana au stress hydrique / Plant-microbes interactions : Implication of Phyllobacterium brassicacearum in Arabidopsis responses to water deficit

Bresson, Justine 16 December 2013 (has links)
Les bactéries promotrices de la croissance des plantes (PGPR) peuvent améliorer la performance et la tolérance des plantes lors de stress environnementaux. Arabidopsis thaliana est un modèle de choix pour étudier les mécanismes impliqués dans les interactions plante-bactéries. Nous avons analysé de multiples traits associés à la dynamique de croissance, au développement et la physiologie des végétaux afin d'évaluer les effets de l'inoculation par Phyllobacterium brassicacearum STM196, une PGPR isolée de la rhizosphère du colza, sur les réponses d'A. thaliana à des stress hydriques de différentes intensités. Grâce à des outils performants de phénotypage, nous avons développé une nouvelle approche d'analyse à haut-débit pour examiner l'implication de STM196 dans les stratégies de résistance des plantes au stress hydrique. Nos résultats montrent pour la première fois que les PGPR peuvent interférer dans les stratégies d'échappement des plantes grâce à des modifications de la croissance et du temps de floraison. De plus, STM196 induit une meilleure résistance au déficit hydrique modéré et une meilleure tolérance à la déshydratation sous une contrainte hydrique sévère. L'inoculation par STM196 peut ainsi représenter une valeur ajoutée aux stratégies de résistance intrinsèques aux plantes, ce qui est illustrée par sa remarquable capacité à promouvoir la survie et la production de biomasse végétale dans des environnements contrastés. Nos résultats soulignent l'importance des interactions plantes-bactéries dans les réponses des plantes à la sécheresse et offrent de nouvelles voies de recherches pour l'amélioration de la résistance à la sécheresse dans les cultures. / Plant growth promoting rhizobacteria (PGPR) can enhance plant performance and plant tolerance to environmental stresses. Arabidopsis thaliana is a useful organism to study the mechanisms involved in plant-PGPR interactions. We analyzed multiple plant traits related to growth dynamics, development and physiology in order to assess the effects of Phyllobacterium brassicacearum STM196 strain, isolated from the rhizosphere of oilseed rape, on Arabidopsis responses to well-defined soil water availability. Using powerful tools for phenotyping, we developed a new high-throughput analysis to examine the implication of STM196 on plant strategies to cope with water stress. Our results show for the first time that PGPR can interfere in escape strategies of plants through modifications in plant growth and flowering time. Moreover, STM196 induced a better resistance to moderate water deficit and a better tolerance to dehydration under a severe stress. Inoculation by STM196 can represent an added value to plant resistance strategies, as illustrated by its remarkable ability to promote plant survival and biomass production under contrasted environments. Our results highlight the importance of plant-bacteria interactions in plant responses to drought and provide a new avenue of investigations to improve drought resistance in crops.
22

Effet du ver de terre Aporrectodea caliginosa sur la croissance des plantes, leur développement et leur résistance aux pathogènes : réponse physiologique et moléculaire de la plante à l'émission de molécules-signal

Puga Freitas, Ruben, Puga Freitas, Ruben 03 December 2012 (has links) (PDF)
Les plantes se développent et évoluent en interaction avec les organismes du sol. L'impact des vers de terre sur la croissance des plantes, généralement positif, a été attribué à des modifications physiques, chimiques ou biochimiques du sol, souvent sans démonstration rigoureuse. Dans ce travail, les techniques développées en sciences du végétal (culture in vitro, utilisation de mutants et transcriptomique) ont été utilisées afin de comprendre les mécanismes à l'origine de l'effet des vers de terre sur les plantes. Nos résultats apportent de nouvelles connaissances fondamentales: (1) la production de molécules-signal à l'intérieur des déjections de vers de terre a un impact significatif sur la croissance d'Oryza sativa et Lolium perenne. (2) Ces molécules agissent sur la voie de signalisation fortement liée à l'auxine, comme suggéré par l'effet significatif du ver de terre sur la croissance du double mutant d'A. thaliana aux1-7;axr4-2. (3) L'abondance de ces molécules-signal en présence de vers de terre pourrait être liée à la stimulation de certaines populations bactériennes capables de synthétiser de l'auxine. (4) Le ver de terre induit une accumulation de transcrits pour des gènes sous contrôle de l'acide jasmonique et de l'éthylène. Ces hormones sont notamment impliquées dans un mécanisme de résistance systémique induite (ISR), connu pour être induit par certaines rhizobactéries promotrices de la croissance des plantes. Enfin, (5) le piétin échaudage, maladie due à un champignon pathogène, déclenche chez le blé (Triticum aestivum) une réaction d'hypersensibilité et une modification de la signalisation hormonale, qui sont considérées comme des mécanismes de contrôle du métabolisme de la plante qui facilitent l'infection du pathogène. La sévérité de cette maladie est réduite en présence de vers de terre. La synthèse de ces résultats indique que les vers de terre, comme d'autres organismes du sol, modifient l'équilibre hormonal de la plante. L'homéostasie hormonale apparaît comme un élément incontournable pour prédire l'issue des interactions multiples que les plantes entretiennent avec les organismes du sol
23

Modélisation de la croissance des plantes supérieures pour les systèmes de support-vie : modèle métabolique de la feuille de laitue considérant la conversion d'énergie et le métabolisme central du carbone / Modeling the growth of higher plants for life support systems : lettuce leaf metabolic model considering energy conversion and central carbon metabolism

Sasidharan L., Swathy 04 July 2012 (has links)
Pour des missions spatiales de longue durée, les plantes supérieures doivent faire partie des systèmes de support-vie. Le projet Micro-Ecological Life Support System Alternative (MELiSSA, alternative de système de support-vie micro-écologique) de l’Agence Spatiale Européenne est basé sur un système clos de support vie qui inclut, autour d’un compartiment consommateur, des compartiments microbiens et des plantes supérieures. Les plantes consomment les déchets pouvant être recyclés (les eaux usées et du CO2) et produisent de la nourriture fraîche, de l’eau potable et de l’oxygène pour l’équipage. Un des points clé pour ce type d’étude est le maintien d’un système qui assure le recyclage de tous les éléments C, H, O, N, S, P, … C’est pourquoi la base de l’étude repose sur une modélisation des stœchiométries de conversion qui doit traduire les échanges de matière et d’énergie en fonction des limitations physiques qui sont les paramètres de contrôle du système. L’étape préliminaire a été d’établir un modèle métabolique de feuille (un sous-modèle du modèle biochimique), comprenant le métabolisme central et utilisant les techniques métaboliques d’analyse des modes élémentaires (EFMA) et d’analyse des flux métaboliques (MFA) associé à une vision intégrée de l’énergétique du métabolisme central. En l’absence de données expérimentales suffisantes, le modèle métabolique de feuille a été construit à partir de la composition de la biomasse référencée par le Département Américain de l'Agriculture (USDA) et validé avec les données expérimentales de laitues (Lactuca sativa) cultivées dans l’installation de recherche des systèmes à environnement contrôlé (CESRF) de l’Université de Guelph (Canada). Pour la première approche, le modèle est satisfaisant et prometteur ; il peut prédire la production de biomasse une fois connecté aux facteurs physiques de la croissance de plante (lumière, disponibilité en CO2 et en eau, …) au cours du temps et à la composition de la biomasse. Cependant, nos résultats souffrent d’un manque de données pour vérifier les modèles métaboliques ; ainsi, différents types de mesures pour des prédictions plus précises sont proposés. Le futur modèle doit être en mesure de contrôler la croissance de la plante pour la survie des humains, connaissant les flux provenant des autres compartiments de la boucle MELiSSA. Par ailleurs, l’approche décrite ici peut être utilisée de manière plus générale pour tous types d’études et modélisations du métabolisme, en particulier pour étudier le fonctionnement simultané et/ou consécutif des métabolismes photosynthétique et respiratoire. / For long term space missions, higher plants are necessary to be included in life support systems. The Micro Ecological Life Support System Alternative (MELiSSA) project of European Space Agency (ESA) is based on a closed life support system where microbial and higher plant compartments support the consumer’s compartment. Plants consume the possible recycling wastes (waste water and CO2) and provide fresh food, potable water and oxygen to the crew. One of the key points for this kind of study is to maintain a system which recycles all the elements C, H, O, N, S, P, etc. That is why, the study is based on the modelling of conversion stoichiometries ; they are the results of the control parameters of the system (physical limitations of mass and energy exchanges). As a preliminary step, we have established leaf metabolic model (a sub model of the plant biochemical model) involving central carbon metabolism using metabolic techniques, elementary flux mode analysis (EFMA) and metabolic flux analysis (MFA). It is associated to an integrated approach of energetics and central metabolism. Due to data limitations, the leaf metabolic model was constructed taking the biomass composition of lettuce (Lactuca sativa) from United States Department of Agriculture (USDA) and validated with the experimental data where lettuce grown in controlled Environment Systems Research Facility (CESRF) of University of Guelph (Canada). For the first approach, the model is satisfying and promising ; it can predict the biomass production connecting the physical plant growth factors (light, CO2 and water availability, etc.) along with time course growth and biomass composition. However, our results show the lack of sufficient data ; hence, various kinds of measurements required for more accurate model predictions are proposed. The future model must be able to control and manage the plant growth for human survival knowing the fluxes from other compartments of MELiSSA loop. Further, the approach described here can be used more generically in all kinds of metabolic studies and modeling, especially for studying simultaneous and/or consecutive photosynthetic and respiratory metabolisms.
24

Microbial endophytes and their interactions with cranberry plants

Bustamante Villalobos, Peniel 01 1900 (has links)
Virtuellement toutes les plantes hébergent des champignons et des bactéries endosymbiontes (endophytes). Ces microorganismes façonnent le développement de leur hôte et peuvent inhiber des phytopathogènes. Au niveau moléculaire, les interactions plante-endophyte sont médiées par des molécules secrétées y compris des protéines et métabolites secondaires. Au cours des dernières années, la recherche d’endophytes a augmenté chez nombreux plantes, cependant chez les Ericaceae les endophytes ne sont pas bien connus. Alors, on s’est mis à investiguer les endophytes racinaires de la canneberge, une plante membre d’Ericaceae native de l’Amérique du Nord. On a échantillonné quatre plants provenant d’une ferme commerciale organique. Au total, 30 souches fongiques et 25 bactériens ont été isolés. Les bactéries Pseudomonas sp. EB212, Bacillus sp. EB213 et EB214; et les champignons Hyaloscypha sp. EC200, Pezicula sp. EC205 et Phialocephala sp. EC208 ont supprimé la croissance de cinq pathogènes de la canneberge, incluant Godronia cassandrae, un champignon causant la pourriture des fruits de la canneberge au Québec. EB213 a été capable de promouvoir légèrement la croissance de plantules de la canneberge. En performant des techniques microscopiques, on a constaté l’habileté de EC200, EC205 et EC208 à coloniser internement les racines des plantules de la canneberge. De plus, les génomes de ces champignons ont été séquencés, assemblés et annotés. Les analyses génomiques se sont concentrées sur les protéines secrétées et les groupes des gènes impliqués dans la biosynthèse (GGB). On a trouvé un large répertoire de gènes codant pour des enzymes qui métabolisent les carbohydrates et d’autres codant pour des protéases. Les deux groupes d’enzymes seraient utiles à dégrader de la matière organique pour libérer des nutriments. Aussi bien, ces enzymes pourraient faciliter la colonisation des racines de la plante hôte. De plus, on a prédit des nombreuses protéines effectrices qui assisteraient les endophytes à éviter l’activation du système immunitaire des plants. A noter que parmi les GGB inférés dans les génomes de EC200, EC205 et EC208, environ 90% ne sont pas caractérisés. Finalement, on a performé des analyses transcriptomiques pour élucider la réponse de EC200, EC205 et EC208 envers la présence de leur hôte, simulée par l’addition d’un extrait de canneberge au milieu de culture. Les conclusions majeures sont que les racines des plantes de la canneberge qui ont été échantillonnées sont dominées par des microorganismes avec l’habileté d’inhiber des phytopathogènes ; et que les génomes de EC200, EC205 et EC208 codent pour un grand répertoire de protéines qui pourraient être liées aux interactions plante-endophyte. / Virtually all plants host fungal and bacterial endosymbionts (endophytes). These microbes shape plant development and may inhibit phytopathogens. At the molecular level, plant-endophyte interactions are mediated by secreted compounds, including proteins and secondary metabolites. While endophytes are increasingly studied in diverse plants, little is known about their presence in Ericaceae. Therefore, we set out to investigate the root endophytes of cranberry, an ericacean member native to North America. We sampled endophytes from four plants grown on an organic farm. In total, 30 fungal and 25 bacterial strains were isolated and identified. A subset of these, notably Pseudomonas sp. EB212, Bacillus sp. EB213 and EB214; and fungi Hyaloscypha sp. EC200, Pezicula sp. EC205, and Phialocephala sp. EC208, were tested for their ability to suppress phytopathogens. Altogether, they inhibited five cranberry pathogens, including Godronia cassandrae, an important cranberry fruit-rot agent in Quebec. EB213 was the only endophyte that increased the biomass of cranberry seedlings. Using microscopy techniques, we confirmed the ability of EC200, EC205, and EC208 to colonize cranberry roots internally. The genomes of these fungi were sequenced, assembled and annotated. Genomic analyses focused on secreted proteins and biosynthetic gene clusters (BGCs). We found an extensive repertoire of carbohydrate-active enzymes and proteases that could assist in recycling organic nutrients, rendering them accessible to plants; these enzymes may also facilitate root colonization. In addition, effector proteins were predicted; these molecules may assist endophytes to escape the plant immune system and favour colonization. We inferred 139 biosynthetic gene clusters (BGCs) across the three examined fungi. Remarkably, the product of around 90% of BGCs are unknown. Finally, transcriptomic analyses were performed to determine how EC200, EC205 and EC208 respond to the presence of cranberry, simulated by the addition of cranberry extract in the culture medium. The two major conclusions of this work are that the roots of the sampled cranberry plants are dominated by endophytes with biocontrol abilities, and that EC200, EC205 and EC208 encode a broad repertoire of proteins that could be involved in plant-endophyte interactions.
25

Modélisation de la variabilité inter-individuelle dans les modèles de croissance de plantes et sélection de modèles pour la prévision

Baey, Charlotte 28 February 2014 (has links) (PDF)
La modélisation de la croissance des plantes a vu le jour à la fin du XXème siècle, à l'intersection de trois disciplines : l'agronomie, la botanique et l'informatique. Après un premier élan qui a donné naissance à un grand nombre de modèles, un deuxième courant a vu le jour au cours de la dernière décennie pour donner à ces modèles un formalisme mathématique et statistique. Les travaux développés dans cette thèse s'inscrivent dans cette démarche et proposent deux axes de développement, l'un autour de l'évaluation et de la comparaison de modèles, et l'autre autour de l'étude de la variabilité inter-plantes. Dans un premier temps, nous nous sommes intéressés à la capacité prédictive des modèles de croissance de plantes, en appliquant une méthodologie permettant de construire et d'évaluer des modèles qui seront utilisés comme outils prédictifs. Une première étape d'analyse de sensibilité permet d'identifier les paramètres les plus influents afin d'élaborer une version plus robuste de chaque modèle, puis les capacités prédictives des modèles sont comparées à l'aide de critères appropriés. %Cette étude a été appliquée au cas de la betterave sucrière. La deuxième partie de la thèse concerne la prise en compte de la variabilité inter-individuelle dans les populations de plantes. %Il existe en effet une forte variabilité entre plantes, d'origine génétique ou environnementale, dont il est nécessaire de tenir compte. Nous proposons dans cette thèse une approche basée sur l'utilisation de modèles (non linéaires) à effets mixtes pour caractériser cette variabilité. L'estimation paramétrique par maximum de vraisemblance nécessite l'utilisation de versions stochastiques de l'algorithme d'Espérance Maximisation basées sur des simulations de type Monte Carlo par Chaîne de Markov. Après une première application au cas de l'organogenèse chez la betterave sucrière, nous proposons une extension du modèle structure-fonction Greenlab à l'échelle de la population.%, appliqué aux cas de la betterave sucrière et du colza.
26

Naphthalene based plant regulating compounds : photophysics, direct an polyoxometalate catalysed degradation in homogeneous and heterogeneous media by layered double hydroxides / Etudes de dérivés de naphtalène utilisés comme pesticides régulateurs de la croissance de plantes : caractérisations photophysiques et études de la photodégradation directe et catalysée par les polyoxométalates en phase homogène et en phase hétérogène fixés sur des hydroxydes doubles lamellaires

Silva, Eliana Sousa da 29 July 2014 (has links)
Résumé non disponible. / Résumé non disponible.
27

Caractérisation moléculaire des micro-organismes endophytes de la canneberge (Vaccinium macrocarpon Ait.)

Salhi, Lila Naouelle 04 1900 (has links)
Il a été établi que la majorité des plantes vasculaires abritent des micro-organismes endophytes bactériens et fongiques, qui peuvent coloniser les tissus végétaux et former des associations allant du mutualisme à la pathogénèse. Les symbioses végétales mutualistes les plus communes impliquent les champignons endo-mycorhiziens arbusculaires (AMF). Ces champignons s’associent aux racines des plantes et leur permettent d’améliorer leur nutrition minérale, tandis qu’ils bénéficient des composés produits par l'hôte. Toutefois, les plantes de la famille Ericaceae s’engagent plutôt dans des associations mutualistes avec les champignons mycorhiziens éricoïdes (ErMF). Ces derniers sont morphologiquement et taxonomiquement mal définis, en apparence distribués aléatoirement parmi les espèces issues des grandes divisions taxonomiques des Ascomycota et Basidiomycota. En raison de cette incohérence taxonomique et de l'absence d'une histoire évolutive explicative, la diversité réelle de ces champignons est mal caractérisée. De ce fait, ce projet vise à étudier le microbiote associé à la plante Ericaceae Vaccinium macrocarpon Aït (canneberge), axant la recherche sur les angles morphologiques, génomiques et transcriptomiques des champignons de type ErMF et autres endophytes capables de contrôler la croissance des agents phytopathogènes et de stimuler la croissance des plantes. Notre première démarche présentée dans le chapitre 2 s’est focalisée sur la caractérisation du microbiote endophyte bactérien et fongique de la canneberge, une plante vivace principalement produite en Amérique du Nord, notamment au Québec. Nous avons isolé et identifié 180 micro-organismes à partir de plantes de cultivars variés, collectées de champs différents, et avons démontré l'existence d'une variabilité dans le microbiote selon les tissus, les cultivars, et même entre les champs d'une même ferme. Parmi les endophytes d’intérêt identifiés, l’isolat fongique Lachnum sp. EC5 a stimulé la croissance des cultivars de canneberge Stevens et Mullica Queen et a formé des structures intracellulaires similaires à celles des ErMF à l’intérieur des cellules racinaires de la canneberge. De plus, l’isolat EB37 identifié Bacillus velezensis s’est révélé être un puissant agent antifongique, montrant cependant une tolérance particulière au champignon Lachnum sp. EC5, lors des tests de confrontation. Ce volet sera détaillé avec plus de précision dans le chapitre 4. Le chapitre 3 a porté sur l’analyse génomique comparative de l’isolat fongique Lachnum sp. EC5 avec plusieurs espèces de champignons Leotiomycetes ErMF, saprophytes et pathogènes. Nous avons analysé le sécrétome protéique prédit de ces champignons et mis en évidence que les gènes codant pour les enzymes de dégradation des parois végétales ne sont pas corrélés au mode de vie fongique (mycorhizien, pathogène ou saprophyte). A l’inverse, 10 protéines effectrices de Lachnum sp. EC5 prédites pour cibler spécifiquement un compartiment intracellulaire chez les cellules végétales ont des similarités avec celles d’espèces mutualistes comme Meliniomyces variabilis et Oidiodendron maius. Aussi, la protéine effectrice putative Zn-MP, prédite pour cibler, potentiellement, les chloroplastes végétaux nous permet de proposer un rôle dans le renforcement de l’immunité végétale. Le chapitre 4 s’est intéressé aux mécanismes de régulation d'expression de gènes induits lors de l’interaction entre le champignon Lachnum sp. EC5 et la bactérie B. velezensis EB37. Ces mécanismes ont été comparés à ceux activés chez la bactérie en présence de champignons pathogènes. Nous avons démontré une physiologique cellulaire bactérienne distincte en présence de Lachnum sp. EC5, dénotée par une faible expression des gènes induits lors du stress nutritif associé aux processus de sporulation, de formation du biofilm, de secretion de CAZymes et de lipopeptides. Nous avons suggéré que la sous-régulation de ces mécanismes serait essentiellement explicable par une disponibilité plus importante en glucose ou en d’autres sources de carbone préférentielles pour la bactérie. En réponse, le champignon Lachnum sp. EC5 a vécu différents changements morphologiques. Il aurait détoxifié ses environnements intra et extra-cellulaires et surexprimé sa voie de production de carbone dépendante du cycle du glyoxylate, générant ainsi des conditions favorisant un contact physique entre les deux micro-organismes. En conclusion, nous avons argumenté et documenté que la définition des ErMF basée uniquement sur des critères morphologiques est mal adaptée à catégoriser ces champignons. Notre approche multidisciplinaire a mis en évidence la diversité du microbiote de la canneberge, a étendu la notion d’ErMF à d'autres champignons jusqu'ici exclus de ce groupe, et a souligné l'importance des associations interspécifiques sur l’interaction ErMF-plantes. Ces avancées permettront d’améliorer nos connaissances sur le microbiote des plantes éricacées contribuant, au développement de solutions environnementales éco-responsables pour l’industrie de la canneberge. / It has been established that the majority of vascular plants harbour bacterial and fungal endophytes that colonize plant tissues, and thus form associations that range from mutualism to pathogenesis. Mycorrhizal fungi are a particular class of endophytes that associate with plant roots and enhance plant mineral uptake. The most common type of mutualistic plant symbiosis involves arbuscular mycorrhizal fungi (AMF), whereas plants of the Ericaceae family instead engage in mutualistic associations with ericoid mycorrhizal fungi (ErMF). The ErMF group, in its current definition, includes both ascomycete and basidiomycete species, yet is morphologically, taxonomically and evolutionarily poorly defined, which implies that the group’s true diversity is not well understood. The objective of this project is to complement morphological information with genomic and transcriptomic data to better understand the role of ErMF in 1) controlling the negative effects of pathogenic infections, and 2) the potential plant growth stimulation for the Ericaceous plant Vaccinium macrocarpon Ait. Our first approach presented in Chapter 2 focused on the characterization of the bacterial and fungal endo-symbiotic microbiota of the Ericaceous plant, Vaccinium macrocarpon Ait (cranberry), a perennial plant mainly in North America, particularly in Quebec. We isolated ~180 distinct bacterial and fungal endophytes collected from roots, stems, and leaves of cranberry plants cultivated in Quebec, Canada. We show that the cranberry microbiome varies substantially between tissues, cultivars, and across fields of the same farm. Among the isolated endophytes, the fungus Lachnum sp. EC5 was found to promote the growth of cranberry cultivars Stevens and Mullica Queen, and to form intracellular structures resembling those other ErMF inside the cortical root cells. In addition, the bacterium Bacillus velezensis (EB37) has been found to be a potent antifungal agent. Interestingly, a confrontation test between EB37 and the fungus Lachnum sp. EC5 revealed a mutual tolerance, which we will describe later in chapter 4. In chapter 3, our project focused on the comparative genomic analysis of the fungus Lachnum sp. EC5 with several Leotiomycete ErMF, saprophytes and pathogens. We analyzed fungal secretomes and demonstrated that genes encoding plant cell wall degradation enzymes are conserved between the tested fungi which suggests that such proteins are not indicative of a particular fungal lifestyle. On the other hand, 10 effector proteins identified in Lachnum sp. EC5 were also only found in mutualistic fungi, such as Meliniomyces variabilis, Oidiodendron maius and have been reported to target the plant intracellular compartments. Also, the identification of the putative effector protein Zn-MP, specific to Lachnum sp. EC5 and predicted to target plant chloroplasts, suggest a role in the reinforcement of plant immunity. Chapter 4 focuses on the patterns of gene expression regulation induced in the biocontrol bacterium B. velezensis EB37 in interaction with the potentially mutualistic fungus Lachnum sp. EC5. These mechanisms were then compared to those activated when the bacterium is in the presence of pathogenic/saprophytic fungi. We demonstrated that in co-culture with Lachnum sp. EC5, EB37expresses fewer genes related to stress, and fewer related to the stationary phase which often involves production of bacterial biofilms and lipopeptides, such as mycosubtilin. We suggest that the lessened response to stress is related to an increased availability of glucose or other preferential sources of carbons for the bacterium. Conversely, Lachnum sp. EC5 in the presence of EB37 underwent morphological changes by a higher lateral branching., detoxified its external and internal environment by expressing both a catalase activity and efflux pumps, and overexpressed its glyoxylate cycle-dependent carbon production pathway, and thus promoting favourable conditions for close physical contact with the bacterium. In conclusion, we demonstrated that the morphological-based definitions are poorly adapted to the categorization of ErMF fungi. Our multidisciplinary approach highlighted the diversity of the cranberry microbiota, extended the notion of ErMF to other fungi hitherto excluded from this fungal group and underlined the importance of interspecific associations on the ErMF-plant interaction. These advances enhance our understanding of the Ericaceous plant microbiota and contributes to the development of sustainable solutions for the cranberry industry.

Page generated in 0.0931 seconds