• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A techno-economic case study of external timber wall assemblies in Swedish single-family homes

Maad, Deaa, Alkhen, Mohamad Feras January 2021 (has links)
Decisions made at the early stage of building design can significantly influence theenvironmental, energy and economic performance of buildings. Future homeowners anddevelopers often have to make decisions concerning the design and specification of thebuilding. These choices are usually governed by functionality, aesthetics, cost, materialavailability, etc. Except for decisions related to long-term performances, they are relativelyeasy and straightforward to make. Long-term performance assessments that consider theimpact of a product over its lifetime, requires thorough research. Due to the lack of studies onthe long-term benefits and performance of different building design options, homeowners anddevelopers often base their decisions on short-term financial benefits, ignoring long-termbenefits. This may lead to incorrect decisions that are difficult to correct.Within this context, the aim of this study is to compare the long-term economic viability ofdifferent external timber wall construction types. By doing so, our goal is to address the lackof techno-economic studies within the construction industry and thus, to assist the decisionmakingof Swedish homeowners and developers. We evaluate the economic performance ofthree wooden wall construction alternatives—that of IsoTimber, cross-laminated timber(CLT), and timber frame walls—via thirteen wall assembly scenarios and two case housesfrom Bysjöstrand eco-village, Sweden. The scenarios account for variations in wall type andwall thicknesses. Our study utilizes an approach based on life cycle costing (LCC) andconsiders the capital cost and the present value of heating cost. The latter is calculated for 1m2of heated area of each case houses over a 40-year period. Indoor Climate and Energy software(IDA ICE) is used to estimate the heating energy use and the Bidcon program to estimate thematerials and labor costs for all cases. The study considered reasonable economic parameters,but to see their impact on the results and feasibility of wall constructions improving, sensitiveanalysis has been done using different values.The main finding of this thesis is that timber frame wall construction is the most economicchoice in the long term. In contrast, IsoTimber wall is the least economic choice, in general,and for two-story homes, in particular. Moreover, the present value total cost for IsoTimber intwo-story building is 5% higher than for a single-story building that has a similar U-value. Incontrast, it is 3% and 7% lower for CLT and timber frame walls respectively. Also, the resultsindicate that although the present value heating cost decreases with increasing wall thickness,this increase is considerably smaller than the increase in the capital cost. Finally, assumedeconomic factors affect the results greatly, but in general, improving the U-value of CLT wallconstruction might be the most profitable then timber frame comes after, and then IsoTimbercomes in the last. Along with, return economic benefit from the improvement of all studiedwall constructions in single-story building is higher than the benefit in two-story building.
12

FLERVÅNINGSHUS MED TRÄSTOMME : En undersökning av utformningsprocessen för detaljlösningar i trä

Lundberg, Albin, Forsberg, Pontus January 2019 (has links)
Multi-story wood frame construction is a highly relevant topic today because of the need to continue to develop the relatively new building technique to create a sustainable way to keep constructing new buildings. Because the use of wood as a frame material in multi-story buildings is still new, there are still issues that come with the choice to use it. One of these issues is in the detailed technical solutions that are constructed, they often have faults that may lead to problems with moisture. The purpose of this degree project is to investigate these problems and more importantly the process behind constructing them. This work is also examining what can be done to counteract or minimize the issues in the planning phases of the construction as well as look at why it is important to continue developing wood construction. There are two parts of the method used in this degree project. The first part is a literature study which brings up the attributes of wood, factors for using and not using wood, the techniques used to build multi-story buildings in wood, as well as a look into the detailed technical solutions that are used and the planning process behind them. The second part is the interview study where experts in the field are interviewed to get answers about the issues that this work brings up. The interviews provided a lot of information that is relevant for this work and the result consists of the most important answers from them. The biggest factor for continuing to develop the use of wood as a frame material, from the interviews, was about the eco-friendliness of the material. The attitude to use wood in multi-story buildings varies quite a bit depending on which part of the construction sector is asked. The developers are curious but still a bit worried, because of this they have not yet taken the next step in using it more. The entrepreneurs are still sceptical about the use in multi-story constructions and there is not enough knowledge about it for them to earn the same amounts of money as if they were to use concrete or steel. Because of that they are also worried about taking the next step towards using wood more. The consultants, like the architects and construction engineers, are more positive to the use of wood and are inclined to use it more and more. The issues that come up the most are different types of attachments of balconies and exterior corridors, parts that are installed too close to the ground and solutions where the end grain of the wood is in water. There were three main problems that came up repeatedly. The biggest one was the lack of knowledge in the planning and the production phases. The second one was about how there is often no one who looks at the bigger picture in the projects which entails mistakes that could be caught. The last issue was in the installation where the construction workers might not do it according to the construction drawings or a lack of drawings which leads to improvisation at the construction site. Recommended improvements could be a standardisation of the solutions that are proven to work for everyone to use. There is also a need for better communication which provides feedback to the designers of the solutions, that way they will know what to do better in the future. More relevant education within the topic and better coordination will also prove vital in the continued development of multistory wooden constructions.

Page generated in 0.0691 seconds