• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 12
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical milling of Al-Cu-Fe quasicrystals and their Reinforcement in Aluminum matrix composites

Ali, Fahad 11 April 2012 (has links) (PDF)
In this thesis, the effect of mechanical deformation on structure, thermal stability and hardness of a single-phase spray-deposited quasicrystalline alloy with composition Al62.5Cu25Fe12.5 has been investigated in detail. The purpose of the investigation was to study the effect of mechanical milling at different milling speeds (which approximately scale with the milling intensity) on mechanically-induced phase transformations during milling and on the phase evolution during subsequent heating. The results of the milling experiments indicate that, irrespective of the milling speeds used, mechanical milling of Al62.5Cu25Fe12.5 quasicrystals leads to the formation of a disordered CsCl-type ß phase with grain size of about 10 – 20 nm. The analysis of the kinetics of the QC–to–ß phase transformation reveals that the milling intensity has a considerable effect on the characteristics of the transformation. The increase of the milling speed considerably shortens the incubation time needed to start the QC–to–ß phase transformation. Also, the overall transformation is much faster for milling at high speeds. The QC–to–ß phase transformation starts when the grain size of the quasicrystals is reduced to about 10 nm irrespective of the milling speed used and clearly indicates that a critical grain size of the quasicrystals for initiating the transformation exists. On the other hand, no critical value of lattice strain was found for the QC–to–ß transformation. This indicates that the phase transformation is controlled by the local length scale (i.e. the grain size) and by the corresponding grain boundaries rather than by the energy stored in the lattice. Energetic considerations obtained through a simple model based on the mass and velocity of the milling balls reveal that the energy needed for the QC–to–ß transformation increases with increasing the milling speed, that is, the energetic efficiency of the process decreases with increasing the milling intensity. This indicates that part the extra energy supplied during milling at high intensities is not used to induce the phase transformation but it is dissipated by heat. During heating, the milled powder displays a multi-step thermal behavior characterized by the grain growth of the disordered ß phase at low temperatures, followed, at higher temperatures, by its transformation into the original icosahedral quasicrystalline phase. The transformation is gradual and the quasicrystals and the disordered ß phase coexist over a temperature interval of more than 250 K. The phase transformations occurring during milling and subsequent annealing have a remarkable effect on the hardness, which can be tuned within a wide range of values (7–9.6 GPa) as a function of the volume fraction of the different phases. This suggests that a composite material with optimized mechanical properties can be produced by an appropriate thermo-mechanical treatment. The quasicrystals milled at a very low speed show a transition between Hall-Petch to inverse Hall-Petch behavior at a grain size of about 40 nm, which represents the critical value for grain size softening of the present Al62.5Cu25Fe12.5 quasicrystals. This behavior may be attributed to the complexity of the quasicrystalline structure and to its peculiar deformation mechanism at room temperature (i.e. shear banding), where meta-dislocation-assisted deformation is almost absent. In order to analyze the effectiveness of the Al62.5Cu25Fe12.5 quasicrystals as reinforcing agent in metal matrix composites, Al-based composites were synthesized by hot extrusion of elemental Al blended with different amounts of Al62.5Cu25Fe12.5 quasicrystalline particles. The work was focused on two specific aspects: evaluation of the mechanical properties through room temperature compression tests and modeling of the resulting properties. The addition of the quasicrystalline reinforcement is very effective for improving the room temperature mechanical properties of pure Al. The compressive strength increases from 155 MPa for pure Al to 330 and 407 MPa for the composites with 20 and 40 vol.% of reinforcement, respectively, reaching an ultimate strain of 55 % and 20 % before fracture occurs. These results indicate that the addition of the QC reinforcement leads to composite materials with compressive strengths exceeding that of pure Al by a factor of 2 – 2.5, while retaining appreciable plastic deformation. The mechanical properties of the composites have been modeled by taking into account the combined effect of load bearing, dislocation strengthening and matrix ligament size effects. The calculations are in very good agreement with the experimental results and reveal that the reduction of the matrix ligament size, which results in a similar strengthening effect as that observed for grain refinement, is the main strengthening mechanism in the current composites. Finally, the interfacial reaction between the Al matrix and the QC reinforcement has been used to further enhance the strength of the composites through the formation of a new microstructure consisting of the Al matrix reinforced with Al7Cu2Fe w-phase particles. The optimization of the structure-property relationship was done through the systematic variation of the processing temperature during consolidation. The mechanical behavior of these transformation-strengthened composites is remarkably improved compared to the parent material. The yield strength of the composites significantly increases as the Al + QC -> ω transformation progresses from 195 MPa for the sample reinforced only with QC particles to 400 MPa for the material where the Al + QC -> ω reaction is complete. These results clearly demonstrate that powder metallurgy, i.e. powder synthesis by ball milling followed by consolidation into bulk specimens, is an attractive processing route for the production of novel and innovative lightweight composites characterized by high strength combined with considerable plastic deformation. In addition, these findings indicate that the mechanical behavior of Al-based composites reinforced with Al62.5Cu25Fe12.5 quasicrystalline particles can be tuned within a wide range of strength and plasticity depending on the volume fraction of the reinforcement as well as on the extent of the interfacial reaction between Al matrix and QC reinforcing particles.
2

Nanostruktur ionenbestrahlter Fe/Al- und Co/Cu-Grenzschichten

Noetzel, Joachim 17 July 2000 (has links)
In dieser Arbeit wird die nanoskalige Struktur von Grenzschichten in binären metallischen Multischichten untersucht. Ausgangspunkt sind laserdeponierte Multischichten des mischbaren Systems Fe/Al und des nichtmischbaren Systems Co/Cu. Die Struktur der durch die hochenergetischen Teilchen bei der Deposition entstandenen Grenzschichten wird mit Hilfe von zahlreichen Analyseverfahren (RBS, CEMS, EXAFS, Röntgenverfahren, TEM, AES und magnetische Messungen), sowie Simulationsrechnungen auf Basis des ballistischen Mischens (TRIDYN) untersucht. Anschließend wird mit Hilfe von Ionenstrahlmischen und thermischem Anlassen die Grenzschichtstruktur weiter modifiziert.
3

Development of Novel (Cu,Fe)3O4 Coatings for AISI 441 Solid Oxide Cell Interconnects : Coating optimization and long-term study

Larby, Line January 2020 (has links)
As current environmental challenges are gaining increased attention, development of clean energy solutions is becoming one of the essential strategies to keep within the boundaries of established environmental policies. Solid oxide cell (SOC) technology can provide clean energy conversion and storage when hydrogen is the energy carrier. The high total energy conversion efficiency resulting from the high operation temperature of SOCs make the technology promising, but material costs must be reduced to make it commercially viable. Therefore, this thesis aims to study the long- term performance of a novel cost-optimized cell interconnect at 650 and 850 °C. At high temperatures, chromium evaporation from the interconnect result in electrode poisoning, which may be mitigated by application of a protective coating. The studied interconnect is an AISI 441 steel with some different pre-oxidized copper and iron spinel coatings. Sample analysis was made mainly with scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and X-ray diffraction. It was found that the most promising pre-oxidation treatment was 24 h at 750 °C and that chromium migration was restrained at 650 °C long-term treatment but not at 850 °C where it wasfound available for evaporation at the surface. / När samtida milljöutmaningar får ökad uppmärksamhet blir gröna energilösningar en av de viktigaste strategierna för att hålla sig inom satta gränser från etablerade miljöriktlinjer. Teknologin bakom fastoxidceller, eller solid oxide cells (SOCs), kan bidra med grön omvandling och lagring av energi när energibäraren är väte. Den höga totala omvandlingseffektiviteten, som kommer med den höga verkningstemperaturen, gör SOC till en lovande teknologi, men materialkostnaderna måste först reduceras innan den blir komersiellt gångbar. Därför syftar detta examensarbete till att undersöka prestandan av en ny, kostnadsoptimerad cellinterkonnektor på lång sikt i 650 och 850 °C. Vid höga temperaturer förångas krom från interkonnektorn, vilket leder till elektrodförgiftning, men kan mildras genom applicering av en skyddande beläggning. Den undersökta interkonnektorn är ett stål som betäcknas AISI 441 belagt med några olika föroxiderade beläggningar av koppar- och järnspinell. Proverna analyserades i huvudsak genom svepelektronmikroskopi kobinerat med energidispersiv röntgenspektroskopi och röntgendiffraktometri. Det visades att den mest lovande föroxideringsbehandlingen var 24 h i 750 °C och att krom förblev återhållet vid 650 °men inte vid 850 °C då det fanns tillgängligt för förångning vidytan.
4

Efeito de adições de Ni e Mg sobre o comportamento térmico, mecânico e elétrico de ligas Al-Cu-Fe solidificadas unidirecionalmente

SOUZA, Pedro Henrique Lamarão January 2013 (has links)
Submitted by Cleide Dantas (cleidedantas@ufpa.br) on 2014-04-08T17:15:22Z No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_EfeitoAdicoesNi.pdf: 5757867 bytes, checksum: 8a77abd3b782bdae2352df421372bf23 (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2014-09-01T15:39:57Z (GMT) No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_EfeitoAdicoesNi.pdf: 5757867 bytes, checksum: 8a77abd3b782bdae2352df421372bf23 (MD5) / Made available in DSpace on 2014-09-01T15:39:57Z (GMT). No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_EfeitoAdicoesNi.pdf: 5757867 bytes, checksum: 8a77abd3b782bdae2352df421372bf23 (MD5) Previous issue date: 2013 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho estudou a influência dos teores dos solutos Mg e Ni na modificação das propriedades térmicas, elétricas e mecânicas de uma liga Al-Cu-Fe para aplicação como condutor de energia elétrica. Para a realização do presente estudo, as ligas foram obtidas por fundição unidirecional horizontal, a partir da base do alumínio de pureza comercial com adição dos teores 0,05%p Cu e [0,24 a 0,28]%p Fe. Tal base foi modificada em uma primeira etapa com teores de 0,45, 0,60 e 0,80%p Mg. As ligas obtidas com estes teores tiveram suas propriedades estudadas para que se selecionasse um teor de Mg para posterior adição de Ni à liga. O estudo destas propriedades na primeira etapa passou pela análise das propriedades térmicas: velocidade de solidificação (VL) e taxa de resfriamento (Ṫ). A caracterização elétrica estudou a propriedade condutividade elétrica (φ) e o levantamento das propriedades mecânicas: limite de resistência à tração (σ) e microdureza Vickers (HV). A liga com adição de Ni passou por tratamentos térmicos de envelhecimento, por 1, 4 e 8h. Estas amostras foram analisadas em um microscópio eletrônico de varredura - MEV pelos sinais de elétrons retroespalhados – ERE e espectroscopia de energia dispersiva – EDS. Como resultados do estudo, encontrou-se que adições de Mg influenciaram significativamente a viscosidade das ligas, elevando as velocidades de solidificação nos instantes finais. Os ensaios de microdureza das amostras envelhecidas mostraram que houve um acréscimo significativo de dureza na quarta hora de envelhecimento, da mesma forma que as análises de EDS mostraram que a concentração de Ni também elevou-se nesta condição de tratamento. / This work studied the influence of Mg and Ni solute content on the modification of the thermal, electrical and mechanical properties of an Al-Cu-Fe alloy for application as an electrical conductor. To realize the present study, the alloys were obtained by unidirectional horizontal casting, starting from the commercial pure aluminum with the addition of 0.05wt% Cu and [0.24 to 0.28]wt% Fe content. This basis was modified on a first stage with 0.45, 0.60 and 0.80wt% of Mg content. The alloys obtained with these contents had its properties studied for the selection of a Mg content for further Ni addition at the alloy. The study of these properties on the first stage passed through the analysis of the thermal properties: growth rate (VL) and cooling rate (Ṫ). The electrical characterization studied the electrical conductivity property (φ) and the following mechanical properties were determined: ultimate tensile strength (σ) and Vickers microhardness (HV). The alloy which has Ni additions passed through ageing heat treatments of 1, 4 and 8 hours. These samples were analyzed in a scanning electron microscope – SEM by the electrons backscattered – EBS and energy dispersive spectroscopy – EDS signals. As a result of the research, it was found that Mg additions had significantly influenced the alloys viscosity, increasing its growth rates at the final moments of the solidification. The microhardness tests for the aged samples showed that they suffered a significant gain of hardness at the fourth hour of ageing, also, the EDS analysis showed that Ni content increased at the same treating conditions.
5

Nanostructuration d'un composite Cu-Fe par déformation intense : vers un mélange forcé à l'échelle atomique

Quelennec, Xavier 17 March 2008 (has links) (PDF)
Les techniques d'élaboration par déformation plastique intense permettent d'obtenir des matériaux nanostructurés à l'état massif. La grande quantité de défauts (dislocations, lacunes,...) peut donner lieur à des transformations de phases hors équilibre. L'objectif de ce travail à été de produire par HPT (high pressure torsion) une solution solide hors équilibre à partir du système modèle Cu-Fe et de comprendre les mécanismes physiques à l'origine de sa formation. Le matériau initial est un nanocomposite filamentaire Cu-cfc/Fe-α. Des tranches de ce composite ont été déformées par HPT pour une large gamme de taux de déformation. Le matériau obtenu a été caractérisé par DRX, spectroscopie Mössbauer, MET et sonde atomique tomographique. Les filaments de ferrite sont dans une premier temps amincis jusqu'à environ 5nm. Le mélange forcé commence alors par diffusion de Fe dans Cu-cfc pour enfin aboutir à une solution solide homogène de Fe dans Cu-cfc. A la vue des données, les dislocations et le cisaillement répété des interfaces ne peuvent pas expliquer la formation du mélange forcé. Celle-ci est attribuée à la diffusion accélérée par les lacunes en excès.
6

Evaluation of Quasicrystal Al-Cu-Fe Alloys for Tribological Applications

Nabelsi, Nezar 16 December 2013 (has links)
This research investigated the tribological performance of a composite material, formed from an ultra high molecular weight polyethylene (UHMWPE) matrix and quasicrystalline Al-Cu-Fe alloy powders. An evaluation was conducted for the microstructure, material properties, and tribological performance of quasicrystalline materials formed from Al-Cu-Fe alloys. Arc melting was used as the fabrication technique for these alloys, and some samples were additionally heat treated in an argon environment. Vickers microhardness testing was done to make comparisons to wear rate behavior of the various alloys. Tribological studies were conducted using a linear pinon- desk configuration to evaluate friction and wear. Research indicated the annealed samples of Al-Cu-Fe that formed icosahedral quasicrystalline phases, where the quasicrystalline phase was most dominant of the observed alloys, displayed the greatest wear resistance and hardness. Abrasive wear was observed in each of the samples, as the brittle, hard nature of the quasicrystalline phase would not allow for the ductile adhesion. The addition of small amounts of Al-Cu-Fe quasicrystalline particles, crushed and pulverized from the arc-melted ingots, reduced the coefficient of friction and wear rate of UHMWPE, when added to the polymer.
7

Changes of Fe precipitates by wire drawing in dilute Cu-Fe alloys / 希薄Cu-Fe合金の線引き加工によって生じるFe析出物の変化

Goto, Kazuhiro 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24617号 / 工博第5123号 / 新制||工||1979(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 奥田 浩司, 教授 安田 秀幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
8

Etude des mécanismes de formation de phases dans des films minces du système ternaire Al-Cu-Fe

Haidara, Fanta 21 July 2011 (has links)
Les mécanismes de formation de phases dans des films minces du système ternaire Al-Cu-Fe et des systèmes binaires Al-Cu, Al-Fe et Cu-Fe ont été étudiés. Dans chacun des systèmes, plusieurs échantillons avec des compositions distinctes ont été préparés par pulvérisation cathodique. Des couches d’aluminium, de cuivre et de fer ont été déposées séquentiellement sur des substrats de silicium oxydé et ont été traités thermiquement par différentes méthodes puis caractérisés. Des mesures de diffraction de rayons X et de résistivité in-situ ont été effectuées pour suivre la formation des phases. Des recuits thermiques suivis de trempe ont été réalisés et les échantillons ont été caractérisés par diffraction des rayons X. L’analyse enthalpique différentielle a également été utilisée ainsi que des mesures simultanées in-situ de résistivité et de diffraction des rayons X. L’ensemble des résultats obtenus nous a permis de proposer des mécanismes de formation de phases pour chacun des échantillons étudiés et en utilisant des modèles théoriques de croissance de phases nous avons pu déterminer des données cinétiques sur la formation de phases dans ces films. / The mechanisms of phase formation in thin films have been studied in the Al-Cu, Al-Fe, Fe-Cu and Al-Cu-Fe systems. Several samples with different compositions have been prepared by sputtering. Aluminium, copper and iron layers were deposited onto oxidized silicon substrates, they were heat treated and characterized by using several techniques. In situ X-ray diffraction and resistivity measurements were used to follow the phase formation. Thermal annealings followed by quenching have also been carried out to get additional information.Differential Scanning Calorimetry and coupled in-situ resistivity and X-ray diffractionmeasurements were performed. The whole results allowed us to suggest a mechanism of phase formation for each sample and by using theoretical models of growth we determined kinetic data on the phase formation.
9

Mechanical milling of Al-Cu-Fe quasicrystals and their Reinforcement in Aluminum matrix composites

Ali, Fahad 29 March 2012 (has links)
In this thesis, the effect of mechanical deformation on structure, thermal stability and hardness of a single-phase spray-deposited quasicrystalline alloy with composition Al62.5Cu25Fe12.5 has been investigated in detail. The purpose of the investigation was to study the effect of mechanical milling at different milling speeds (which approximately scale with the milling intensity) on mechanically-induced phase transformations during milling and on the phase evolution during subsequent heating. The results of the milling experiments indicate that, irrespective of the milling speeds used, mechanical milling of Al62.5Cu25Fe12.5 quasicrystals leads to the formation of a disordered CsCl-type ß phase with grain size of about 10 – 20 nm. The analysis of the kinetics of the QC–to–ß phase transformation reveals that the milling intensity has a considerable effect on the characteristics of the transformation. The increase of the milling speed considerably shortens the incubation time needed to start the QC–to–ß phase transformation. Also, the overall transformation is much faster for milling at high speeds. The QC–to–ß phase transformation starts when the grain size of the quasicrystals is reduced to about 10 nm irrespective of the milling speed used and clearly indicates that a critical grain size of the quasicrystals for initiating the transformation exists. On the other hand, no critical value of lattice strain was found for the QC–to–ß transformation. This indicates that the phase transformation is controlled by the local length scale (i.e. the grain size) and by the corresponding grain boundaries rather than by the energy stored in the lattice. Energetic considerations obtained through a simple model based on the mass and velocity of the milling balls reveal that the energy needed for the QC–to–ß transformation increases with increasing the milling speed, that is, the energetic efficiency of the process decreases with increasing the milling intensity. This indicates that part the extra energy supplied during milling at high intensities is not used to induce the phase transformation but it is dissipated by heat. During heating, the milled powder displays a multi-step thermal behavior characterized by the grain growth of the disordered ß phase at low temperatures, followed, at higher temperatures, by its transformation into the original icosahedral quasicrystalline phase. The transformation is gradual and the quasicrystals and the disordered ß phase coexist over a temperature interval of more than 250 K. The phase transformations occurring during milling and subsequent annealing have a remarkable effect on the hardness, which can be tuned within a wide range of values (7–9.6 GPa) as a function of the volume fraction of the different phases. This suggests that a composite material with optimized mechanical properties can be produced by an appropriate thermo-mechanical treatment. The quasicrystals milled at a very low speed show a transition between Hall-Petch to inverse Hall-Petch behavior at a grain size of about 40 nm, which represents the critical value for grain size softening of the present Al62.5Cu25Fe12.5 quasicrystals. This behavior may be attributed to the complexity of the quasicrystalline structure and to its peculiar deformation mechanism at room temperature (i.e. shear banding), where meta-dislocation-assisted deformation is almost absent. In order to analyze the effectiveness of the Al62.5Cu25Fe12.5 quasicrystals as reinforcing agent in metal matrix composites, Al-based composites were synthesized by hot extrusion of elemental Al blended with different amounts of Al62.5Cu25Fe12.5 quasicrystalline particles. The work was focused on two specific aspects: evaluation of the mechanical properties through room temperature compression tests and modeling of the resulting properties. The addition of the quasicrystalline reinforcement is very effective for improving the room temperature mechanical properties of pure Al. The compressive strength increases from 155 MPa for pure Al to 330 and 407 MPa for the composites with 20 and 40 vol.% of reinforcement, respectively, reaching an ultimate strain of 55 % and 20 % before fracture occurs. These results indicate that the addition of the QC reinforcement leads to composite materials with compressive strengths exceeding that of pure Al by a factor of 2 – 2.5, while retaining appreciable plastic deformation. The mechanical properties of the composites have been modeled by taking into account the combined effect of load bearing, dislocation strengthening and matrix ligament size effects. The calculations are in very good agreement with the experimental results and reveal that the reduction of the matrix ligament size, which results in a similar strengthening effect as that observed for grain refinement, is the main strengthening mechanism in the current composites. Finally, the interfacial reaction between the Al matrix and the QC reinforcement has been used to further enhance the strength of the composites through the formation of a new microstructure consisting of the Al matrix reinforced with Al7Cu2Fe w-phase particles. The optimization of the structure-property relationship was done through the systematic variation of the processing temperature during consolidation. The mechanical behavior of these transformation-strengthened composites is remarkably improved compared to the parent material. The yield strength of the composites significantly increases as the Al + QC -> ω transformation progresses from 195 MPa for the sample reinforced only with QC particles to 400 MPa for the material where the Al + QC -> ω reaction is complete. These results clearly demonstrate that powder metallurgy, i.e. powder synthesis by ball milling followed by consolidation into bulk specimens, is an attractive processing route for the production of novel and innovative lightweight composites characterized by high strength combined with considerable plastic deformation. In addition, these findings indicate that the mechanical behavior of Al-based composites reinforced with Al62.5Cu25Fe12.5 quasicrystalline particles can be tuned within a wide range of strength and plasticity depending on the volume fraction of the reinforcement as well as on the extent of the interfacial reaction between Al matrix and QC reinforcing particles.
10

Structures atomiques des phases icosaédriques de type F et dislocations

Beauchesne, Jean-Tristan 28 March 2008 (has links) (PDF)
Cette thèse est consacrée à l'étude des structures atomiques des phases icosaédriques de type F et leurs dislocations.<br /><br />Dans cette étude nous avons d'abord construit une structure générique permettant de traiter dans un seul schéma les phases icosaédriques de type F connues. Afin de valider ce modèle nous avons synthétisé quelques compositions suggérées par ce dernier. Ces synthèses ont permis entre autres de découvrir deux nouvelles phases quasipériodiques à la stoechiométrie Al66,08Cu21,35Mn8,29Fe4,28 , l'une icosaédrique (métastable) de type F et l'autre décagonale (stable). Elles ont montré, à une composition au-delà de celles déjà étudiées dans le système (Al,Pd,Fe), l'existence d'une phase F-IQC.<br /><br /> Globalement, ces résultats expérimentaux d'études de nouvelles phases icosaédriques ont permis de montrer la fiabilité du modèle : sur les trois essais de nouvelles compositions, deux ont montré l'existence de phases icosaédriques de type F et la troisième a mis en évidence une phase décagonale en relation d'épitaxie canonique avec la phase icosaédrique brut métastable (axe 10 confondu avec un axe 5).<br /><br />Possédant un modèle fiable nous avons donc pu y introduire des dislocations. Nous avons ainsi précisé la géométrie des dislocations à l'échelle atomique, hors de la zone de cœur, dans les phases F-IQC. Dans cette structure nous avons aussi identifié les mouvements des phasons et tenté d'apporter des éléments de réponse aux mouvements de ces dislocations.

Page generated in 0.0236 seconds