• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 44
  • 38
  • 24
  • 20
  • 18
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 335
  • 335
  • 172
  • 85
  • 81
  • 74
  • 70
  • 68
  • 65
  • 57
  • 54
  • 44
  • 43
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Z-source, Full Bridge Dc/dc Converter

Pekuz, Cagdas 01 December 2010 (has links) (PDF)
The thesis is related to investigate characteristics and performance of a Z-source full bridge dc/dc converter which boosts the input voltage to a higher output voltage. Zsource structure increases the reliability of the converter according to current fed full bridge dc/dc converter and also reducing the complexity according to two stage design approach (boost followed by full bridge). Operating principles of the Z-source dc-dc converter is described by current and voltage waveforms of the components and mathematical expressions. Moreover, small signal models and transfer functions are derived for both continuous current mode (CCM) and discontinuous current mode (DCM) operations of the converter. Waveforms obtained, mathematical expressions, small signal models and transfer functions derived are confirmed by simulations. Performance of the converter and controller are both tested in laboratory prototype.
62

DC-DC converter current source fed naturally commutated brushless DC motor drive

Khopkar, Rahul Vijaykumar 15 November 2004 (has links)
The aim of this work is to reduce the cost and size of a brushless dc motor (BLDC) drive as well as increase the reliability and ruggedness of that drive. Traditional BLDC drives use Voltage Source Inverters (VSI) that utilize hard switching, thereby generating switching losses and entail the use of large heatsinks. VSI needs a huge dc link capacitor that is inherently unreliable and is one of the most expensive components of a drive. Hence, a Current Source Inverter (CSI) is used to replace the hard switchings by natural turn-off, thereby eliminating the heatsinks as well as the large dc link capacitor. A controlled rectifier together with a large inductor act as the current source. The only disadvantage is the large value of the dc link inductor and the huge number of turns needed to achieve these values of the inductances lead to huge resistive losses. Therefore, it is shown that it is possible to replace the controlled rectifier and the large inductor with a suitable dc-dc converter based current source switching at high frequencies and a much smaller value of the dc link inductor. Switching at high frequencies makes it possible to reduce the value of the dc link inductor without increasing the current ripple. Hence, it is possible to have the advantages of using a CSI as well as reduce the value of the dc link inductor without a corresponding increase in the heat sink and snubber requirements.
63

Analysis and design of high frequency link power conversion systems for fuel cell power conditioning

Song, Yu Jin 01 November 2005 (has links)
In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a new soft switching technique for the phase-shift controlled bi-directional dc-dc converter. The described dc-dc converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. The proposed new soft switching technique guarantees soft switching over wide range from no load to full load without any additional circuit components. The load range for proposed soft switching technique is analyzed by mathematical approach with equivalent circuits and verified by experiments. The second study describes a boost converter cascaded high frequency link direct dc-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from the fuel cell is proposed, and a new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented. The performance of the proposed scheme is verified by the various simulations and experiments, and their trade-offs are described in detail using mathematical evaluation approach. The third study proposes a current-fed high frequency link direct dc-ac converter suitable for residential fuel cell power systems. The high frequency full-bridge inverter at the primary generates sinusoidally PWM modulated current pulses with zero current switching (ZCS), and the cycloconverter at the secondary which consists of only two bidirectional switches and output filter capacitors produces sinusoidally modulated 60Hz split single phase output voltage waveforms with near zero current switching. The active harmonic filter connected to the input terminal compensates the low order input current harmonics drawn from the fuel cell without long-term energy storage devices such as batteries and super capacitors.
64

Fabrication of nano-laminated soft magnetic metallic alloys through multilayer electrodeposition: application to high-frequency and high-flux power conversion

Kim, Jooncheol 21 September 2015 (has links)
In this research, in order to realize such nanolaminated magnetic cores for high frequency and high power conversion, the following key tasks have been accomplished: 1) electrodeposition of metallic alloy materials such as NiFe, CoNiFe, and anisotropic CoNiFe; 2) development of new fabrication technologies to realize nanolaminated cores based on metallic alloy electrodeposition; 3) reliable characterization of the structural, magnetic, and electrical properties of the nanolaminated metallic alloy cores; 4) development of microfabricated inductor windings to integrate the nanolaminated cores; 5) demonstration of high-frequency and high-flux ultracompact DC-DC power conversion using inductors integrated with nanolaminated metallic alloy cores. By achieving these tasks, nanolaminated cores comprising tens to hundreds of layers of metallic alloy films (Ni80Fe20 and Co44Ni37Fe19) has been developed. The fabricated nanolaminated core consists of sufficiently thin nanolaminations (100 – 1000 nm) that can suppress eddy currents in the MHz range, while simultaneously achieving the overall magnetic thickness (35 – 2000 µm) such that substantial power can be handled. The nanolaminated metallic alloy cores were further integrated into microfabricated inductors using CMOS-compatible fabrication processes. Finally, an ultracompact DC-DC buck converter with the nanolaminated metallic alloy cores has been developed on PCB having footprint of 14 × 7.1 mm2. The input voltage of the converter varied from 30 to 70 V and the output voltage was fixed at 20 V. The converter operated with output power of approximately 11 W and the switching frequencies of 0.7 – 1.4 MHz, demonstrating conversion efficiency of 94.2% at 30 V input and 80.8% at 60 V input.
65

Integrated Switching DC-DC Converters with Hybrid Control Schemes

Luo, Feng January 2009 (has links)
In the modern world of technology, highly sophisticated electronic systems pave the way for future's information technology breakthroughs. However, rapid growth on complexity and functions in such systems has also been a harbinger for the power increase. Power management techniques have thus been introduced to mitigate this urgent power crisis. Switching power converters are considered to be the best candidate due to their high efficiency and voltage conversion flexibility. Moreover, switching power converter systems are highly nonlinear, discontinuous in time, and variable. This makes it viable over a wide operating range, under various load and line disturbances. However, only one control scheme cannot optimize the whole system in different scenarios. Hybrid control schemes are thus employed in the power converters to operate jointly and seamlessly for performance optimization during start-up, steady state and dynamic voltage/load transient state.In this dissertation, three switching power converter topologies, along with different hybrid control schemes are studied. First, an integrated switching buck converter with a dual-mode control scheme is proposed. A pulse-train (PT) control, employing a combination of four pulse control patterns, is proposed to achieve optimal regulation performance. Meanwhile, a high-frequency pulse-width modulation (PWM) control is adopted to ensure low output ripples and avoid digital limit cycling. Second, an integrated buck-boost converter with a tri-mode digital control is presented. It employs adaptive step-up/down voltage conversion to enable a wide range of output voltage. This is beneficial to ever-increasing dynamic voltage scaling (DVS) enabled, modern power-efficient VLSI systems. DVS adaptively adjusts the supply voltage and operation frequency according to instantaneous power and performance demand, such that a system is constantly operated at the lowest possible power level without compromising its performance. Third, a digital integrated single-inductor multiple-output (SIMO) converter, tailored for DVS-enabled multicore systems is addressed. With a multi-mode control algorithm, DVS tracking speed and line/load regulation are significantly improved, while the converter still retains low cross regulation.All three integrated CMOS DC-DC converters have been designed and fabricated successfully, demonstrating the techniques proposed in this research. The measurements results illustrate superior line and load regulation performances and dynamic response in all these designs.
66

A Dimmable LED Driver For Visible Light Communication Based On the LLC Resonant Converter

Zhao, Shuze 11 December 2013 (has links)
This work presents a new wireless Visible Light Communication lighting system targeted to future Smart Buildings. A digitally controlled LLC resonant dc-dc converter targeted to white LED luminaires is demonstrated. Visible Light Communication is implemented with minimal incremental cost, by operating the LLC converter in burst mode, without causing any visible disturbance. The converter operates with a regulated average LED current by adjusting the switching frequency, while the burst pulse timing is controlled to minimize the current disturbance and minimize the value of the output capacitor. Variable Pulse Position Modulation is used to modulate the data, while supporting a range of dimming settings. A digital demodulation scheme that supports variable frequency transmission is demonstrated. The 80 W, 400 V to 23 V converter experimental prototype has a peak efficiency of 93.8 %. The bit error rate of the complete system is fully characterized versus distance and angle.
67

A Dimmable LED Driver For Visible Light Communication Based On the LLC Resonant Converter

Zhao, Shuze 11 December 2013 (has links)
This work presents a new wireless Visible Light Communication lighting system targeted to future Smart Buildings. A digitally controlled LLC resonant dc-dc converter targeted to white LED luminaires is demonstrated. Visible Light Communication is implemented with minimal incremental cost, by operating the LLC converter in burst mode, without causing any visible disturbance. The converter operates with a regulated average LED current by adjusting the switching frequency, while the burst pulse timing is controlled to minimize the current disturbance and minimize the value of the output capacitor. Variable Pulse Position Modulation is used to modulate the data, while supporting a range of dimming settings. A digital demodulation scheme that supports variable frequency transmission is demonstrated. The 80 W, 400 V to 23 V converter experimental prototype has a peak efficiency of 93.8 %. The bit error rate of the complete system is fully characterized versus distance and angle.
68

A SINGLE-PHASE DUAL-OUTPUT AC-DC CONVERTER WITH HIGH QUALITY INPUT WAVEFORMS

LI, QIANG 01 January 2003 (has links)
A single-phase, buck-boost based, dual-output AC-DC converter is studied in this thesis. The converter has two DC outputs with opposite polarities, which share the same ground with the input power line. The power stage performance, including the input filter, is studied and procedure to select power components is given. The circuit model is analyzed to develop appropriate control. Zerocrossing distortion of the source input current is addressed and a solution is proposed. Experimental results are satisfactory in that a high power factor line current results for steady-state operation.
69

High-frequency transformer isolated power conditioning system for fuel cells to utility interface

Rathore, Akshay Kumar 18 June 2010 (has links)
This thesis presents interfacing of fuel cells to a single-phase utility line using a high-frequency transformer isolated power converter. This research contributes towards selecting a suitable utility interfacing scheme and then designing a power conditioning system along with its control for connecting fuel cells to a single-phase utility line that can achieve high efficiency and compact size. The power conditioning system, designed and built in the research laboratory is connected with the utility line and the experimental results are presented. Based on the literature available on photovoltaic (PV) array and fuel cell based utility interactive inverters with high-frequency transformer isolation, the interfacing schemes for connecting a DC source, in particular fuel cells, to a single-phase utility line are classified. Based on the fuel cell characteristics and properties, performance and the comparison of these utility interfacing schemes, a suitable scheme for the present application is selected. Because of low voltage fuel cells, the system takes higher current from the fuel cell and results in lower efficiency of the system. The inverter stage of the selected scheme deals with the higher voltage (lower current) and therefore, its efficiency is higher. In this sense, the efficiency of the whole system depends mainly on the efficiency of the front-end DC-DC converter. To realize a low cost, small size and light weight system, soft-switching is required. Various soft-switched DC-DC converter topologies are compared for the given specifications. Based on the soft-switching range, efficiency and other merits and demerits, a current-fed DC-DC converter configuration is selected. The performance of the selected topology is evaluated for the given specifications. Detailed analysis, a systematic design, simulation and the experimental results of the converter (200 W, operating at 100 kHz) are presented. To achieve soft-switching for wide variation in input voltage and load while maintaining high efficiency has been a challenge, especially for the low voltage higher input current applications. The variation in pressure/flow of the fuel input to the fuel cells causes the variation in fuel cell stack voltage and the available power supplied to the load/utility line. It causes the converter to enter into hard switching region at higher input voltage and light load. A wide range soft-switched active-clamped current-fed DC-DC converter has been proposed, analyzed and designed and the experimental results (200 W, operating at 100 kHz) are presented. The fuel-cell voltage varies with fuel pressure and causes the variation in the output voltage produced by the front-end DC-DC converter at the input of the next inverter stage and will affect the inverter operation. Therefore, the front-end DC-DC converter should be controlled to produce a constant voltage at the input of the inverter at varying fuel pressure. Small signal modeling and closed loop control design of the proposed wide range L-L type active-clamped current-fed DC-DC converter has been presented to adjust the duty cycle of the converter switches automatically with any variation in fuel pressure to regulate the output voltage of the converter at a specified constant value. To convert the DC voltage output of the front-end DC-DC converter into utility AC voltage at line frequency and feeding current into utility line with low THD and high line power factor, an average current controlled inverter is designed. The complete power conditioning unit is connected to the single-phase utility line (208 V RMS, 60 Hz) and experimental results are presented. The system shows stable operation at varying reference power level.
70

Digitally Controlled DC-DC Converters with Fast and Smooth Load Transient Response

Wang, Jing 13 August 2013 (has links)
Modern switch-mode power supplies (SMPS) used for point-of-load (PoL) applications need to meet increasingly stringent requirements on voltage regulation, while minimizing physical volume and optimizing conversion efficiency. The focus of this thesis is the voltage regulation capability of low-power PoL converters during load transients. The main objective is to investigate converter topologies and control techniques that can achieve fast and smooth transient performance without significant penalty in volume and efficiency. The digital control method is used due to its ability to implement sophisticated control algorithms. The first part of this thesis investigates a dual output stages converter, with a small auxiliary output stage connected in parallel with the main output stage. While the main output stage is responsible for steady-state operation and designed to achieve optimum efficiency, the auxiliary stage is activated when a load transient occurs, to help suppress voltage deviation. Experimental results on a 6 V-to-1 V, 3W buck converter shows 35% improvement in peak transient voltage deviation while maintaining the same efficiency profile, compared to an equivalent buck converter. The second part of this thesis introduces a flyback-transformer based buck (FTBB) converter. In this topology, the conventional buck inductor is replaced with the primary winding of the flyback transformer, an extra switch, and a set of small auxiliary switches on the secondary side. During heavy-to-light load transients the inductor current is steered away from the output capacitor to the input port, achieving both energy recycling and savings due to reduced voltage overshoots. The light-to-heavy transient response is improved by reducing the equivalent inductance of the primary transformer winding to its leakage value. Compared to an equivalent buck converter, experiment results on a 6 V-to-1 V, 3 W prototype show three times smaller maximum output voltage deviation during load transients and, for frequently changing loads, about 7% decrease in power losses.

Page generated in 0.0298 seconds