• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 228
  • 29
  • 23
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 392
  • 392
  • 91
  • 76
  • 58
  • 56
  • 54
  • 54
  • 46
  • 44
  • 44
  • 41
  • 38
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Molecular basis for genetic instability in Werner syndrome /

Prince, Polly Rodgers. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves 93-105).
222

A comparative and mutational dissection of barriers to replication fork movement in the rDNA of yeast /

Ward, Teresa Rose, January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (leaves [115]-121).
223

Characterization of the protein phosphatase 2A regulatory subunit PR70

Davis, Anthony John. January 2005 (has links)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Embargoed. Vita. Bibliography: 91-96.
224

Ανάπτυξη εργαλείων βιοπληροφορικής για πρόβλεψη της πιθανότητας έναρξης της αντιγραφής του DNA σαν συνάρτηση της γονιδιωματικής περιοχής / Development of bioinformatics tools towards the prediction of DNA replication initiation as a function of the genomic region.

Λέγουρας, Ιωάννης 22 November 2011 (has links)
Η χρήση της βιοπληροφορικής σε βιολογικά δεδομένα υψηλής απόδοσης είναι μια πολλά υποσχόμενη προσέγγιση για τη δημιουργία νέα γνώσης. Στην παρούσα εργασία αναλύεται ένα σύνολο δεδομένων που αφορά στα σημεία έναρξης της αντιγραφής (αφετηρίες) στο ζυμομύκητα Schizosaccharomyces pombe, όπως αναγνωρίστηκαν από πειράματα μικροσυστοιχιών που κάλυπταν όλο το μήκος του γονιδιώματος του οργανισμού (full genome). Οι αντιγραφή ξεκινάει από μεγάλο αριθμό αφετηριών οι οποίες βρίσκονται διάσπαρτες σε όλο το γονιδίωμα και μέχρι τώρα οι περισσότερες μελέτες των χαρακτηριστικών των αφετηρίων είχαν πραγματοποιηθεί για περιορισμένο αριθμό αυτών. Στην εργασία αυτή αναλύονται για πρώτη φορά τα χαρακτηριστικά του συνόλου των αφετηριών του S. pombe με σκοπό να διαπιστωθεί ποια χαρακτηριστικά καθορίζουν πότε μια περιοχή του γονιδιώματος μπορεί να δράσει ως αφετηρία αντιγραφής. Από την ανάλυση αυτή προκύπτει ότι: 1. Οι αφετηρίες έχουν υψηλότερο μέγιστο περιεχόμενο ΑΤ από άλλες γονιδιωματικές περιοχές. 2. Οι αφετηρίες εντοπίζονται κατά προτίμηση σε μεγάλες διαγονιδιακές περιοχές ανάμεσα σε αποκλίνουσες μεταγραφικές μονάδες. 3. Η ασυμμετρία κατανομής Α και Τ ενδέχεται να αποτελεί δείκτη των αφετηριών. 4. Η απόδοση έχει συσχέτιση με το περιεχόμενο ΑΤ. / Use of Bioinformatics in high-throughput biological data is a promising approach for creation of new knowledge. In this work we analyze a dataset that concerns origins of DNA replication initiation in the yeast Schizosaccharomyces pombe, that were identified through full genome microarray experiments. DNA replication starts from a large number of origins that span the entire genome and until recently most studies of origins of replication have been carried out only for a limited number of them. Here we analyze for the first time the properties of the entire dataset of origins of replication in S. pombe in order to find out which specific properties define which genomic location can function as an origin of replication. From this analysis we found that: 1. Origins of replication have higher maximum AT (adenine-thymine) content than other genomic locations. 2. Origins of replication are found preferentially in large genomic locations between divergent transcriptional units. 3. AT asymmetry might be a marker of origins of replication. 4. The origin of replication firing efficiency is correlated with AT content.
225

S-phase checkpoint activity and function throughout the cell cycle

Can, Geylani January 2017 (has links)
DNA damage or replication stress during S-phase can activate the S-phase checkpoint which executes a variety of responses, such as the inhibition of origin firing and replication fork stabilisation. Deregulation of the S-phase checkpoint leads to genomic instability, which has been implicated in diseases such as cancer. In this thesis, I aimed to address whether the S-phase checkpoint is regulated outside of S-phase, and how the S-phase checkpoint targets its substrates in budding yeast. Although this checkpoint has thus far been associated exclusively with S-phase, it remains unknown whether its responses such as inhibition of origin firing can also occur in other phases of the cell cycle. To investigate this, the targets of the S-phase checkpoint for the inhibition of origin firing were analysed outside of S-phase upon DNA damage. Interestingly, I showed that the S-phase checkpoint effector kinase Rad53 phosphorylates its targets to inhibit origin firing outside of S-phase upon DNA damage when there is no replication. I then set out to test whether inhibition of origin firing by Rad53 outside of S-phase might be important for faithful DNA replication. Having shown that the checkpoint response is not specific for any cell cycle phases, I then tested how the specificity of Rad53 for its substrates might be determined. After demonstrating that the essential replication protein Cdc45 is required for Rad53 to phosphorylate the initiation factor Sld3, the key residues of Cdc45 necessary for Rad53 interaction were identified. A Cdc45 allele was produced by mutating the identified residues. This allele of Cdc45 is a separation-of-function mutant which prevents Sld3 phosphorylation upon DNA damage, but retains its function in DNA replication. Because Cdc45 travels with the replication fork, it is possible that Cdc45 also targets Rad53 to the replication fork to stabilise it upon replication stress. Overall, this thesis provides evidence that the S-phase checkpoint can function throughout the cell cycle and that Cdc45 targets Rad53 to some of its substrates, and possibly plays a role in replication fork stabilisation.
226

DNA double-strand break repair and the termination of replication in Escherichia coli

Iurchenko, Ielyzaveta January 2017 (has links)
Faithful DNA replication is essential for the maintenance of genetic information. This complex process consists of 3 steps: initiation, elongation and termination. Although the first two steps are quite well understood in both eukaryotes and prokaryotes, many aspects of the termination of replication remain unclear. Escherichia coli is an ideal organism to study termination of DNA replication. In E. coli, DNA replication starts by bidirectional firing of two replication forks from a unique origin and terminates when those forks collide in the terminus region of the circular chromosome. The terminus region is flanked by specific ter sequences, which ensure that termination of replication occurs within specific boundaries. Due to the circularity of the E. coli chromosome, once the replication is finished the dimers can be formed. To resolve the dimers, the dif sequences are aligned together and two chromosomes are then separated into two daughter cells. Previous members of Prof. Leach laboratory have observed a stimulation of both double-strand break repair (DSBR) and DNA over-replication in the terminus region when DSBR was induced in the lacZ locus, half way between the origin and the terminus. In this work, I propose that these two phenomena, elevated levels of DSBR and DNA over-replication, are linked to each other. I confirm that the DSBs arise from the dif site and that the dif site is the source of DNA over-replication in the terminus. My results suggest that an attempted DSBR at dif leads to over-replication between terA and terB. Here, using next generation sequencing methods, I show that TopoIV and TopoIII topoisomerases introduce breaks in chromosome dimers that were not resolved by the XerCD/dif system, leading to DSBR and DNA over-replication.
227

The tumour suppressor p53 as a supporter of DNA replication

Klusmann, Ina 30 August 2018 (has links)
No description available.
228

ANALYSIS OF HUMAN DNA MISMATCH REPAIR IN THE CHROMATIN ENVIRONMENT

Rodriges Blanko, Elena V. 01 December 2014 (has links)
Mismatch repair corrects errors made during DNA replication and inactive mismatch repair is associated with Lynch Syndrome and sporadic cancer. Genome replication in eukaryotes is accompanied by chromatin formation. The first step in chromatin establishment is nucleosome assembly, that starts with histone tetramer deposition. It is not clear how three important cellular processes: genome replication, mismatch repair and nucleosome assembly are coordinated. Here we analyzed human mismatch repair in the presence of histone deposition in a reconstituted system. We showed that mismatch repair factor inhibits nucleosome assembly on the DNA region with the replicative error. Such a mechanism is important, since in this way DNA with errors remains accessible for mismatch repair system to perform the repair. The DNA synthesis step in mismatch repair is performed by DNA polymerase. Eukaryotes possess two major replicative DNA Polymerases: DNA Polymerase delta and DNA Polymerase epsilon. DNA polymerase delta is involved in mismatch repair. However, it was unknown whether DNA polymerase epsilon can also work in mismatch repair. Here we analyzed human mismatch repair with DNA Polymerase delta and DNA Polymerase epsilon in the environment of histone deposition. Our results indicated that repair activity with both polymerases was activated by histone deposition. Here it was first shown that human DNA Polymerase epsilon performs DNA synthesis during mismatch repair in vitro. Importantly, recent studies have revealed association of Polymerase epsilon mutations with cancer. Since our data showed activity of DNA Polymerase epsilon in mismatch repair, a possible tumor development mechanism may involve inactivation of mismatch repair due to Polymerase epsilon mutations. Overall, our study expanded the understanding of the mechanism of human mismatch repair in the chromatin environment.
229

Understanding the establishment of the DNA replication program / Identification des mécanismes impliqués dans la sélection des origines de réplication

Perrot, Anthony 22 November 2016 (has links)
La réplication de l’ADN est un processus essentiel qui doit avoir lieu une seule fois par cycle cellulaire. Ce processus hautement régulé et très conservé chez les eucaryotes, assure une complète duplication et donc une totale transmission de l’information génétique. Des changements dans le programme de réplication, qui est définit par le moment d’activation et la fréquence d’utilisation de l’ensemble des origines, ont été observés lors du développement, après induction de la différenciation chez des cellules souches embryonnaires de souris, ainsi que dans un grand nombre de cancers. La régulation de la réplication de l’ADN est donc un processus essentiel pour le maintien de l’intégrité du génome et le programme de réplication pourrait y contribuer de manière importante. Cependant, en dépit d’un grand nombre de travaux sur les différentes protéines et modifications impliquées dans la sélection des origines, les principaux déterminants ainsi que leur interdépendance restent étonnement méconnus. Mon projet de thèse se focalise sur l’identification des paramètres clés qui régulent le programme de réplication, en utilisant comme modèle la levure de fission, Schizosaccharomyces pombe. Premièrement, je me suis intéressé au rôle de la dynamique de l’activité des CDKs lors de la phase G1 ainsi que de leur niveau d’activité à la frontière G1/S dans la sélection des origines. J’ai démontré que changer la longueur de la phase G1 à travers la modulation de l’activité des CDKs se traduit par une modification du profil de réplication tout au long du génome. Plus précisément, les origines inefficaces sont utilisées plus fréquemment alors que les origines efficaces ont une activité réduite. D’un autre coté, nous avons également montré que le nombre d’origines actives pour une phase S donnée, dépend du niveau d’activité des CDKs lors de l’entrée en phase S, suggérant ainsi que cette activité est un facteur limitant dans la régulation de l’initiation de la réplication. Dans un second temps, j’ai utilisé une approche dans laquelle les cellules établissent un programme de réplication de novo après la sortie de quiescence, afin d’étudier les premières étapes de la sélection des origines de réplication, en se focalisant sur l’importance du recrutement de ORC (Origin Recognition Complex) aux origines. L’analyse du profil de liaison de ORC révèle une forte corrélation entre le niveau de liaison de ORC aux origines et l’efficacité de ces dernières, démontrant pour la première fois que ORC n’est pas simplement un marqueur des sites d’initiation potentiels mais plutôt un déterminant crucial dans l’établissement du programme de réplication. Finalement, j’ai observé que les origines efficaces ont tendance à être organisées en groupes tout au long du génome, suggérant que l’organisation chromosomique pourrait être importante dans la sélection des origines de réplication. Afin d’étudier cela, j’ai généré des souches contenant différents réarrangements chromosomiques. Nos résultats indiquent que la position relative d’une origines par rapport à son contexte chromosomique, joue un rôle important dans la régulation de son efficacité et que des régions distinctes peuvent avoir des effets opposés sur la sélection des origines en étant soit activatrices ou inhibitrices. / DNA replication is an essential process that occurs only once in a cell cycle before cell division. Replication is highly regulated through conserved mechanisms to ensure the faithful duplication and transmission of genetic information. Interestingly, changes in the replication program, defined by the temporal and spatial pattern of replication origin activation, have been observed during development in distinct cell types, after induction of differentiation in mouse embryonic stem cells, and in various cancers. The regulation of DNA replication is therefore essential for ensuring the integrity of the genome, and the program of origin activation may be an important contributor to this process. However, despite a large body of work on the many enzymes and modifications involved in origin selection, the critical determinants as well as their interdependence remain surprisingly unknown. My thesis project focuses on identifying the key parameters that regulate the replication program, taking advantage of unique approaches using the fission yeast Schizosaccharomyces pombe as a model system. First, we investigated the qualitative and quantitative aspects of the role of CDK activity in determining the program of DNA replication. We demonstrated that changing the length of G1 phase through modulation of CDK activity has an impact on the profile of replication initiation along the chromosome. More specifically, inefficient origins show increases in their usage, while efficient origins have reduced activities. Moreover, we have shown that cells are highly sensitive to differences in CDK activity levels at the G1/S transition, which result in genome-wide changes in replication initiation across the entire spectrum of efficiencies. This suggests that CDK activity is a dose-dependent, limiting factor in the regulation of origin usage. Thus, our study establishes the integration of both temporal and quantitative regulation of CDK activity as a key determinant in defining the program of genome duplication. Second, using an approach in which cells establish a replication program de novo after exit from quiescence, we investigated the critical first steps of origin selection. We focused on the importance of the essential Origin Recognition Complex, whose recruitment to origins is required for the subsequent assembly of replication complexes. Our analysis reveals a strong correspondence between the level of ORC binding at origins and the efficiency of these origins in both cells exiting quiescence as well as those in vegetative growth conditions. Therefore, we demonstrate for the first time that ORC is not simply a marker of potential initiation sites but rather a crucial determinant in the program of origin usage.Finally, our observation that efficient origins are organized in distinct clusters in the de novo replication program suggested that chromosomal organization may be important for origin selection. To address this question, we have generated strains containing a series of distinct chromosomal rearrangements and assessed their origin efficiency profiles. Our findings indicate that the localization of an origin with respect to its chromosomal context plays an important role in regulating its efficiency. Moreover, distinct regions may have different effects on origin selection by being permissive or inhibitory for origin activity. Those observations could indicate a role for the spatial organization of the genome in origin selection and thus led us to study chromosome and nuclear organization in conditions where the replication program is different.
230

Efeito de lesões em DNA produzidas por luz Ultravioleta no processo de replicação do genoma de células de mamíferos / Effects of lesions in DNA produced by UV light in the genome replication of mammalian cells

Robert Schumacher 15 December 1981 (has links)
Estudou-se o comportamento frente a radiação UV de células humanas XP12RO, deficientes em reparo-excisão de dímeros de pirimidina. Cinéticas de incorporação de precursor radiativo de DNA em tempos crescentes apos a exposição a UV mostraram uma rápida inibição da taxa de síntese, até se alcançar um platô bem abaixo do valor obtido para células não irradiadas. Tanto o tempo para que este platô fosse alcançado quanto o valor basal de síntese obtido dependiam da dose de UV fornecida. Este tempo era compatível com o necessário para que a maquinaria de replicação percorresse a distância média interdímeros esperada para a dose de UV aplicada. Verificou-se também que o DNA recém-sintetizado após UV apresentava um peso molecular e uma taxa de elongação bem menores que nos controles não irradiados, sugerindo todos estes resultados que o dímero se constitue num bloqueio temporário para a replicação de DNA. Utilizando uma metodologia baseada no tratamento do DNA nativo com S1 endonuclease de Aspergillus oryzae, específica para DNA simples-fita, foi possível detectar a existência de lacunas de DNA replicado após UV, lacunas estas que desaparecem gradativamente com o passar do tempo pós-irradiação. DNA não irradiado manteve-se refratário à enzima, nas mesmas condições. A digestão enzimática acarretava o aparecimento de duas populações distintas de DNA, uma de alto peso molecular e outra de peso molecular bem menor, ambas se equivalendo em quantidade. Este fenômeno pôde ser observado em uma ampla faixa de doses de UV, tanto em células XP12RO como em outras linhagens celulares, e mesmo sob condições diversas de proliferação celular. Além disso, o desaparecimento das lacunas, no caso de células de roedor previamente irradiadas com UV, era retardado pela presença de cafeína, um conhecido inibidor de reparo pós-replicação (RPR) nestas linhagens. Foi efetuada uma análise da progressão da forquilha de replicação e da distribuição de lacunas do DNA replicado após UV, através de ensaios enzimáticos combinados com bandeamento de DNA em gradientes isopícnicos de CsCl. Os resultados assim obtidos levaram-nos a considerar um modelo de replicação a partir de molde lesado onde síntese descontínua (3\'-5\') propicia a formação de lacunas, enquanto que síntese contínua (5\'-3\') é retardada temporariamente pela presença da lesão, sem contudo acarretar a formação de descontinuidades físicas no DNA replicado. A mesma metodologia de digestão de DNA com S1 endonuclease permitiu verificar a ocorrência de uma nítida relação causal entre a frequência de lacunas e a frequência correspondente de dímeros, em crescentes doses de UV, sugerindo fortemente que dímeros estão opostos às lacunas no DNA recém sintetizado. Além disso, um tratamento estatístico da cinética de clivagens enzimáticas observada para as lacunas tornou possível calcular a extensão física destas, detectando-se a presença de duas populações distintas, onde 65% correspondem a 1250 nucleotídeos e 35% correspondem a 150 nucleotídeos. Finalmente, foi verificado que DNA recém-sintetizado longos tempos após UV apresenta um drástico declínio da frequência de lacunas, não obstante a frequência de dímeros permanecer essencialmente inalterada. Estes resultados favorecem a hipótese de ocorrer um processo induzido de RPR, o qual permitiria à maquinaria de replicação transpor eficientemente os dímeros presentes, apesar destes não terem propriedades codificadoras. / The synthesis of DNA in human XP12RO cells, deficient in excision repair of pyrimidine dimers was studied. The rate of incorporation of radioactive precursors into DNA was measured at different times after irradiation. The DNA synthesis decreases shortly after irradiation, reaching a lateau whose value and time to be attained was dependent on the UV dose. This time period was the one expected for the replication machinery to coyer the interdimer distance at the UV dose applied. It was also verified that the newly synthesized DNA after UV irradiation presented much smaller molecular weight and elongation rate, when compared with the non-irradiated controls. These results suggest that the dimer imposes a delay to DNA replication machinery. Using a methodology based on the treatment of native DNA with S1-endonuclease from Aspergillus orizae, specific for single-stranded DNA, it was possible to detect gaps in the DNA replicated after UV treatment. Thesee gaps disapeared gradually with time after irradiation. The nonirradiated DNA remained refractory to the enzyme, under the same experimental conditions. The enzymatic digestion originated approximately equal alounts of two distinct double-stranded DNA populations, one of high molecular weight and other of much smaller molecular weight. This fenomenon could be seen on a wide range of UV doses, in XP12RO cells as well as in other cells lines, and did not depend on the particular conditions of cell proliferation. Furthermore, the gap disappearence, in the case of rodent cells previously irradiated with UV, was delayed by the presence of caffeine, a known post-replication repair (PRR) inhibitor in these cell lines. An analysis of the progression of the replication fork and of the distribution of gaps in the DNA replicated after UV irradiation was carried out through enzymatic assays combined with DNA banding in isopicnic CsCl gradients. The results thus obtained led us to consider a model for replication on damaged template, whereby gaps are formed only in the strand replicating opposite the fork movement (3\'-5\'). The strand replicating in the same direction as the fork movement (5\'-3\') is temporarily delayed by the presence of the lesion, without originating gaps in the replicative DNA. The same methodology of DNA digestion with S1-endonuclease permitted us to verify the occurrence of a nitid relationship between the gap frequency and the corresponding dimer frequency, for different doses of UV, strongly suggesting that the dimers are opposite the gaps in the newly-synthesized DNA. Furthermore, an statistical analysis of the dependende of DNA cleavage by S1-endonuclease on the enzyme concentration rendered it possible to calculate the size of the gaps. Two distinct populations were detected, 65% corresponding to 1250 nucleotides and 35% corresponding to 150 nucleotides. Finally, it was verified that the nascent DNA synthesized long periods after UV are essentially free of gaps although the dimer frequency remained almost unaltered. These results favour the hypothesis of the occurrence of an induced process of PRR, which would permit the replication machinery to efficiently bypass the dimers, in spite of the fact that these lesions do not exhibit codifying properties.

Page generated in 0.0725 seconds