Spelling suggestions: "subject:"replication"" "subject:"dereplication""
331 |
Molecular mechanism of SV40 large tumor antigen helicase /Tokonzaba, Etienne. January 2007 (has links)
Thesis (Ph.D. in Pharmacology) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 82-92; 128-134). Online version available via ProQuest Digital Dissertations.
|
332 |
Επίδραση της βλάβης στο DNA στη χωροχρονική ρύθμιση των παραγόντων αδειοδότησης της αντιγραφήςΚωτσαντής, Παναγιώτης 30 May 2012 (has links)
Η αδειοδότηση της αντιγραφή του DNA συνίσταται στη συγκρότηση προαντιγραφικών συμπλόκων στη χρωματίνη, στα οποία μετέχουν οι πρωτεΐνες ORC, Cdt1, Cdc6 και MCM2-7. Η πρωτεΐνη Cdt1 αποικοδομείται μετά από βλάβη στο DNA και ενδέχεται να συνδέει το σύστημα αδειοδότησης και το σύστημα απόκρισης σε βλάβη στο DNA. Στη διδακτορική αυτή διατριβή μελετήθηκε η αλληλεπίδραση των συστημάτων αδειοδότησης και απόκρισης σε βλάβη στο DNA με μεθόδους λειτουργικής μικροσκοπίας σε ανθρώπινα κύτταρα, εστιάζοντας στους παράγοντες αδειοδότησης Cdt1 και MCM4.
Ο παράγοντας Cdt1 μελετήθηκε μετά από καθολική και εντοπισμένη έκθεση ανθρώπινων κυττάρων σε υπεριώδη ακτινοβολία (UV). Δείχθηκε ότι ακτινοβόληση με UV οδηγεί στην αποικοδόμηση του παράγοντα Cdt1 σε διαφορετικές κυτταρικές σειρές. Ο χρόνος αποικοδόμησης της πρωτεΐνης Cdt1 όμως διαφοροποιείται σημαντικά ανάλογα με τον κυτταρικό τύπο και συγκεκριμένα παρουσιάζει καθυστέρηση στην κυτταρική σειρά καρκινώματος μαστού MCF7 σε σχέση με άλλες καρκινικές σειρές (HeLa, U2OS) και φυσιολογικούς ανθρώπινους ινοβλάστες. Μελέτη της πρωτεΐνης Cdt1 στο χώρο μετά από εντοπισμένη ακτινοβόληση μιας μικρής υποπεριοχής του πυρήνα έδειξε ότι η πρωτεΐνη Cdt1 συσσωρεύεται στην περιοχή της βλάβης από υπεριώδη ακτινοβολία πριν από την αποικοδόμηση της. Παράλληλα, παρατηρήθηκε συσσώρευση στην περιοχή της βλάβης από UV των πρωτεϊνών PCNA, Cdt2 (συστατικό του Cul4-DDB1Cdt2 συστήματος ουβικουιτίνωσης, που είναι υπεύθυνο για την αποικοδόμηση του παράγοντα Cdt1), καθώς και της πρωτεΐνης p21 που στοχεύεται από το ίδιο σύστημα. Πειράματα επαναφοράς φθορισμού σε ζωντανά κύτταρα (Fluorescence Recovery After Photobleaching, FRAP) έδειξαν ότι στις περιοχές εντοπισμένης ακτινοβόλησης με UV οι πρωτεΐνες Cdt1, Cdt2, PCNA και p21 εμφανίζουν τροποποιημένη κινητική συμπεριφορά.
Πειράματα αποσιώπησης της έκφρασης της πρωτεΐνης Cdt1 ανέδειξαν έναν ανασταλτικό ρόλο για το Cdt1 στο μονοπάτι επιδιόρθωσης διπλών θραύσεων με ομόλογο ανασυνδυασμό κατά τη διάρκεια της G1 φάσης.
Στο δεύτερο μέρος αυτής της εργασίας, εισάγαμε μια νέα in vivo μέθοδο μελέτης της αδειοδότησης που στηρίζεται στην εφαρμογή της FRAP τεχνικής σε MCF7 κύτταρα σταθερά διαμολυσμένα με την πρωτεΐνη MCM4 σημασμένη με την πράσινη φθορίζουσα πρωτεΐνη GFP (GFP-MCM4). Η μέθοδος αυτή επιτρέπει τη μελέτη της κινητικής συμπεριφοράς της πρωτεΐνης MCM4 σε ζωντανά κύτταρα και σε πραγματικό χρόνο.
Δείχθηκε ότι το σύστημα αναπαράγει τη λειτουργία της ενδογενούς MCM4 πρωτεΐνης και μπορεί να διακρίνει επιτυχώς μεταξύ αδειοδοτημένης και μη κατάστασης. Ακολούθως, το σύστημα χρησιμοποιήθηκε για να μελετηθεί η επίδραση της υπεριώδους ακτινοβολίας στην αδειοδότηση της χρωματίνης για αντιγραφή. Διαπιστώθηκε ότι επίδραση με υπεριώδη ακτινοβολία οδηγεί σε μείωση του κλάσματος της MCM4 που είναι προσδεδεμένο στη χρωματίνη. Περαιτέρω μέλετη έδειξε ότι η μείωση αυτή παρουσιάζεται στη φάση G1 του κυτταρικού κύκλου και περιορίζεται στην περιοχή της βλάβης, δείχνοντας ότι αποτελεί εντοπισμένη απόκριση του κυττάρου στην ύπαρξη βλάβης.
Συμπερασματικά, η συγκεκριμένη διδακτορική διατριβή ανέδειξε την αλληλεπίδραση των συστημάτων αδειοδότησης της αντιγραφής του DNA και της κυτταρικής απόκρισης σε βλάβη στο DNA και εισήγαγε μια νέα μέθοδο μελέτης της αδειοδότησης της αντιγραφής του DNA. Μελετήθηκαν οι παράγοντες του συστήματος αδειοδότησης Cdt1 και MCM4, οι οποίοι αποκρίνονται στη βλάβη στο DNA, με το Cdt1 να παίζει ρόλο στην επιλογή επιδιορθωτικού μηχανισμού μετά από πρόκληση βλάβης διπλών θραύσεων του DNA και την πρωτεΐνη MCM4 να εμφανίζει μειωμένη πρόσδεση στη χρωματίνη στην περιοχή της βλάβης μετά από ακτινοβόληση με UV. / Licensing DNA for replication involves the formation of pre-replicative complexes on chromatin, consisting of the proteins ORC, Cdt1, Cdc6 and MCM2-7. Cdt1 is degraded following DNA damage and this suggests a regulatory crosstalk between DNA licensing and DNA damage response (DDR) systems. Here the molecular interplay between these two systems was studied in human cell cultures.
The kinetics of Cdt1 degradation in response to UV irradiation was shown to differ in different human cell lines, exhibiting a delay in MCF7 cells in comparison to HeLa, U2OS and human fibroblasts, which implies a difference in the DDR sensitivity of these cells. By studying the spatial regulation of Cdt1 in response to localized DNA damage, the accumulation of Cdt1 in UV irradiated sites prior to its degradation was recorded. Proteins participating in the degradation of Cdt1 through ubiquitin dependent proteolysis (PCNA and Cdt2), as well as protein p21 which is targeted by the same ubiquitin ligase following DNA damage, were also shown to accumulate at UV irradiated sites. Fluorescence Recovery After Photobleaching (FRAP) experiments showed that Cdt1, Cdt2, PCNA and p21 exhibit altered kinetics at UV irradiated sites. Silencing of Cdt1 expression revealed an inhibitory role of Cdt1 in the repair of double strand breaks through homologous recombination during the G1 phase of the cell cycle.
In the second part of this thesis, we introduced an in vivo licensing assay based on FRAP in MCF7 cells stably expressing MCM4 tagged with the Green Fluorescent Protein (GFP). This assay allows the study of the kinetic behaviour of MCM4 in live cells and in real time. A plasmid expressing GFP-MCM4 was constructed and MCF7 cells stably expressing this plasmid were produced. The GFP-MCM4 cell line was further characterized to ensure a correct cell cycle profile, GFP-MCM4 levels, subcellular localization, interactions with other MCM proteins and binding to chromatin. FRAP experiments on the stable GFP-MCM4 cells verified that the assay could successfully distinguish between licensed and unlicensed state. Using this assay, the effect of UV irradiation on MCM4 kinetics was studied. UV irradiation led to a decrease in the fraction of MCM4 binding to chromatin. This effect was more profound in middle G1 phase and was restricted to the site of UV irradiation.
In conclusion, this thesis addressed the interaction of DNA licensing and DNA damage response systems and introduced an in vivo DNA licensing assay. Licensing proteins Cdt1 and MCM4 were shown to respond to DNA damage, with Cdt1 affecting the double strand break repair choice pathway and MCM4 exhibiting reduced chromatin binding following UV irradiation.
|
333 |
Single-molecule studies of bacterial DNA replication and translesion synthesisZhao, Gengjing January 2018 (has links)
Faithful replication of genomic DNA is crucial for the survival of a cell. In order to achieve high-level accuracy in copying its genome, all cells employ replicative DNA polymerases that have intrinsic high fidelity. When an error occurs on the template DNA strand, in the form of lesions caused by diverse chemicals, reactive oxygen species, or UV light, the high-fidelity replicative DNA polymerases are stalled. To bypass these replication blocks, cells harbor multiple specialized translesion DNA polymerases that are error-prone and therefore able to accommodate the lesions and continue DNA synthesis. As a result of their low fidelity, the translesion polymerases are associated with increased mutagenesis, drug resistance, and cancer. Therefore, the access of the translesion polymerases to DNA needs to be tightly controlled, but how this is achieved has been the subject of debate. This Thesis presents the development of a co-localization single-molecule spectroscopy (CoSMoS) method to directly visualize the loading of the Escherichia coli replicative polymerase on DNA, as well as the exchange between the replicative polymerase and the translesion polymerases Pol II and Pol IV. In contrast to the toolbelt model for the exchange between the polymerases, this work shows that the translesion polymerases Pol II and Pol IV do not form a stable complex with the replicative polymerase Pol IIIα on the β-clamp. Furthermore, we find that the sequential activities of the replication proteins: clamp loader, clamp, and Pol IIIα, are highly organized while the exchange with the translesion polymerases is disordered. This exchange is not determined by lesion-recognition but instead a concentration-dependent competition between the replicative and translesion polymerases for the hydrophobic groove on the surface of the β-clamp. Hence, our results provide a unique insight into the temporal organization of events in DNA replication and translesion synthesis.
|
334 |
En studie för att kontrollera känsligheten av primers för lake (Lota lota), lax (Salmo salar) och öring (Salmo trutta) / A study to control the sensitivity of primers for burbot (Lota lota), salmon (Salmo salar) and brown trout (Salmo trutta)Borgiel, Björn January 2018 (has links)
eDNA is a fast and popular method to collect information about species presence in the environment. eDNA is DNA that is collected from environmental samples, such as water, from DNA that is expelled from organisms interacting with their environment. eDNA is an effective way to find species with small populations and alien species. There are two ways to analyze eDNA, with high-throughput DNA sequencing methods and DNA metabarcoding or use of species-specific primers and PCR. In this study, we focus on the latter, designing species-specific primers for Burbot, Brown trout, and Atlantic Salmon, testing their validity in detecting eDNA of these species with functional PCR. We also evaluated eDNA collection methods, testing different scenarios in aquarium tanks with different number of dead and alive fishes. Primers and experimental setup such as use of different temperatures of the PCR reaction used in this study didn’t result in a functional PCR as determined by electrophoresis gel. There are some problems with the design of the PCR methods for eDNA since the purpose is to design methods that can identify certain species. However, future development of eDNA methods will probably include sequencing and not detection of PCR product sizes. eDNA methods will complete traditional trapping methods like net and electrofishing, but not replace them. / eDNA är en snabb och populär metod för att samla information om arters abundans i miljön. eDNA är DNA taget från miljö prover, så som vatten, från DNA som frigörs från organismer som intrigerar med deras miljön. eDNA är ett effektivt sätt att hitta arter med små populationer och främmande arter. De finns två olika sätt att analysera eDNA, med DNA-sekvenseringsmetoder med hög genomströmning och DNA-metabarkodning eller användning av artspecifika primrar och PCR. I denna studie fokuserade vi på den senare, designade artspecifika primers för lake, lax och öring, testa deras validitet vid detektering av eDNA hos dessa arter med funktionell PCR. Vi utvärderade också eDNA-insamlingsmetoder, testa olika scenarier i akvarietankar med olika antal döda och levande fiskar. Primers och experimentell uppställning, såsom användning av olika temperaturer för PCR-reaktionen som användes i denna studie, resulterade inte i en funktionell PCR såsom bestämd av elektroforesgel. Det finns några problem med utformningen av PCR-metoderna för eDNA, eftersom syftet är att utforma metoder som kan identifiera vissa arter. Emellertid kommer framtida utveckling av eDNA-metoder troligtvis att inkludera sekvensering och inte detektering av PCR-produktstorlekar. eDNA-metoder kommer att komplettera traditionella fångstmetoder som nät- och elektrofiske, men inte ersätta dem.
|
335 |
Caracterização de interações proteína-DNA em tripanossomas. / Characterization of protein-DNA interactions in trypanosomes.Ricardo Pariona Llanos 23 April 2014 (has links)
O T. cruzi, é o agente causador da doença de Chagas. O estado redox NAD+/NADH intracelular é fundamental na manutenção do metabolismo celular. A GAPDH apresenta a função de proteção do telômero em mamíferos contra degradação, isto por causa de ligar se ao telômero. Aqui, mostramos que a GAPDH recombinante de T. cruzi (rTcGAPDH) interage com o DNA telomérico. A rTcGAPDH liga ao DNA de simples fita. Mostramos que a GAPDH liga ao DNA telomérico in vivo em células epimastigotas, onde a [NADH] é maior que [NAD+], mas a adição de NAD+ exógeno bloqueia esta interação. Corroborando a hipótese de que o equilíbrio NAD+/NADH determina a interação GAPDH-telômero, vimos que o tripomastigota tem maior [NAD+] intracelular que a [NADH] e a GAPDH não é capaz de ligar se ao DNA telomérico. Além disso, o NADH exógeno resgata a interação GAPDH-telómero nesta fase. É importante o equilíbrio NAD+/NADH desta interação em tripanosomas, sugerindo que a proteção do telômero do parasita pode ser regulada pelo estado metabólico das células. / The T. cruzi, is the causative agent of Chagas disease. The redox state of NAD+/NADH intracellular is critical in the maintenance of cellular metabolism. The GAPDH has the protection function of the telomere in mammals against degradation, because it is connecting to the telomere. Here we show the recombinant GAPDH of T. cruzi (rTcGAPDH) interacts with telomeric DNA. The rTcGAPDH binds to single-stranded DNA. We show GAPDH to bind to telomeric DNA in vivo epimastigotes cells, where [NADH] is greater than [NAD+], but the addition of exogenous NAD+ blocks this interaction. Corroborating the hypothesis that the NAD+/NADH balance determines the GAPDH-telomere interaction, we saw that the trypomastigote has higher [NAD+] that intracellular [NADH] and GAPDH is not able to connect to telomeric DNA. In addition, the exogenous NADH recovers the GAPDH-telomere interaction at this stage. It is important the NAD+/NADH balance this interaction in trypanosomes, suggesting that the protection of the telomere of the parasite can be regulated by the metabolic state of the cells.
|
336 |
Role of Mycobacterium Tuberculosis RecG Helicase in DNA Repair, Recombination and in Remodelling of Stalled Replication ForksThakur, Roshan Singh January 2015 (has links) (PDF)
Tuberculosis, caused by the infection with Mycobacterium tuberculosis remained as a major global health challenge with one third of world population being infected by this pathogen.
M. tuberculosis can persist for decades in infected individuals in the latent state as an asymptomatic disease and can emerge to cause active disease at a later stage. Thus, pathways and the mechanisms that are involved in the maintenance of genome integrity appear to be important for M. tuberculosis survival, persistence and pathogenesis. Helicases are ubiquitous enzymes known to play a key role in DNA replication, repair and recombination. However, role of helicases in providing selective advantage for M. tuberculosis survival and genome maintenance is obscure. Therefore, understanding the role of various helicases could provide insights into the M. tuberculosis survival, persistence and pathogenesis in humans. This information could be useful in considering helicases as a novel therapeutic target as well as developing effective vaccines.
The research focus of my thesis has been to understand the role of helicases in safeguarding the M. tuberculosis genome from various genotoxic stresses. The major focus of the current study has been addressed towards understanding the role of M. tuberculosis RecG (MtRecG) helicase in recombinational repair and in remodeling stalled replication forks. This study highlights the importance of RecG helicase in the maintenance of genome integrity via DNA repair, recombination and in remodeling the stalled replication forks in M. tuberculosis. The thesis has been divided into following sections as follows:
Chapter I: General introduction that describes the causes and consequences of replication stress and DNA repair pathways in M. tuberculosis
The genome is susceptible to various types of damage induced by exogenous as well as endogenous DNA damaging agents. Unrepaired or misrepaired DNA lesions can lead to gross chromosomal rearrangements and ultimately cell death. Thus, organisms have evolved with efficient DNA damage response machinery to cope up with deleterious effects of genotoxic agents. Accurate transmission of genetic information requires error-free duplication of chromosomal DNA during every round of cell division. Defects associated with replication are considered as a major source of genome instability in all organisms. Normal DNA replication is hampered when the fork encounters road blocks that have the potential to stall or collapse a replication fork. The types of lesions that potentially block replication fork include lesions on the template DNA, various secondary structures, R-loops, or DNA bound proteins.
To understand the DNA damage induced replication stress and the role of fork remodeling enzymes in the repair of stalled replication forks and its restart, chapter I of the thesis has been distributed into multiple sections as follows: Briefly, initial portion of the chapter describes overall replication process in prokaryotes highlighting the importance of coordinated replisome assembly and disassembly during initiation and termination. Later section discusses about various types of exogenous and endogenous DNA damages leading to replication fork stalling. Subsequent section of chapter I provide detailed description and mechanism of various repair pathways cell operates to repair such damages. Chapter I further summarizes causes of stalled replication forks majorly including template lesions, natural impediments like DNA secondary structures and DNA-protein cross links. Subsequent section discusses various pathways of replication restart that include essential role of primosomal proteins in reloading replisome machinery at stalled replication forks. Subsequent section of chapter I provide a comprehensive description of replication fork reversal (RFR) and mechanism of replication restart. RFR involves unwinding of blocked forks via simultaneous unwinding and annealing of parental and daughter strands to generate Holliday junction (HJ) intermediate. Genetic and biochemical studies highlighted the importance of RecG, RuvAB and RecA proteins in driving RFR reaction in E. coli. Hence, in the subsequent chapter, the functional role of RecG, RuvAB and RecA in replication-recombination processes has been discussed. Last section of the chapter devotes completely to M. tuberculosis, its genome dynamics and the various pathways of mycobacterial DNA repair.
M. tuberculosis experiences substantial DNA damage inside host macrophages owing to the acidic environment, reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI) which are sufficient enough to cause replication stress. To gain insights into the role of M. tuberculosis RecG helicase in DNA repair, recombination and in remodeling the stalled replication forks the following objectives were laid for my PhD thesis:
1 To understand the functional role of M. tuberculosis RecG (MtRecG) in DNA repair and recombination.
2 To investigate the distinct role(s) of MtRecG, MtRuvAB and MtRecA in remodeling the stalled replication forks.
Chapter II: Evidence for the role of Mycobacterium tuberculosis RecG helicase in DNA repair and recombination
In order to survive and replicate in a variety of stressful conditions during its life cycle,
M. tuberculosis must possess mechanisms to safeguard the integrity of the genome. Although DNA repair and recombination related genes are thought to play key roles in the repair of damaged DNA in all organisms, so far only a few of them have been functionally characterized in the tubercle bacillus. Helicases are one such ubiquitous enzyme involved in all DNA metabolic transaction pathways for maintenance of genome stability. To understand the role of
M. tuberculosis RecG (MtRecG) helicase in recombination and repair, we carried out functional and biochemical studies. In our study, we show that M. tuberculosis RecG expression was induced in response to different genotoxic agents. Strikingly, expression of M. tuberculosis RecG in Escherichia coli ∆recG mutant strain provided protection against MMC, MMS and UV-induced cell death. Purified M. tuberculosis RecG exhibited higher binding affinity for the Holliday junction (HJ) as compared to a number of canonical recombinational DNA repair intermediates. Notably, although MtRecG binds at the core of the mobile and immobile HJs, and with higher binding affinity for the immobile junction, branch migration and resolution was evident only in the case of the mobile junction. Furthermore, immobile HJs stimulate MtRecG ATPase activity less efficiently as compared to the mobile HJs. In addition to HJ substrates, MtRecG exhibited binding affinity for a variety of branched DNA structures including three-way junctions, replication forks, flap structures, forked duplex and a D-loop structures, but demonstrated strong unwinding activity on replication fork and flap DNA structures. Altogether, these results support that MtRecG plays an important role in processes related to DNA metabolism under normal as well as in stress conditions.
Chapter III: Mycobacterium tuberculosis RecG but not RuvAB or RecA is efficient at remodeling the stalled replication forks: Implications for multiple mechanisms of replication restart in mycobacteria
Aberrant DNA replication, defects in the protection and restart of stalled replication forks are a major cause of genome instability in all organisms. Replication fork reversal is emerging as an evolutionarily conserved physiological response for restart of stalled forks. Escherichia coli RecG, RuvAB and RecA proteins have been shown to reverse the model replication fork structures in vitro. However, the pathways and the mechanisms by which Mycobacterium tuberculosis, a slow growing human pathogen responds to different types of replication stress and DNA damage is unclear. In our study, we show that M. tuberculosis RecG rescues E. coli ∆recG cells from replicative stress. The purified M. tuberculosis RecG (MtRecG) and RuvAB (MtRuvAB) proteins catalyze fork reversal of model replication fork structures with and without leading strand ssDNA gap. Interestingly, SSB suppresses the MtRecG and MtRuvAB mediated fork reversal with substrates that contain lagging strand gap. Notably, our comparative studies with fork structures containing template damage and template switching mechanism of lesion bypass reveal that MtRecG but not MtRuvAB or MtRecA is proficient in driving the fork reversal. Finally, unlike MtRuvAB, we find that MtRecG drives efficient reversal of forks when fork structures are tightly bound by protein. These results provide direct evidence and valuable insights into the underlying mechanism of MtRecG catalyzed replication fork remodeling and restart pathways in vivo.
|
337 |
Functional reorganization of the yeast genome during the cell cycle / Réorganisation fonctionnelle du génome de la levure durant le cycle cellulaireLazar-Stefanita, Luciana 26 September 2017 (has links)
Des décennies d'études ont montré que la structure de la chromatine est étroitement liée aux processus métaboliques de l'ADN. Une bonne organisation des chromosomes tout au long du cycle cellulaire est particulièrement importante pour assurer le maintien de l'intégrité de l'ADN. Le but de mon projet de doctorat était de caractériser dans quelle mesure la réorganisation de la chromatine pendant le cycle cellulaire pourrait influencer la stabilité des chromosomes. Pour ce faire, nous avons d'abord effectué une étude complète de la réorganisation des chromosomes de la levure modèle Saccharomyces cerevisiae pendant tout un cycle cellulaire. Ce travail, en plus de récapituler les caractéristiques chromosomiques attendues, a conduit à la caractérisation de structures chromosomiques particulières, telle qu'une boucle d'ADN reliant l'ADNr et les centromères. Le rôle des complexes SMC et des microtubules a été étudié en profondeur. Une deuxième partie de mon travail a porté sur la description de l'organisation de la chromatine de cellules qui ont quitté le cycle cellulaire prolifératif et sont entrées en quiescence. Nous avons ainsi caractérisé le statut dense de l'hétérochromatine silencieuse dans des loci spécifiques tels que les télomères. Enfin, nous avons essayé de mieux comprendre l'interaction fonctionnelle entre la stabilité chromosomique et l'architecture 3D du génome durant la réplication en étudiant la stabilité génomique à des sites de pause de réplication. Nos résultats indiquent une adaptabilité frappante des structures de réplication sous différentes contraintes. Le travail futur vise à cartographier les réarrangements chromosomiques dépendants de la réplication. / Decades of studies showed that chromatin structure is tightly linked to DNA related metabolic processes, through the dynamic regulation of a myriad of molecular factors. The proper organization of chromosomes is notably important to ensure the maintenance of DNA integrity during cell cycle progression. Using the model S. cerevisiae, the aim of my PhD project was to characterize to which extent chromatin reorganization during the cell cycle may influence chromosome stability. To do so, we first generated a comprehensive genome-wide study of the reorganization of yeast’s chromosomes during an entire cell cycle. This work, besides recapitulating expected chromosomal features of the replication and mitotic stages, led to the characterization of peculiar chromosome structures such as a DNA loop bridging the rDNA and the centromeres. The role of structural maintenance of chromosomes (SMC) complexes and of microtubules were thoroughly investigated. A second part of my work focused on describing features of the chromatin organization of cells that exited the proliferative cell cycle and entered into quiescence. We characterized the dense status of silenced heterochromatin at specific loci, such as telomeres, in relation to the silent information regulators (SIRs). Finally, we tried to achieve a better understanding of the functional interplay between chromosome stability and the 3D genome architecture during replication, by investigating the genomic stability at replication pausing sites. Overall, our results point at a striking plasticity of replication structures to different stresses. Future work aims to map replication-dependent chromosomal rearrangements on the genomic maps.
|
338 |
Roles of DNA polymerase epsilon and TopBP1 in DNA replication and damage responseHillukkala, T. (Tomi) 05 December 2006 (has links)
Abstract
During DNA replication cells accurately copy their DNA to transfer the genetic information to daughter cells. DNA polymerases synthesise the new DNA strand using the old strand as a template. Other functions of DNA polymerases are recombination linked and DNA iamage repair linked DNA synthesis, regulation of replication complex formation and regulation of transcription – a process in which the genetic information is transformed into an RNA sequence needed to guide protein synthesis.
In this study, the TopBP1 protein was shown to associate with DNA polymerase epsilon. TopBP1 contains eight BRCT domains mediating interactions between phosphorylated proteins and is a human homolog of bakers yeast Dpb11 and fission yeast Cut5. These yeast proteins act on DNA replication and cell cycle arrest after DNA damage. TopBP1 was found to be phosphorylated and expressed in elevated amounts during S phase suggesting an involvement in DNA replication. This was directly demonstrated by DNA synthesis inhibition by a competing TopBP1 fragment and by an antibody targeted to block TopBP1.
Ultraviolet irradiation damages DNA and decreases the amount of TopBP1 in the nucleus. The transcription factor Miz-1 was found to associate with TopBP1 and was released from this interaction after UV damage. Free Miz-1 activated the expression of the cell cycle arresting proteins p15 and p21 cooperatively with other transcription factors and allowed extra time for DNA damage repair.
TopBP1 was also found to interact with the breast cancer susceptibility protein 1 and both proteins localised together to arrested DNA synthesis apparatuses. The interaction of TopBP1 with the damage recognition and processing protein Rad9 is still further evidence of a link between TopBP1 and DNA damage.
DNA polymerase epsilon forms a complex with Cdc45, a protein involved in DNA replication initiation and elongation. This complex does not interact with Cdc45 complexed with DNA polymerase delta, suggesting that these complexes synthesise DNA independently of each other. Our results are in agreement with the view that polymerase epsilon synthesises the first strand of DNA and polymerase delta the other.
Finally,DNA polymerase epsilon binds to the RNA synthesising form of RNA polymerase II and nascent transcripts. The physiological meaning of this interaction needs to be determined.
|
339 |
Evaluation of Alternate DNA Structures at c-MYC Fragile Region Associated with t(8;14) Translocation And Role of GNG Motifs During G-quadruplex FormationDas, Kohal January 2016 (has links) (PDF)
Watson-Crick paired B-form DNA is the genetic material in most of the biological systems. Integrity of DNA is of utmost importance for the normal functioning of any organism. Various environmental factors, chemicals and endogenous agents constantly challenge integrity of the genome resulting in mutagenesis. Over the past few decades multiple reports suggest that DNA can adopt alternative conformations other than the right handed double helix. Such structures occur within the context of B-DNA as sequence dependent structural variations and are facilitated by free energy derived from negative supercoiling, which may be generated during physiological processes like transcription, replication, etc. or binding of proteins. Multiple groups have shown that these structures render fragility to the genome owing to single-strandedness (presence of unpaired bases). This conformational polymorphism of the DNA is due to the presence of several repetitive elements across the genome. Some of the common non-B DNA structures include Z-DNA, H-DNA (triplex DNA), cruciform DNA, G-quadruplexes and RNA: DNA hybrid (R-loops).
Over the past few decades G-quadruplex structures have gained tremendous importance owing to its role in physiology and pathology. Recently it has been shown that novel sequence motifs, called GNG or bulges can fold into G-quadruplexes, thus increasing the propensity of such structures genome-wide. Neurological diseases, psychiatric diseases and genomic disorders (due to deletions, translocations, duplications and inversions) are some of the consequences of non-B DNA structures in the human genome.
Inadvertent genomic rearrangements in human can lead to different diseases including cancer. Immediate consequence of genomic rearrangement includes structural alteration of genome through joining of distant sequences. t(8;14) translocation is the hallmark of Burkitt’s lymphoma, which results in deregulation of c-MYC gene that may contribute to oncogenic transformation. In the present study, we delineate the causes of fragility within the c-MYC gene. In order to do this, breakpoints at the c-MYC locus from Burkitt’s lymphoma patient sequences reported in database were plotted and analysed. Interestingly, unlike many other translocations, breakpoints at c-MYC locus were widespread, except for a cluster of breakpoints downstream to promoter 2 (P2).
Previous studies indicate that the translocation breakpoint clusters often correlate with formation of non-B DNA structures. The entire breakpoint cluster downstream of P2 was divided into Region 1, Region 2 and Region 3. Interestingly, in silico analysis of the breakpoint clusters revealed no evidence for predictive classic non-B DNA motifs in Region
2; whereas Region 1 harboured a G-quadruplex motif on the template strand and Region 3 had two short inverted repeats. Intriguingly, as the nontemplate strand of Region 2 was G skewed with a good number of AID binding motifs, we tested the MYC breakpoint Region 2 for its potential to form R-loop due to binding of nascent RNA to template DNA. Our results showed that MYC Region 2 can form RNA-DNA hybrid in a transcription dependent manner in physiological orientation. Observed structure was sensitive to RNase H. We showed Region 2 hindered action of Dpn I upon transcription confirming formation of R-loop structure. Owing to single strandedness, Region 2 R-loop was shown to be sensitive to P1 nuclease as opposed to the untranscribed control. The single strandedness of the Region 2 R-loop was characterized at a single molecule level through bisulfite modification assay. The assay corroborated formation of R-loop along with providing snapshots of various length R-loops formed upon Region 2 transcription. Besides, various biophysical and biochemical assays showed the complementary region (template strand) to be single-stranded in stretches, upon transcription. Length of RNA within the R-loop was within a range of 75 to 250 nt. To delineate the mechanism of R-loop formation we tested the sensitivity of R-loop formation to RNase A during and post transcription; and found that R-loop formation was abrogated in presence of RNase A during transcription suggesting that R-loop formation followed a “thread back model”.
Intriguingly we observed that two short regions of the template strand exhibited high degree of single strandedness. To investigate the reason for such unusual single strandedness, oligonucleotides spanning the region was designed and subjected for CD and EMSA studies. EMSA showed robust intramolecular G-quadruplex structure formation in presence of KCl, whereas CD confirmed that both regions formed parallel G-quadruplexes. We also showed the precise involvement of guanines in structure formation through DMS protection assay. Further, the region of interest was cloned into appropriate vectors and primer extension assays were performed in presence of G-quadruplex stabilizing agents like TMPyP4 and KCl.
Increasing concentration of these stabilizing agents enhanced the formation of G-quadruplexes in a double stranded context, which hindered polymerase progression. Since these G-quadruplex structures utilized sequences which are deviant to the consensus of G-quadruplex motifs, non-B DNA predicting tools were unable to score them. On closer analysis of the sequences we found that, these G-quadruplexes involve duplex hairpin and GNG motifs during structure formation. Besides, both the G-quadruplexes were highly thermostable and were able to fold back upon renaturation.
Till recently, it has been believed that G-quadruplex structures are formed using a minimum of four, 3 guanine tracts, with connecting loops ranging from one to seven. Recent studies have reported deviation from this general convention. One such deviation is the involvement of bulges in the guanine tracts. In the present study, guanines along with GNG motifs have been extensively studied using recently reported HOX11 breakpoint fragile region I as a model template. By strategic mutagenesis approach we show that the core elements of a G-quadruplex are not equally important in structure formation when flanked by GNG motifs. Importantly, the positioning and number of GNG/GNGNG can dictate the formation of G-quadruplexes. In addition to HOX11 fragile region, GNG motifs of HIF1-alpha can fold into intramolecular G-quartet. However, GNG motifs in mutant VEGF sequence could not participate in structure formation, suggesting that the usage of GNG is context dependent. Importantly, we show that when two stretches of guanines are flanked by two independent GNG motifs in a naturally occurring sequence (SHOX), it can fold into an intramolecular G-quadruplex. Interestingly, intra molecular GNG G-quadruplexes were able to fold back after complete denaturation of the oligonucleotides. Besides one of the intra molecular GNG G-quadruplexes was purified and confirmed for parallel conformation. Finally, we show the specific binding of G-quadruplex binding protein, Nucleolin and G-quadruplex antibody BG4
to SHOX G-quadruplex through EMSA studies. Thus, the study provides novel insights into the role of GNG motifs in G-quadruplex structure formation, which may have both physiological and pathological implications.
In conclusion, we show formation of transcription dependent R-loop and G-quadruplex structures at the c-MYC gene locus in a mutually exclusive manner. The data presented here, in conjunction with studies from other laboratories suggests that these structures could impart fragility within the c-MYC gene locus during t(8;14) translocation. Besides, we characterised unusual G-quadruplexes harbouring GNG motifs. We find that positioning and number of GNG can dictate the formation of G-quadruplexes and is context dependent.
|
340 |
Caractérisation fonctionnelle des protéines CDT1 d'Arabidopsis : rôles dans la régulation de la prolifération cellulaire et dans le maintien de l'intégrité du génome / Functional characterization of Arabidopsis CDT1 proteins : role in cell proliferation regulation and maintenance of genome integrityDomenichini, Séverine 25 March 2014 (has links)
Chez les plantes, les méristèmes ont la capacité de se diviser tout au long de la vie de la plante, qui peut dépasser 1000 ans pour certaines espèces. De plus, la lignée germinale n'est pas définie dès l'embryogenèse mais provient des cellules méristématiques et s’individualise relativement tard au cours du développement. Il est donc crucial que le cycle cellulaire soit finement régulé afin d'éviter une accumulation de mutations au cours de la croissance végétative et de la reproduction. Chez tous les eucaryotes, les protéines CDT1 sont impliquées dans l’initiation de la réplication de l'ADN en permettant la formation du complexe de pré-réplication et l'ouverture de la fourche de réplication avant le recrutement des ADN polymérases. Leur activité est strictement régulée afin que chaque partie du génome soit répliquée une fois et une seule au cours de la phase S. Le génome d’Arabidopsis thaliana code pour deux protéines homologues du facteur d’initiation de la réplication CDT1 (CDC10 Target1) : AtCDT1a et AtCDT1b. La sur-expression de CDT1a stimule la réplication de l’ADN et, chez Arabidopsis, cette protéine aurait une double fonction dans la régulation du cycle cellulaire et dans la division des plastes. Nous avons étudié ici les fonctions respectives de AtCDT1a et AtCDT1b. En utilisant des approches génétiques, nous avons montré que ces deux protéines jouent des rôles partiellement redondants pour maintenir l’intégrité du génome et permettre le développement des gamétophytes. De plus, en réalisant une approche de TAP (Tandem Affinity Purification), nous avons montré qu’elles interagissent avec l’ADN polymérase ε, une ADN polymérase réplicative, ouvrant de nouvelles perspectives de recherche concernant le rôle des protéines CDT1de plantes lors de la réplication de l'ADN. En parallèle, nous avons essayé d'élucider les spécificités de CDT1a et plus précisément de son extension N-terminale qui est absente de CDT1b. Nous avons constaté que ce domaine de CDT1a est requis pour son interaction avec l'ADN pol ε, et que les mutants cdt1a complémentés par une version tronquée de la protéine présentent une croissance considérablement réduite, un arrêt prématuré du méristème racinaire, et un stress de l'ADN constitutif, ce qui suggère que l’interaction CDT1a/pol ε est indispensable à la progression normale de la phase S. L’ensemble de nos résultats ont révélé de nouvelles fonctions pour les homologues de CDT1 de plantes. Une question importante sera de déterminer si celles-ci sont caractéristiques du cycle cellulaire chez les plantes, ou si nous avons identifié de nouveaux mécanismes qui sont conservés chez tous les eucaryotes. / In plants, meristems retain the ability to divide throughout the life cycle of plants, which can last for over 1000 years in some species. Furthermore, the germline is not laid down early during embryogenesis but originates from the meristematic cells relatively late during development. Thus, accurate cell cycle regulation is of utmost importance to avoid the accumulation of mutations during vegetative growth and reproduction. In all eukaryotes, CDT1 proteins are involved in the onset of DNA replication by allowing the formation of the pre-replication complex and subsequent opening of the replication fork. Their activity is strictly regulated to ensure faithful duplication of the genome during S-phase. The Arabidopsis thaliana genome encodes two homologs of the replication licensing factor CDT1 (CDC10 Target 1): AtCDT1a and AtCDT1b. Overexpression of CDT1a stimulates DNA replication, and this protein would have a function both in cell cycle regulation and plastid division.Here, we have investigated the respective roles of Arabidopsis CDT1a and CDT1b. Using genetic approaches, we have shown that the two proteins function partially redundantly to maintain genome integrity and allow gametophyte development. In addition, using Tandem Affinity Purification, we have shown that they interact with DNA pol ε, a replicative DNA polymerase, opening further research prospects regarding the role of plant CDT1 proteins during DNA replication. In parallel, we have tried to elucidate the specificities of CDT1a and more precisely of its N-terminal extension that is absent from CDT1b. We have found that this domain of CDT1a is required for its interaction with DNA pol ε, and that cdt1a mutants complemented with a truncated version of the protein show drastically reduced growth, premature meristem arrest, and constitutive DNA stress, suggesting that the CDT1a/pol ε interaction is indispensible to the normal progression of S-phase. Together, our results have unraveled new functions for plant CDT1 homologues, and one important aspect of future research will be to determine whether these are features of the plant cell cycle, or if we have identified new mechanisms that are conserved in all eukaryotes.
|
Page generated in 0.0999 seconds