71 |
Modulation of the 5-HT3 Receptor as a Novel Anti-Dyskinetic Target in Parkinson’s DiseaseKwan, Cynthia 12 1900 (has links)
No description available.
|
72 |
Aspects of Porous Graphitic Carbon as Packing Material in Capillary Liquid ChromatographyTörnkvist, Anna January 2003 (has links)
<p>In this thesis, porous graphitic carbon (PGC) has been used as packing material in packed capillary liquid chromatography. The unique chromatographic properties of PGC has been studied in some detail and applied to different analytical challenges using both electrospray ionization-mass spectrometry (ESI-MS) and ultra violet (UV) absorbance detection. </p><p>The crucial importance of disengaging the conductive PGC chromatographic separation media from the high voltage mass spectrometric interface has been shown. In the absence of a grounded point between the column and ESI emitter, a current through the column was present, and changed retention behaviors for 3-O-methyl-DOPA and tyrosine were observed. An alteration of the chromatographic properties was also seen when PGC was chemically oxidized with permanganate, possibly due to an oxidation of the few surface groups present on the PGC material. </p><p>The dynamic adsorption of the chiral selector lasalocid onto the PGC support resulted in a useful and stable chiral stationary phase. Extraordinary enantioselectivity was observed for 1-(1-naphthyl)ethylamine, and enantioseparation was also achieved for other amines, amino acids, acids and alcohols. </p><p>Finally, a new strategy for separation of small biologically active compounds in plasma and brain tissue has been developed. With PGC as stationary phase it was possible to utilize a mobile phase of high content of organic modifier, without the addition of ion-pairing agents, and still selectively separate the analytes. </p>
|
73 |
Aspects of Porous Graphitic Carbon as Packing Material in Capillary Liquid ChromatographyTörnkvist, Anna January 2003 (has links)
In this thesis, porous graphitic carbon (PGC) has been used as packing material in packed capillary liquid chromatography. The unique chromatographic properties of PGC has been studied in some detail and applied to different analytical challenges using both electrospray ionization-mass spectrometry (ESI-MS) and ultra violet (UV) absorbance detection. The crucial importance of disengaging the conductive PGC chromatographic separation media from the high voltage mass spectrometric interface has been shown. In the absence of a grounded point between the column and ESI emitter, a current through the column was present, and changed retention behaviors for 3-O-methyl-DOPA and tyrosine were observed. An alteration of the chromatographic properties was also seen when PGC was chemically oxidized with permanganate, possibly due to an oxidation of the few surface groups present on the PGC material. The dynamic adsorption of the chiral selector lasalocid onto the PGC support resulted in a useful and stable chiral stationary phase. Extraordinary enantioselectivity was observed for 1-(1-naphthyl)ethylamine, and enantioseparation was also achieved for other amines, amino acids, acids and alcohols. Finally, a new strategy for separation of small biologically active compounds in plasma and brain tissue has been developed. With PGC as stationary phase it was possible to utilize a mobile phase of high content of organic modifier, without the addition of ion-pairing agents, and still selectively separate the analytes.
|
74 |
MASS SPECTROMETRIC DETECTION OF INDOPHENOLS FROM THE GIBBS REACTION FOR PHENOLS ANALYSISSabyasachy Mistry (7360475) 28 April 2020 (has links)
<p><a></a><a></a><a></a><a></a><a></a><a></a><a></a><a></a><a></a><a></a><a>ABSTRACT</a></p>
<p>Phenols
are ubiquitous in our surroundings including biological molecules such as
L-Dopa metabolites, food components, such as whiskey and liquid smoke, etc. This
dissertation describes a new method for detecting phenols, by reaction with
Gibbs reagent to form indophenols, followed by mass spectrometric detection.
Unlike the standard Gibbs reaction which uses a colorimetric approach, the use
of mass spectrometry allows for simultaneous detection of differently
substituted phenols. The procedure is demonstrated to work for a large variety
of phenols without <i>para</i>‐substitution. With <i>para</i>‐substituted
phenols, Gibbs products are still often observed, but the specific product
depends on the substituent. For <i>para</i> groups with high
electronegativity, such as methoxy or halogens, the reaction proceeds by
displacement of the substituent. For groups with lower electronegativity, such
as amino or alkyl groups, Gibbs products are observed that retain the
substituent, indicating that the reaction occurs at the <i>ortho</i> or <i>meta</i> position.
In mixtures of phenols, the relative intensities of the Gibbs products are
proportional to the relative concentrations, and concentrations as low as
1 μmol/L can be detected. The method is applied to the qualitative
analysis of commercial liquid smoke, and it is found that hickory and mesquite
flavors have significantly different phenolic composition.</p>
<p>In the
course of this study, we used this technique to quantify major phenol
derivatives in commercial products such as liquid smoke (catechol, guaiacol and
syringol) and whiskey (<i>o</i>-cresol,
guaiacol and syringol) as the phenol derivatives are a significant part of the
aroma of foodstuffs and alcoholic beverages. For instance, phenolic compounds
are partly responsible for the taste, aroma and the smokiness in Liquid Smokes
and Scotch whiskies. </p>
<p>In the
analysis of Liquid Smokes, we have carried out an analysis of phenols in
commercial liquid smoke by using the reaction with Gibbs reagent followed by
analysis using electrospray ionization mass spectrometry (ESI-MS). This
analysis technique allows us to avoid any separation and/or solvent extraction
steps before MS analysis. With this analysis, we are able to determine and
compare the phenolic compositions of hickory, mesquite, pecan and apple wood
flavors of liquid smoke. </p>
<p>In the analysis of phenols in whiskey, we describe the
detection of the Gibbs products from the phenols in four different commercial
Scotch whiskies by using simple ESI-MS. In addition, by addition of an internal
standard, 5,6,7,8-tetrahydro-1-napthol (THN), concentrations of the major
phenols in the whiskies are readily obtained. With this analysis we are able to
determine and compare the composition of phenols in them and their contribution
in the taste, smokey, and aroma to the whiskies.</p>
<p>Another
important class of phenols are found in biological samples, such as L-Dopa and
its metabolites, which are neurotransmitters and play important roles in living
systems. In this work, we describe the detection of Gibbs products
formed from these neurotransmitters after reaction with Gibbs reagent and
analysis by using simple ESI‐MS. This technique would be an alternative method
for the detection and simultaneous quantification of these neurotransmitters. </p>
<p>Finally,
in the course of this work, we found that the positive Gibbs tests are obtained
for a wide range of <i>para</i>-substituted
phenols, and that, in most cases, substitution occurs by displacement of the <i>para</i>-substituent. In addition, there is
generally an additional unique second-phenol-addition product, which
conveniently can be used from an analytical perspective to distinguish <i>para</i>-substituted phenols from the
unsubstituted versions. In addition to
using the methodology for phenol analysis, we are examining the mechanism of
indophenol formation, particularly with the <i>para</i>-substituted
phenols. </p>
<p>The
importance of peptides to the scientific world is enormous and, therefore,
their structures, properties, and reactivity are exceptionally
well-characterized by mass spectrometry and electrospray ionization. In the
dipeptide work, we have used mass spectrometry to examine the dissociation of
dipeptides of phenylalanine (Phe), containing sulfonated tag as a charge
carrier (Phe*), proline (Pro) to investigate their gas phase dissociation. The
presence of sulfonated tag (SO<sub>3</sub><sup>-</sup>) on the Phe amino acid
serves as the charge carrier such that the dipeptide backbone has a canonical
structure and is not protonated. Phe-Pro dipeptide and their derivatives were
synthesized and analyzed by LCQ-Deca mass spectroscopy to get the fragmentation
mechanism. To confirm that fragmentation path, we also synthesized
dikitopeparazines and oxazolines from all combinations of the dipeptides. All
these analyses were confirmed by isotopic labeling experiments and determination
and optimization of structures were carried out using theoretical calculation.
We have found that the fragmentation of Phe*Pro and ProPhe* dipeptides form
sequence specific b<sub>2</sub> ions. In addition, not only is the ‘mobile
proton’ involved in the dissociation process, but also is the ‘backbone
hydrogen’ is involved in forming b<sub>2</sub> ions. </p>
<p> </p>
|
75 |
Úloha adrenergního systému v genetické hypertenzi / The role of adrenergic system in genetic hypertensionLoučková, Anna January 2013 (has links)
The adrenergic system plays an important role in the regulation of blood pressure. In the spontaneously hypertensive rat, the most studied model of essential hypertension, many components of the adrenergic system are altered. Changes in expression level of any catecholamine biosynthetic enzymes or any adrenergic receptor subtypes could be one of the causes of hypertension development. In this work, the expression of adrenergic system genes was measured in adrenal gland, renal cortex and renal medulla of the spontaneously hypertensive (SHR), Wistar-Kyoto and Brown Norway rats at the age of thirteen weeks. In adrenal gland of SHR, all four catecholamine biosynthetic enzymes (tyrosine hydroxylase, DOPA decarboxylase, dopamine β-hydroxylase and phenylethanolamine-N- methyltransferase) and almost all subtypes of adrenergic receptors (with the exception of Adra1a and Adra1d) were underexpressed. This generally decreased expression in adrenal gland of SHR suggests that at least a part of regulation of adrenergic system gene expression is common. The mechanism of this downregulation in SHR could be a negative feedback through adrenergic receptors stimulated by high plasma noradrenaline concentration. In the kidney of SHR, there were no differences in the expression of most of adrenergic receptor subtypes with the...
|
76 |
Muschel-inspirierte Polymerisation: Synthetische Bioadhäsive für wasserbasierte Klebstoffe und meerwasserresistente BeschichtungenHorsch, Justus 09 January 2020 (has links)
Miesmuscheln inspirieren zur nächsten Generation von wasserbasierten Nassklebstoffen. Muschelfußproteine (mfps) ermöglichen es den Muscheln, sich an jede Oberfläche zu haften und zeigen bemerkenswerte Eigenschaften, die insbesondere durch das Aminosäurederivat 3,4 Dihydroxyphenylalanin (Dopa) verursacht werden. Da der Einfluss von Wasser nach wie vor eine große Herausforderung für Klebeanwendungen darstellt und die Herstellung und Reinigung von Klebeproteinen viel Zeit und Kosten erfordert, ist ein einfacher Zugang zu biomimetischen Klebstoffen von großem Interesse.
Die vorliegende Arbeit untersucht einen neuartigen Muschel-inspirierten Polymerisationsansatz zur Herstellung von adhäsiven Proteinanaloga aus Oligopeptiden (Unimeren). Der Polymerisationsmechanismus nutzt einen Reaktionsweg, der in Miesmuscheln auftritt und beruht auf einer enzymatischen Oxidation von Tyrosin zu Dopachinon, das mit freien Thiolen aus Cystein Cysteinyldopa bildet, wodurch Unimere verknüpft und adhäsive Funktionalitäten erzeugt werden. Innerhalb weniger Minuten entstehen hochmolekulare Polymere, die ein vielseitiges Adsorptions- und starkes Adhäsionsverhalten demonstrieren. Die Proteinanaloga weisen eine signifikante Multischicht-Adsorption auf hydrophilen sowie hydrophoben Oberflächen auf und sind resistent gegenüber Spülschritten mit hochkonzentrierten Salz-Lösungen. Die beobachteten Adhäsionsenergien liegen im Bereich von kommerziellen mfp-Extrakten und überschreiten sogar berichtete Werte für isolierte mfps. Die Arbeit präsentiert eine einfache Synthese künstlicher mfp-Analoga, die in der Lage sind Aspekte natürlicher mfps nachzuahmen und potenziell zur Entwicklung von wasserresistenten Universalklebstoffen beitragen.
Um die Bedingungen für eine kostengünstige, großtechnische Produktion zu verbessern, werden zusätzlich alternative Synthesewege für die enzymfreie Herstellung Muschel-inspirierter Polymere untersucht, die auf der chemischen Oxidation von Dopa-haltigen Unimeren beruhen. / Marine mussels provide inspiration for the next generation of water-based, wet adhesives. Mussel foot proteins (mfps) enable them to attach to any surface and exhibit remarkable properties, notably due to the amino acid derivative 3,4-dihydroxyphenylalanine (Dopa). Since the influence of water still constitutes a major challenge for gluing applications and large-scale production and purification of adhesive proteins is time-consuming and costly, an easy access route toward biomimetic adhesives is of high interest.
This thesis investigates a novel mussel-inspired polymerization approach for the production of adhesive protein analogues from oligopeptides (unimers). The polymerization mechanism exploits a distinct reaction pathway, occurring in mussels and relies on enzyme-mediated oxidation of tyrosine to Dopaquinone in the unimers, which forms cysteinyldopa with free thiols from cysteine, thereby linking unimers and generating adhesive moieties. Within a few minutes high molecular weight polymers are obtained that show versatile adsorption and strong adhesion behaviour. The protein analogues exhibit significant multilayer adsorption onto hydrophilic as well as hydrophobic surfaces and resist rinsing with highly saline solutions. Comparative adhesion studies on silica reveal adhesion energies that are in the same range as commercial mussel foot protein extracts and even exceed reported values for isolated foot proteins that constitute the gluing interfaces. The approach offers facile access toward artificial mussel foot proteins that are capable of mimicking aspects of the natural ideal and potentially helps to develop next-generation universal water resistant glues.
In order to further improve the conditions regarding cost-efficient and large-scale production in the future, alternative synthesis routes for the enzyme-free generation of mussel-inspired polymers based on chemical oxidation of Dopa containing unimers are additionally explored.
|
77 |
Synthesis and evaluation of sesamol derivatives as inhibitors of monoamine oxidase / Idalet EngelbrechtEngelbrecht, Idalet January 2014 (has links)
Parkinson’s disease is an age-related neurodegenerative disorder. The major symptoms of
Parkinson’s disease are closely linked to the pathology of the disease. The main pathology
of Parkinson’s disease consists of the degeneration of neurons of the substantia nigra pars
compacta (SNpc), which leads to reduced amounts of dopamine in the brain. One of the
treatment strategies in Parkinson’s disease is to conserve dopamine by inhibiting the
enzymes responsible for its catabolism. The monoamine oxidase (MAO) B isoform
catalyses the oxidation of dopamine in the central nervous system and is therefore an
important target for Parkinson’s disease treatment. Inhibition of MAO-B provides
symptomatic relief for Parkinson’s disease patients by increasing endogenous dopamine
levels as well as enhancing the levels of dopamine after administration of levodopa (L-dopa),
the metabolic precursor of dopamine.
Recent studies have shown that phthalide can be used as a scaffold for the design of
reversible MAO inhibitors. Although phthalide is a weak MAO-B inhibitor, substitution on the
C5 position of phthalide yields highly potent reversible MAO-B inhibitors. In the present
study, sesamol and benzodioxane were used as scaffolds for the design of MAO inhibitors.
The structures of sesamol and benzodioxane closely resemble that of phthalide, which
suggests that these moieties may be useful for the design of MAO inhibitors. This study may
be viewed as an exploratory study to discover new scaffolds for MAO inhibition. Since
substitution at C5 of phthalide with a benzyloxy side chain yielded particularly potent MAO
inhibitors, the sesamol and benzodioxane derivatives possessed the benzyloxy substituent
in the analogous positions to C5 of phthalide. These were the C5 and C6 positions of
sesamol and benzodioxane, respectively.
The sesamol and benzodioxane derivatives were synthesised by reacting sesamol and 6-
hydroxy-1,4-benzodioxane, respectively, with an appropriate alkyl bromide in the presence
of potassium carbonate (K2CO3) in N,N-dimethylformamide (DMF). 6-Hydroxy-1,4-
benzodioxane, in turn, was synthesised from 1,4-benzodioxan-6-carboxaldehyde. The
structures of the compounds were verified with nuclear magnetic resonance (NMR) and
mass spectrometry (MS) analyses, while the purities were estimated by high-pressure liquid
chromatography (HPLC). Sixteen sesamol and benzodioxane derivatives were synthesised.
To determine the inhibition potencies of the synthesised compounds the recombinant human
MAO-A and MAO-B enzymes were used. The inhibition potencies were expressed as the
corresponding IC50 values. The results showed that the sesamol and benzodioxane
derivatives are highly potent and selective inhibitors of MAO-B and to a lesser extent MAOA.
The most potent MAO-B inhibitor was 6-(3-bromobenzyloxy)-1,4-benzodioxane with an
IC50 value of 0.045 μM. All compounds examined displayed selectivity for the MAO-B
isoform over MAO-A. Generally the benzodioxane derivatives were found to be more potent
inhibitors of human MAO-A and MAO-B than the sesamol derivatives.
The reversibility and mode of MAO-B inhibition of a representative derivative, 6-(3-
bromobenzyloxy)-1,4-benzodioxane, was examined by measuring the degree to which the
enzyme activity recovers after dialysis of enzyme-inhibitor complexes, while Lineweaver-
Burk plots were constructed to determine whether the mode of inhibition is competitive.
Since MAO-B activity is completely recovered after dialysis of enzyme-inhibitor mixtures, it
was concluded that 6-(3-bromobenzyloxy)-1,4-benzodioxane binds reversibly to the MAO-B
enzyme. The Lineweaver-Burk plots constructed were linear and intersected on the y-axis.
Therefore it may be concluded that 6-(3-bromobenzyloxy)-1,4-benzodioxane is a competitive
MAO-B inhibitor.
To conclude, the C6-substituted benzodioxane derivatives are potent, selective, reversible
and competitive inhibitors of human MAO-B. These compounds are therefore promising
leads for the future development of therapy for Parkinson’s disease. / MSc (Pharmaceutical Chemistry), North-West University, Potchefstroom Campus, 2015
|
78 |
Synthesis and evaluation of sesamol derivatives as inhibitors of monoamine oxidase / Idalet EngelbrechtEngelbrecht, Idalet January 2014 (has links)
Parkinson’s disease is an age-related neurodegenerative disorder. The major symptoms of
Parkinson’s disease are closely linked to the pathology of the disease. The main pathology
of Parkinson’s disease consists of the degeneration of neurons of the substantia nigra pars
compacta (SNpc), which leads to reduced amounts of dopamine in the brain. One of the
treatment strategies in Parkinson’s disease is to conserve dopamine by inhibiting the
enzymes responsible for its catabolism. The monoamine oxidase (MAO) B isoform
catalyses the oxidation of dopamine in the central nervous system and is therefore an
important target for Parkinson’s disease treatment. Inhibition of MAO-B provides
symptomatic relief for Parkinson’s disease patients by increasing endogenous dopamine
levels as well as enhancing the levels of dopamine after administration of levodopa (L-dopa),
the metabolic precursor of dopamine.
Recent studies have shown that phthalide can be used as a scaffold for the design of
reversible MAO inhibitors. Although phthalide is a weak MAO-B inhibitor, substitution on the
C5 position of phthalide yields highly potent reversible MAO-B inhibitors. In the present
study, sesamol and benzodioxane were used as scaffolds for the design of MAO inhibitors.
The structures of sesamol and benzodioxane closely resemble that of phthalide, which
suggests that these moieties may be useful for the design of MAO inhibitors. This study may
be viewed as an exploratory study to discover new scaffolds for MAO inhibition. Since
substitution at C5 of phthalide with a benzyloxy side chain yielded particularly potent MAO
inhibitors, the sesamol and benzodioxane derivatives possessed the benzyloxy substituent
in the analogous positions to C5 of phthalide. These were the C5 and C6 positions of
sesamol and benzodioxane, respectively.
The sesamol and benzodioxane derivatives were synthesised by reacting sesamol and 6-
hydroxy-1,4-benzodioxane, respectively, with an appropriate alkyl bromide in the presence
of potassium carbonate (K2CO3) in N,N-dimethylformamide (DMF). 6-Hydroxy-1,4-
benzodioxane, in turn, was synthesised from 1,4-benzodioxan-6-carboxaldehyde. The
structures of the compounds were verified with nuclear magnetic resonance (NMR) and
mass spectrometry (MS) analyses, while the purities were estimated by high-pressure liquid
chromatography (HPLC). Sixteen sesamol and benzodioxane derivatives were synthesised.
To determine the inhibition potencies of the synthesised compounds the recombinant human
MAO-A and MAO-B enzymes were used. The inhibition potencies were expressed as the
corresponding IC50 values. The results showed that the sesamol and benzodioxane
derivatives are highly potent and selective inhibitors of MAO-B and to a lesser extent MAOA.
The most potent MAO-B inhibitor was 6-(3-bromobenzyloxy)-1,4-benzodioxane with an
IC50 value of 0.045 μM. All compounds examined displayed selectivity for the MAO-B
isoform over MAO-A. Generally the benzodioxane derivatives were found to be more potent
inhibitors of human MAO-A and MAO-B than the sesamol derivatives.
The reversibility and mode of MAO-B inhibition of a representative derivative, 6-(3-
bromobenzyloxy)-1,4-benzodioxane, was examined by measuring the degree to which the
enzyme activity recovers after dialysis of enzyme-inhibitor complexes, while Lineweaver-
Burk plots were constructed to determine whether the mode of inhibition is competitive.
Since MAO-B activity is completely recovered after dialysis of enzyme-inhibitor mixtures, it
was concluded that 6-(3-bromobenzyloxy)-1,4-benzodioxane binds reversibly to the MAO-B
enzyme. The Lineweaver-Burk plots constructed were linear and intersected on the y-axis.
Therefore it may be concluded that 6-(3-bromobenzyloxy)-1,4-benzodioxane is a competitive
MAO-B inhibitor.
To conclude, the C6-substituted benzodioxane derivatives are potent, selective, reversible
and competitive inhibitors of human MAO-B. These compounds are therefore promising
leads for the future development of therapy for Parkinson’s disease. / MSc (Pharmaceutical Chemistry), North-West University, Potchefstroom Campus, 2015
|
79 |
Identificação e caracterização de moléculas envolvidas na interação de Paracoccidioides brasiliensis com o hospedeiro / Identification and characterization of involved molecules in the interaction of paracoccidioides brasiliensis with the hostDANTAS, Sabrina Fonseca Ingênito Moreira 31 March 2009 (has links)
Made available in DSpace on 2014-07-29T15:26:24Z (GMT). No. of bitstreams: 1
tese sabrina.pdf: 5211450 bytes, checksum: 0bc9c15d9e2f434943a2738627937629 (MD5)
Previous issue date: 2009-03-31 / Paracoccidioides brasiliensis causes paracoccidioidomycosis (PCM), a systemic
mycosis presenting clinical manifestations ranging from mild to severe forms. A P.
brasiliensis cDNA expression library was produced and screened with pooled sera from
PCM patients adsorbed against antigens derived from in vitro-grown P. brasiliensis
yeast cells. Sequencing DNA inserts from clones reactive with PCM patients sera
indicated 35 open reading frames presenting homology to genes involved in metabolic
pathways, transport, among other predicted functions. The complete cDNAs encoding
aromatic L-amino acid decarboxylase (Pbddc), lumazine synthase (Pbls) and a
homologue of the high affinity copper transporter (Pbctr3) were obtained. Recombinant
proteins PbDDC and PbLS were obtained; a peptide was synthesized for PbCTR3. The
proteins and the synthetic peptide were recognized by sera of patients with confirmed
PCM and not by sera of healthy patients. Using the vivo-induced antigen technology
(IVIAT) we identified immunogenic proteins expressed at high levels during infection.
Quantitative real - time RT-PCR demonstrated high transcript levels of Pbddc, Pbls and
Pbctr3 in yeast cells infecting macrophages. Transcripts in yeast cells derived from
spleen and liver of infected mice were also measured by qRT-PCR. Our results suggest
a putative role for the immunogenic proteins in the infectious process of P. brasiliensis. / Paracoccidioides brasiliensis é o agente etiológico da paracoccidioidomicose (PCM),
uma micose sistêmica, prevalente nos países da América Latina. Uma biblioteca de
cDNA de expressão de Paracoccidioides brasiliensis foi construída e rastreada com
soros de pacientes acometidos por paracoccidioidomicose (PCM). Foram identificados
35 clones de cDNAs que codificam proteínas relacionadas com metabolismo celular,
transporte, energia, transcrição, endereçamento de proteínas, transdução de sinal e
componentes celulares. Os cDNAs codificantes da L- aminoacido aromatico -
descarboxilase (Pbddc), da lumazina sintase (Pbls) e do transportador de cobre de alta
afinidade foram obtidos. As proteínas recombinantes PbDDC e PbLS e o peptídio
sintético PbCTR3 foram reconhecidos por soros de pacientes com PCM e não reagiram
com soros controle. A técnica de IVIAT (tecnologia de antígenos induzidos in vivo)
propiciou a identificação de proteínas imunogênicas mais expressas durante o processo
infecçioso. RT-PCR em tempo real quantitativa (qRT-PCR) demostrou altos níveis de
transcritos de Pbddc, Pbls e Pbctr3 em células leveduriformes infectando macrófagos.
O transcritos de células leveduriformes de P. brasiliensis recuperadas de fígado e baço
de camundongos foram medidos por qRT-PCR. Estes resultados sugerem o provável
papel das proteínas imunogênicas no processo infeccioso de P. brasiliensis.
|
80 |
Search for Biomarkers in ALS and Parkinson's Disease : Positron Emission Tomography and Cerebrospinal Fluid StudiesJohansson, Anders January 2009 (has links)
New biomarkers are needed to improve knowledge about pathophysiology, in order to provide earlier correct diagnosis and to follow disease progression of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). The aim of this thesis was to find new biomarkers for these diseases. First, increased serum levels and unchanged levels in postmortal spinal cord of vascular endothelial growth factor (VEGF) were demonstrated. VEGF was not detected in cerebrospinal fluid (CSF) in ALS. Second, increased levels of fibroblast growth factor 2 were found in the CSF and serum of ALS patients. Both studies used enzyme-linked immunoassays. Third, a proteomics method for CSF analysis was explored, based on tryptic digestion and subsequent separation and detection of the peptides by on-line liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. ALS-specific patterns were observed. Four out of five samples were correctly assigned, but no single protein biomarker could be identified. Fourth, [11C](L)-deprenyl-D2 (DED) positron emission tomography (PET) demonstrated increased retention in the pons and white matter in ALS. DED binds to monoamino oxidase B, which in the brain is primarily located in astrocytes. Thus evidence was provided that astrocytosis may be detected in vivo in ALS. Fifth, normal [11C]-PIB binding in five nondemented patients with PD was reported, in contrast to previous findings of increased retention in Alzheimer's disease reflecting amyloid aggregation. Finally, the combined use of fluorodeoxyglucose and L-[β 11C]-DOPA PET for the differential diagnosis of parkinsonian syndromes was evaluated. PET provided support for the clinical diagnosis in 62 out of 75 patients, and served to exclude suspected diagnoses in another five patients.
|
Page generated in 0.0313 seconds