• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 30
  • 10
  • 10
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 240
  • 72
  • 64
  • 53
  • 46
  • 38
  • 38
  • 30
  • 26
  • 26
  • 26
  • 25
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Selection and Scaling of Seismic Excitations for Time-History Analysis of Reinforced Concrete Frame Buildings

Galin, Sanja 01 February 2012 (has links)
Time history-analyses of building structures have been used for a quite long time for research at universities. Considering the advantage of time-history analysis relative to the equivalent static force method, the National Building of Canada and other modern building codes around the world require the use of time-history analysis in the design of specified types of buildings located in seismic regions. One of the main issues in the use of time-history analysis is related to the selection and scaling of the seismic excitations (i.e., accelerograms) to be compatible with the design spectrum for the location considered. Currently, both recorded (i.e., “real”) accelerograms and artificial accelerograms are used in the analyses. The objective of this study is to determine the effects of the selection and scaling of seismic excitations on the response of reinforced concrete frame buildings. Three reinforced concrete frame buildings with heights of 4 storey, 10 storey and 16 storey, designed for Vancouver (high seismic zone) were used in this study. Five sets of seismic excitations were used in the analysis – one set of “real” accelerograms, and four sets of artificial accelerograms obtained by different methods. All sets were scaled to be compatible with the design spectrum for Vancouver. Both linear and nonlinear time history analyses were conducted on the buildings considered. Interstorey drifts and storey shear forces were used as response parameters. The results from the linear analysis show that both the interstorey drifts and the shear forces are affected significantly by the type of the excitation set. Similarly, the effects of the type of the seismic excitations on the drifts from nonlinear analysis are substantial. On the other hand, the influence of the excitation sets on the storey shears from nonlinear analysis are quite small. Based on the results from this study, sets of scaled real records are preferred for use in time-history analysis of building structures. If such records are not available, then sets of simulated accelerograms based on the regional seismic characteristics should be used.
132

Seismic Response Of Multi-span Highway Bridges With Two-column Reinforced Concrete Bents Including Foundation And Column Flexibility

Yilmaz, Taner 01 December 2008 (has links) (PDF)
Seismic design of highway bridges has improved as a result of the experience gained from large earthquakes of the last thirty years. Ductility demand and reserved capacity are extremely important response measures used in new bridge designs to assess target damage levels. However, the application of practical design approaches specified in bridge design codes is not well-defined for bridges over flexible foundations. Within the scope of this research, thirty two bridge models having varying column aspect ratio, amount of column longitudinal reinforcement and foundation flexibility parameters are investigated through a series of analyses such as response spectrum analysis and inelastic time-history analysis under &ldquo / safety evaluation earthquake&rdquo / hazard level with a return period of 1000 years, and push-over analysis. Using the results of analyses, seismic response of the investigated bridges are identified with several measures such as displacement capacity over demand ratio, global displacement ductility demand, and response modification factor, along with maximum concrete and steel strains of columns. A correlation between concrete and steel strains and seismic response measure values is constructed to estimate damage levels with commonly used response measures. The findings of this research revealed that global displacement ductility demand is not a favorable response measure for assessing damage levels. On the other hand, displacement capacity over demand ratios can be suggested for estimation of damage levels especially where foundation flexibility effects are extensive as system yielding is not taken into consideration.
133

Influence of microstructure on fatigue and ductility properties of tool steels

Randelius, Mats January 2008 (has links)
<p>Fatigue and ductility properties in various tool steels, produced by powder metallurgy, spray forming or conventionally ingot casting, have been analysed experimentally and successfully compared to developed models. The models are able to predict the fatigue limit and cause for fatigue fracture, and strain- and stress-development until fracture during the ductile fracture process respectively. Total fracture in a tool steel component, both in fatigue and ductility testing, is caused by a propagating crack initiated by particles, i.e. carbides or non-metallic inclusions. The models are based on experimentally observed size distributions.</p><p>The axial fatigue strength at two million cycles was determined for various tool steels. The fracture surface of each test bar broken was examined in SEM to determine the cause for fatigue failure, i.e. a single carbide or inclusion particle or a cluster of carbides, and the size of the particle. The particles act as stress concentrators where a crack is easily initiated when the material is subjected to alternating stresses. The developed models calculate the probability that at least one particle will be present in the material which is larger than the threshold level for crack initiation at a certain stress range.</p><p>The ductility testing was performed on various tool steels by four-point bending under static load. The load and displacement until total fracture were recorded and the maximum strain and stress acting in the material were calculated. The fracture surface of each broken test bar was examined in SEM, though the crack initiating area appears different compared to a fatigue failure. Ductile fracture is caused by a crack emanating from voids nucleated around many particles in a joint process and then linked together. By finite element modelling of void initiation and propagation in 2D of an experimentally observed carbide microstructure for each tool steel, successful comparisons with experiments were performed. Carbides were modelled as cracked when larger than a certain size, based on fracture surface observations, and the matrix cracked above a pre-defined plastic deformation level. The stresses and strains at total failure were in good agreement between model and experiments when evaluated.</p><p>The use of these developed models could be a powerful tool for optimisation of fatigue and ductility properties for tool steels. With good fatigue and ductility properties normal failures appearing during operation of a tool steel product could be minimised. By theoretical tests in the developed models of various carbide microstructures the optimum mechanical properties could be achieved with a minimum of experiments performed.</p>
134

Strength and drift capacity of GFRP-reinforced concrete shear walls / Résistance des murs de cisaillement renforcés de PRFV

Mohamed, Nayera Ahmed Abdel-Raheem January 2013 (has links)
With the rise in constructing using FRP reinforcement, owing to corrosion problems in steel-reinforced structures, there is a need for a system to resist lateral loads induced from wind and earthquake loads. The present study addressed the applicability of reinforced-concrete shear walls totally reinforced with glass-fiber-reinforced polymer (GFRP) bars to attain reasonable strength and drift requirements as specified in different codes. Four large-scale shear walls - one reinforced with steel bars (as reference specimen) and three totally reinforced with GFRP bars - were constructed and tested to failure under quasi-static reversed cyclic lateral loading. The GFRP-reinforced walls had different aspect ratios covering the range of medium-rise walls. The reported test results clearly showed that properly designed and detailed GFRPreinforced walls could reach their flexural capacities with no strength degradation, and that shear, sliding shear, and anchorage failures were not major problems and could be effectively controlled. The results also showed recoverable and self-centering behavior up to allowable drift limits before moderate damage occurred and achieved a maximum drift meeting the limitation of most building codes. Acceptable levels of energy dissipation accompanied by relatively small residual forces, compared to the steel-reinforced shear wall, were observed. Finite element simulation was conducted and the analyses captured the main features of behavior. Interaction of flexural and shear deformations of the tested shear walls was investigated. It was found that relying on the diagonal transducers tended to overestimate shear distortions by 30% to 50%. Correcting the results based on the use of vertical transducers was assessed and found to produce consistent results. Decoupling the flexural and shear deformations was discussed. Using GFRP bars as elastic material gave uniform distribution of shear strains along the shear region, resulting in shear deformation ranging from 15 to 20% of total deformation. The yielding of the steel bars intensified the shear strains at the yielding location, causing significant degradation in shear deformation ranging from 2 to 40% of total deformation. The results obtained demonstrated significantly high utilization levels of such shear wall type, therefore, primary guidelines for seismic design of GFRP-reinforced shear wall in moderate earthquakes regions was presented, as no design guidelines for lateral load resistance for GFRP-reinforced walls are available in codes. The ultimate limit state was addressed by providing strength capacity that limit ductility demand to their safe flexural displacement capacity. The strength demands were derived from ground motion spectra using modification factors that depend on both the strength and energy absorption of the structure. Deformation capacity was derived by proposing new definitions for elastic (virtual yield) displacement and maximum allowable displacement. Strength modification factor was proposed based on the test results. The occurrence of "virtual plastic hinge" for GFRP-reinforced shear walls was described providing new definitions convenient with the behavior of the GFRP-reinforced shear walls. "Virtual plastic hinge" length was estimated based on observations and calculations. Subsequently, the experimental results were used to justify the proposed design procedure. The promising results could provide impetus for constructing shear walls reinforced with GFRP bars and constitute a step toward using GFRP reinforcement in such lateral-resisting systems.
135

Selection and Scaling of Seismic Excitations for Time-History Analysis of Reinforced Concrete Frame Buildings

Galin, Sanja 01 February 2012 (has links)
Time history-analyses of building structures have been used for a quite long time for research at universities. Considering the advantage of time-history analysis relative to the equivalent static force method, the National Building of Canada and other modern building codes around the world require the use of time-history analysis in the design of specified types of buildings located in seismic regions. One of the main issues in the use of time-history analysis is related to the selection and scaling of the seismic excitations (i.e., accelerograms) to be compatible with the design spectrum for the location considered. Currently, both recorded (i.e., “real”) accelerograms and artificial accelerograms are used in the analyses. The objective of this study is to determine the effects of the selection and scaling of seismic excitations on the response of reinforced concrete frame buildings. Three reinforced concrete frame buildings with heights of 4 storey, 10 storey and 16 storey, designed for Vancouver (high seismic zone) were used in this study. Five sets of seismic excitations were used in the analysis – one set of “real” accelerograms, and four sets of artificial accelerograms obtained by different methods. All sets were scaled to be compatible with the design spectrum for Vancouver. Both linear and nonlinear time history analyses were conducted on the buildings considered. Interstorey drifts and storey shear forces were used as response parameters. The results from the linear analysis show that both the interstorey drifts and the shear forces are affected significantly by the type of the excitation set. Similarly, the effects of the type of the seismic excitations on the drifts from nonlinear analysis are substantial. On the other hand, the influence of the excitation sets on the storey shears from nonlinear analysis are quite small. Based on the results from this study, sets of scaled real records are preferred for use in time-history analysis of building structures. If such records are not available, then sets of simulated accelerograms based on the regional seismic characteristics should be used.
136

An Analytical Study On Minimum Confinement In Spiral Columns

Ozkaya, Cenan 01 July 2005 (has links) (PDF)
ABSTRACT AN ANALYTICAL STUDY ON THE MINIMUM CONFINEMENT IN SPIRAL COLUMNS &Ouml / zkaya, Cenan M.S., Department of Civil Engineering Supervisor: Prof. Dr. G&uuml / ney &Ouml / zcebe Co-Supervisor: Prof. Dr. Ugur Ersoy July 2005, 135 pages The minimum spiral ratio equation given in the codes is derived by equating the strength at the second peak to the strength at the first peak for spiral columns tested under uniaxial load. In this study, specimen behavior under combined bending and axial load was taken as basis while deriving proposed equations. Analyses were carried out by using a Moment-Curvature program. For normal strength concrete, one regression and one simplified equation giving minimum spiral ratio are proposed. Difference between two equations arises from the number in front of (Ac/Ack). In regression equation, this number is calculated by means of a function. In simplified equation, this number is a constant. For high strength concrete, a different regression equation is proposed which is valid for concrete strengths up to 95 MPa. Simplified equation proposed for normal strength concrete is also proposed for high strength concrete up to concrete strengths of 120 MPa. It was found that / (i) Simplified equation proposed for normal and high strength concrete yielded consistent results in the range of variables studied / (ii) Except some points, regression equations yielded consistent results / (iii) It is recommended to use simplified equation instead of regression and code equations since it yields more consistent results than code and regression equations. Keywords: Confined Concrete, Ductility, Moment-Curvature, Minimum Spiral Volumetric Ratio
137

Análise numérica da ductilidade de vigas de concreto armado convencional e de alto desempenho

Gamino, André Luis [UNESP] 31 January 2003 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:22Z (GMT). No. of bitstreams: 0 Previous issue date: 2003-01-31Bitstream added on 2014-06-13T19:47:23Z : No. of bitstreams: 1 gamino_al_me_ilha.pdf: 1439799 bytes, checksum: f5276e70048212940034e70e154a258f (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Apresenta-se como objeto desta pesquisa o estudo numérico não-linear da ductilidade de vigas de concreto armado convencional e de alto desempenho. Toda a análise numérica é efetuada no código de cálculo baseado no método dos elementos finitos CASTEM 2000, que utiliza o modelo reológico elastoplástico perfeito para o aço, o modelo de Drucker-Prager para o concreto e o método de Newton-Raphson para a solução de sistemas não-lineares. O núcleo deste trabalho concentra-se na obtenção de curvas força - deslocamento e momento - curvatura com a finalidade de quantificar respectivamente os índices de ductilidade global e local das vigas analisadas. De início, confrontam-se as respostas numéricas obtidas com resultados experimentais fornecidos pela literatura a fim de garantir confiabilidade à análise numérica realizada. Posteriormente, efetua-se a determinação da capacidade de deformação inelástica do elemento estrutural em questão, variando-se a resistência à compressão do concreto, a taxa geométrica de armadura longitudinal de tração, a tensão de escoamento das armaduras, o espaçamento entre estribos, a base da seção transversal do elemento estrutural e o efeito escala. Estes parâmetros foram avaliados para dois casos de solicitação: flexão simples tipo I e flexão simples tipo II. O primeiro caso caracteriza-se pela ação de forças simétricas aplicadas à 1/3 e 2/3 do vão e a segunda por uma força centrada no meio do vão. A linha de tendência geral observada foi de uma maior ductilização das vigas sujeitas à flexão simples tipo II, em detrimento às solicitadas por flexão simples tipo I. Quanto ao efeito escala observa-se que a ductilização das vigas é inversamente proporcional à esbeltez das mesmas. / The objective of this thesis is the study of the ductility of high and conventional strength reinforced concrete beams by non-linear numerical simulations. The numerical analysis is based on the finite element method implemented in CASTEM 2000. This program uses the constitutive elastoplastic perfect model for the steel, the Drucker-Prager model for the concrete and the Newton-Raphson for the solution of non-linear systems. This work concentrates on the determination of force - displacement and moment - curvature curves with the purpose of quantifying the global and local ductility indexes of the beams. First, the numeric responses are confronted with experimental results found in the literature in order to check the reliability of the numerical analyses. Later, a parametric study is carried on. The inelastic deformation capacity of the structural element is investigated by varying the concrete compressive strength, the longitudinal reinforcement ratio, the yield stress of the reinforcement, the spacing between stirrups, the member section dimensions and the element size. These parameters have been analyzed for two cases: simple type I and simple type II bending. The first case is characterized by the action of applied symmetrical forces to the 1/3 and 2/3 of the beam size and second for a force centered in the middle of the beam size. The general tendency observed points to a high ductilization of the beams subjected to simple type II bending in comparison to the ones subjected to simple type I bending. With respect to the element size, it is noticed that the ductility of the beams is inversely proportional to their slendernesses.
138

Avaliação do comportamento de pilares de concreto de alta resistência : simulação numérica utilizando o código de cálculo CASTEM-2000 /

Jacomassi, Luciana Marques da Costa. January 2008 (has links)
Orientador: Mônica Pinto Barbosa / Banca: Amarildo Tabone Paschoalini / Banca: José Samuel Giongo / Resumo: A demanda crescente pela utilização de Concreto de Alta Resistência (CAR) torna necessária a definição de critérios e procedimentos de análise do comportamento estrutural desse material. Nesse sentido, este trabalho apresenta a discussão de resultados experimentais publicados e as simulações numéricas de pilares armados de CAR submetidos à compressão axial simples. Utilizando o Código CASTEM 2000, é feita uma modelagem numérica bidimensional e análise via Método dos Elementos Finitos (MEF) para a reprodução dos diagramas força-deformação obtidos experimentalmente. Após um estudo comparativo dos parâmetros recomendados por normas internacionais de análise do comportamento estrutural do CAR, nota-se que os resultados numéricos obtidos utilizando as especificações da Norma Norueguesa NS 3473 são mais próximos dos experimentais. A modelagem numérica desenvolvida é capaz de reproduzir, com certa precisão, a capacidade de carga de pilares de diversas geometrias, taxas de armadura transversal e longitudinal, tipos de aço e resistência do concreto variando entre 50 MPa e 90 MPa. As taxas mínimas de armadura capazes de promoverem a ductilização dos pilares por desagregação do cobrimento são superiores a 2,5% de armadura longitudinal e 2,0% de armadura transversal, segundo os resultados experimentais. Comparando a esses resultados os obtidos pelas simulações, observa-se como de comportamento dúctil os pilares com capacidade de carga obtida numericamente pelo menos 25% maior que a força máxima teórica obtida de acordo com as recomendações da NS 3743. / Abstract: The increasing demand of the use of High-Strength Concrete (HSC) makes it necessary to define criteria and procedures analysis to the structural behavior of this material. This work presents the discussion on published experimental results and numerical simulations of HSC reinforced columns submitted to simple axial compression. Bidimensional numerical modeling with Finite Elements Method (FEM) analysis were made to reproduce experimentally force-strain diagrams by using the Code CASTEM 2000. After a comparative study on the internationally recommended HSC structural behavior analysis standards, it may be inferred that the numerical results obtained using specifications of the Standard Norge NS 3473 are the closest to the experimental ones. The adopted numerical modeling could reproduce the force capacity of columns of different shapes, transversal and longitudinal reinforcement rates, types of steel and concrete resistance from 50 MPa to 90 MPa with some precision. The minimal reinforcement rate able to provide columns ductility by confinement effect is higher than 2.5% longitudinal reinforcement and 2.0% transversal reinforcement, according the experimental results. Comparing these results with the simulations, it could be considered the ductility behavior of the columns with the numerical charge capacity at least 25% higher than the maximum teorical force obtained according to recomendations of NS 3743. / Mestre
139

The development of an artificial hand using nickel-titanium as actuators

Longela, Makusudi Simon January 2013 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2013. / This thesis outlines a proposed mechanical design, prototyping and testing of a five fingered artificial hand made of 15 articulated joints actuated by Shape Memory Alloys (SMAs) mimicking muscular functions. SMAs Artificial muscles were incorporated in the forearm and artificial tendons made of nylon wires passing through a hollow palm transmit the pulling force to bend the fingers. Torsion springs set in each joint of the fingers create enough restoring force to straighten the finger when the actuators are disengaged. Nickel-Titanium (NiTi) wires were intrinsically embedded within the hand structure allowing significant movements mimicking human hand-like gestures. A control box made of switches connected to the artificial hand helps to control each gesture. A modular approach was taken in the design to facilitate the manufacture and assembly processes. Nickel-Titanium wires were used as actuators to perform the artificial muscle functions by changing their crystallographic structures due to Joule's heating. Rapid prototyping techniques were employed to manufacture the hand in ABS plastic.
140

Análise teórica e experimental do comportamento de modelos de pilares esbeltos de concreto de alta resistência, considerando a ductilidade / Theoretical and experimental analysis of slender high-strength concrete columns, considering the ductility

Francisco Aguirre Torrico 22 February 2010 (has links)
Esta tese discute as análises teórica e experimental de pilares de seção retangular, esbeltos, confinados por estribos, de concreto de alta resistência, sujeitos à flexo-compressão, considerando os estados limites últimos de ruptura do concreto ou por deformação excessiva das barras da armadura ou por instabilidade. Foram ensaiados 12 modelos de pilares com esbeltez mecânica igual a 92, compondo três séries de 4 pilares cada uma; os parâmetros estudados foram a excentricidade da força, a taxa volumétrica de armadura transversal e a resistência do concreto. Em uma segunda fase, foram analisados 9 pilares curtos de seção quadrada à compressão concêntrica com o objetivo de avaliar a ductilidade e obter as propriedades do concreto confinado. Para a realização dos ensaios foram empregadas rótulas unidirecionais, que permitiram transferir a força excêntrica ao pilar. Para a obtenção das resistências dos concretos, foram realizados ensaios para a determinação da composição dos materiais e foram traçadas curvas de dosagem. Os resultados experimentais foram comparados com os obtidos com o método exato que considera a não linearidade física e geométrica por meio de programas computacionais elaborados pelo autor. Observou-se que os resultados experimentais se aproximaram dos resultados teóricos. As ruínas dos pilares esbeltos foram por instabilidade, sendo que todos eles atingiram o ponto limite. Foi verificado que a capacidade resistente dos pilares é muito sensível para pequenas variações da excentricidade da força. Nos modelos analíticos foram incorporadas formulações de várias normas que contemplam concretos de alta resistência e o critério de confinamento indicadas pela literatura técnica com algumas modificações. Foi verificada uma pequena melhora na ductilidade ao incrementar a taxa de armadura transversal dos modelos ensaiados. Com os resultados obtidos e com as formulações analisadas, sugere-se uma forma alternativa de projeto de pilares esbeltos. / This thesis discusses the theoretical and experimental analyses of slender high-strength concrete rectangular columns confinement by lateral reinforcement, subjected to combined axial load and bending, considering the ultimate limit states of concrete crushing at the compressive face or the longitudinal bars excessive deformation or the column instability. Twelve column models were tested with 92 mechanical slenderness. These models included three series of four columns each; the parameters studied were axial load eccentricity, volumetric lateral reinforcement ratio and concrete strength. In a second step, nine square cross section short columns under concentric compression were tested to evaluate ductility and to obtain the confined concrete properties. A pair of unidirectional hinges was used to transfer the eccentric load to the columns. Tests were carried out for material\'s composition determination and dosage curves were drawn to obtain concrete strengths. The experimental results were compared with those obtained using the exact method that considers physical and geometrical nonlinearities through computational programs prepared by the author. There is not a significant difference between experimental and theoretical results. The instability failure was reach in all columns because of high slenderness, all of they reached the limit point. It was observed that the column ultimate strength is very sensitive for small axial load eccentricity variations. The formulations of several standards codes that consider the high-strength concrete and technical literature confinement criterion with some modifications have been incorporated in the analytical models. A small ductility improvement was observed considering the tests volumetric lateral reinforcement ratio increase. There is an alternative method suggested for slender columns design, based on the obtained results.

Page generated in 0.0242 seconds