• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 30
  • 10
  • 10
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 240
  • 72
  • 64
  • 53
  • 46
  • 38
  • 38
  • 30
  • 26
  • 26
  • 26
  • 25
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Recent research on composite beams with demountable shear connectors

Lam, Dennis, Dai, Xianghe, Ashour, Ashraf, Rehman, Naveed 12 May 2017 (has links)
Yes / This paper presents experimental and numerical investigation on an innovative composite floor system with deconstructability. In this system, a composite slab formed with metal profiled decking is connected to a steel beam using demountable shear connectors. A series of push tests was conducted to investigate the behaviour of this form of shear connectors. In addition to the push tests, a full-scale composite beam was tested to failure in the laboratory under a number of cycles of monotonic loading. For direct comparison, a similar composite beam test was conducted using same section size, concrete strength, but using the conventional welded headed stud connectors. Test results showed that the behaviour of the composite beam with demountable shear connectors is comparable with the specimen with welded shear connectors. After the test was terminated, the demountable shear connectors were unfastened and the composite floor can be easily lifted off from the steel beam. Test result showed that these demountable shear connectors possess high ductility in comparison with the equivalent welded shear connectors. Simple design rules currently use in Eurocode 4 for the welded shear connections and Eurocode 3 for bolts are proposed to predict the shear resistance of this form of demountable shear connectors.
122

Cost Evaluation of Seismic Load Resistant Structures Based on the Ductility Classes in Eurocode 8 / Kostnadsbedömning av konstruktioner påverkade av jordbävningslaster utifrån duktilitetsklasserna i Eurokod 8

Drivas, Georgios Valdemar January 2014 (has links)
Most people do not associate Scandinavia with seismic activity and earthquakes; however, there is in fact seismic activity in the region. Although in comparison with southern Europe the return periods of earthquakes with large magnitudes are quite long, itis critical to consider earthquake impact when designing structures. Earthquake impact is difficult to predict, but building standards provide guidance to safely designstructures based on statistical and empirical data specific to regional conditions andcircumstances. Crucial for the final impact and response of a structure is not only theground acceleration, but also the ground type, which can amplify seismic vibrationsand ultimately cause unfortunate damage to the structural elements. Since 2010 Eurocode 8, the European standards for seismic design has been in effectfor building structures in Norway. The main difference with the application of thestandards in Norway compared to Southern Europe is the choice between elastic andductile design in some cases. Presumably, the same design regulations are applicablefor design of structures in Sweden, because parts of Sweden share similar conditionsas in Norway. This master thesis examines the results of selecting between elastic andductile design based on an arbitrary finite element model, and ultimately, presentsthe differences in cost efficiency in both quantitative and qualitative measures. In the arbitrary structure that is analyzed, the lateral bearing system contains a concrete wall shaft. In order to evaluate profitability, the cost development of reinforcement in the walls, is analyzed based on ground acceleration and ductility class. Thestudy ultimately implies a breaking point when structures in ductility class mediumare more cost efficient than structures in ductility class low and vice versa, with thecondition that the governing lateral force is the seismic vibration and that the normalized axial force is less than 15% / Skandinavien förknippas inte i första hand med seismisk aktivitet och jordbävningar.I regionen förekommer seismisk aktivitet, dock är returperioderna för jordbävningarmed stor magnitud förhållandevis lång i relation till södra Europa. Jordbävningslasterär svåra att förutse, men byggnormerna vägleder till säkert utformande och dimensionering mot dess påverkan, baserat på statistiska och empiriska data för regionala förutsättningar och omständigheter. En avgörande faktor för konstruktioners inverkan och respons är inte endast markaccelerationen utan även marktypen som kanförstärka de seismiska vibrationerna och eventuellt orsaka skada på byggnader. I Norge används sedan 2010 de europeiska normerna för jordbävningsdimensionering, Eurokod 8. Den väsentliga skillnaden jämfört med utförandet av konstruktioneri södra Europa är att valet mellan elastiska och duktila utformanden ges i vissa fall.Hypotetiskt kan samma normer användas för dimensionering av byggnader i Sverige,eftersom vissa regioner i Sverige har samma förutsättningar som i Norge. I detta examensarbete undersöks valet mellan elastisk och duktil dimensionering medhjälp av finita element modellering av en godtycklig konstruktion samt en jämförelseav de två fallen som slutligen leder till en analys av kostnadseffektiviteten, både kvantitativt och kvalitativt. Det horisontella bärsystemet i den använda modellen är ett schakt bestående av betongväggar. För att kunna uppskatta lönsamheten analyseras kostnadsutvecklingenav armeringsinnehållet, beroende av markacceleration och duktilitetsklass. Studienhar resulterat i definitionen av en brytpunkt som anger när dimensionering enligtduktilitetsklass medium är effektivare än dimensionering enligt duktilitetsklass lågoch vice versa, under förutsättning att jordbävningslasten är dimensionerande ochden normaliserade axialkraften är lägre än 15%.
123

Toughness enhancement in transition metal nitrides

Sangiovanni, Davide Giuseppe January 2011 (has links)
Toughness enhancements can be induced in cubic-B1 transition metal nitride alloys by an increased occupation of the d-t2g metallic states. In this Licentiate Thesis I use density functional theory to investigate the mechanical properties of TiN and VN and of the ternaries obtained by replacing 50% of Ti and V atoms with M (M = V, Nb, Ta, Mo, and W) to form ordered structures with minimum number of inter-metallic bonds. The calculated values of elastic constants and moduli show that ternary alloys with high valence electron concentrations (M = Mo and W), have large reductions in shear moduli and C44 elastic constants, while retaining the typically high stiffness and incompressibility of ceramic materials. These results point to significantly improved ductility in the ternary compounds. This important combination of strength and ductility, which equates to material toughness, stems from alloying with valence electron richer dmetals. The increased valence electron concentration strengthens metal–metal bonds by filling metallic d-t2g states, and leads to the formation of a layered electronic configuration upon shearing. Comprehensive electronic structure calculations demonstrate that in these crystals, stronger Ti/V – N and weaker M – N bonds are formed as the valence electron concentration is increased. This phenomenon ultimately enhances ductility by promoting dislocation glide through the activation of an easy slip system.
124

Structural, economic and material comparison of various steel grades under fatigue loading

Amobi, Ikechukwu Ugochukwu 28 March 2008 (has links)
ABSTRACT As industries are upgrading rapidly from a lower steel grade to higher ones it has become necessary to study the effect of changing from lower steel grades to higher grades. This thesis reports on fatigue life and behaviour, economic implications and material composition of these higher strength steels (HSS) as compared to the conventional grades. Three grades are commercially available in South Africa: 300W, 350W and 460W. These different steel grades (conventional and HSS) with the same moment capacities where subjected to constant dynamic stresses and the fatigue crack growth of the overloading and unloading were monitored and compared with each other. The influences of the overloading and unloading made standard grades perform better under repeated loading than the HSS, since HSS have been proved to have poor ductility, resulting in lower number of cycles to failure. An 85% increase in material cost was generated as HSS replaces the conventional lower steel grades. Reduction in number of cycles to failure in HSS was over 500%. A space analysis for a multi-storey building with 10 beam floors was conducted for the various steel grades using a software package. The buckling and linear behaviours of these structures were compared. Although the deflections were not too far apart, it was shown clearly that grade lower steel grades performed better than the higher grades. An optimization was conducted using the parameters discussed in the text or obtained from experiment and computer modelling, in order to aid in the selection criterion of general purpose steel. Grade 300W was the optimal grade although the result was based mainly on the cost and fatigue behaviour of the three grades.
125

Análise teórica e experimental do comportamento de modelos de pilares esbeltos de concreto de alta resistência, considerando a ductilidade / Theoretical and experimental analysis of slender high-strength concrete columns, considering the ductility

Aguirre Torrico, Francisco 22 February 2010 (has links)
Esta tese discute as análises teórica e experimental de pilares de seção retangular, esbeltos, confinados por estribos, de concreto de alta resistência, sujeitos à flexo-compressão, considerando os estados limites últimos de ruptura do concreto ou por deformação excessiva das barras da armadura ou por instabilidade. Foram ensaiados 12 modelos de pilares com esbeltez mecânica igual a 92, compondo três séries de 4 pilares cada uma; os parâmetros estudados foram a excentricidade da força, a taxa volumétrica de armadura transversal e a resistência do concreto. Em uma segunda fase, foram analisados 9 pilares curtos de seção quadrada à compressão concêntrica com o objetivo de avaliar a ductilidade e obter as propriedades do concreto confinado. Para a realização dos ensaios foram empregadas rótulas unidirecionais, que permitiram transferir a força excêntrica ao pilar. Para a obtenção das resistências dos concretos, foram realizados ensaios para a determinação da composição dos materiais e foram traçadas curvas de dosagem. Os resultados experimentais foram comparados com os obtidos com o método exato que considera a não linearidade física e geométrica por meio de programas computacionais elaborados pelo autor. Observou-se que os resultados experimentais se aproximaram dos resultados teóricos. As ruínas dos pilares esbeltos foram por instabilidade, sendo que todos eles atingiram o ponto limite. Foi verificado que a capacidade resistente dos pilares é muito sensível para pequenas variações da excentricidade da força. Nos modelos analíticos foram incorporadas formulações de várias normas que contemplam concretos de alta resistência e o critério de confinamento indicadas pela literatura técnica com algumas modificações. Foi verificada uma pequena melhora na ductilidade ao incrementar a taxa de armadura transversal dos modelos ensaiados. Com os resultados obtidos e com as formulações analisadas, sugere-se uma forma alternativa de projeto de pilares esbeltos. / This thesis discusses the theoretical and experimental analyses of slender high-strength concrete rectangular columns confinement by lateral reinforcement, subjected to combined axial load and bending, considering the ultimate limit states of concrete crushing at the compressive face or the longitudinal bars excessive deformation or the column instability. Twelve column models were tested with 92 mechanical slenderness. These models included three series of four columns each; the parameters studied were axial load eccentricity, volumetric lateral reinforcement ratio and concrete strength. In a second step, nine square cross section short columns under concentric compression were tested to evaluate ductility and to obtain the confined concrete properties. A pair of unidirectional hinges was used to transfer the eccentric load to the columns. Tests were carried out for material\'s composition determination and dosage curves were drawn to obtain concrete strengths. The experimental results were compared with those obtained using the exact method that considers physical and geometrical nonlinearities through computational programs prepared by the author. There is not a significant difference between experimental and theoretical results. The instability failure was reach in all columns because of high slenderness, all of they reached the limit point. It was observed that the column ultimate strength is very sensitive for small axial load eccentricity variations. The formulations of several standards codes that consider the high-strength concrete and technical literature confinement criterion with some modifications have been incorporated in the analytical models. A small ductility improvement was observed considering the tests volumetric lateral reinforcement ratio increase. There is an alternative method suggested for slender columns design, based on the obtained results.
126

Fractures et instabilités de fluides viscoélastiques en cellule de Hele-Shaw / fracture and instabilities of viscoelastic fluids in a Hele-Shaw cell

Foyart, Guillaume 21 November 2013 (has links)
Les mécanismes de fracture dans les matériaux solides ont été activement étudiés. Dans les fluides complexes, les fractures ont déjà été observées et sont jusqu'à présent beaucoup moins bien documentées. Nous avons choisi d'analyser les phénomènes de fracturation dans une classe particulière de fluides complexes : les gels transitoires auto-assemblés. Ces gels, viscoélastiques, possèdent la propriété de s'écouler aux temps longs et de se comporter de manière élastique aux temps courts. Nous avons axé cette thèse autour de trois systèmes modèles : des microémulsions connectées, des solutions de micelles géantes, ainsi qu'un système « hybride » constitué de solutions de micelles de morphologie contrôlable et connectées. Tous ces systèmes, qui sont à l'équilibre thermodynamique, se comportent comme des fluides de Maxwell, néanmoins leurs microstructures sont très différentes. Les microémulsions connectées sont formées de gouttelettes d'huile, stabilisées par des tensioactifs, dispersées dans de l'eau et connectées par des polymères téléchéliques. Les solutions de micelles géantes sont des agrégats allongés et semi-flexibles, enchevêtrés, résultant de l'auto-assemblage de tensioactifs en solution dans l'eau. Enfin, le système de micelles pontées est constitué d'agrégats de tensioactifs dont on peut contrôler la morphologie (sphères -> cylindres -> vers) et qui sont pontés par un polymère téléchélique. Ces trois systèmes ont été étudiés dans une géométrie confinée : une cellule de Hele-Shaw radiale. Elle est constituée de deux plaques de verre séparées par des espaceurs de taille contrôlée (500 µm) et percée d'un trou en son centre permettant l'injection de fluides.Nos expériences consistent en l'injection, à débit contrôlé, d'une huile faiblement visqueuse dans le gel. Le contraste de viscosité entre l'huile injectée et le gel étant important, l'interface huile/gel n'est pas stable. En fonction du débit d'injection d'huile, nous avons observé différents phénomènes. A bas débits d'injection, une instabilité visco-capillaire se développe : l'interface huile/gel se déforme et forme des motifs appelés doigts visqueux. Cette instabilité de Saffman-Taylor est bien connue pour des fluides visqueux. A plus haut débit en revanche, un autre type d'instabilité se développe, d'origine élasto-capillaire : les fractures.Nous avons quantifié les différences entre les deux types d'instabilité. En utilisant des techniques complémentaires, visualisation directe à l'aide d'une caméra rapide et vélocimétrie par corrélation d'images, nous avons montré qu'il existe une discontinuité entre la vitesse de l'interface huile/gel et la vitesse du gel à la pointe de fracture. Cette discontinuité est inexistante dans le cas de la digitation. Nous avons montré que la structure du gel influe sur la transition entre ces deux types d'instabilité. En étudiant les champs de déplacement des microémulsions connectées, nous avons caractérisé les déplacements du gel autour de la pointe, notamment la manière dont l'amplitude des déplacements du gel décroit quand on s'éloigne de la pointe de fracture. Quand la structure du gel peut se réorganiser sous écoulement, nous avons mesuré un signal de biréfringence associé à ces réorganisations. En étudiant ce signal, qui apparait à la pointe d'une fracture, nous avons pu réaliser une première mesure macroscopique de la taille d'une « zone de process ». Nous avons montré que cette zone est d'autant plus grande que la vitesse de la fracture est petite.Lors d'expériences consistant à injecter des solutions de micelles géantes dans elles-mêmes, nous avons découvert l'existence d'une instabilité d'écoulement inconnue jusqu'à aujourd'hui. Elle se caractérise par la perte transitoire de la symétrie radiale de l'écoulement et l'apparition de «branches » biréfringentes se propageant à de très hautes vitesses dans le gel et qui, au final, déforment l'interface air/gel. / Fracture mechanisms in solid materials have been extensively studied. Although cracks are also commonly seen in soft solids, the fracture process is still not very well understood for these materials. In this thesis we choose to study fracture on a particular class of materials: complex fluids. We will focus on one particular family of complex fluids which are self-assembled transient gels. These viscoelastic gels have the property to flow at long timescale while behaving as an elastic solid at short timescales. We have investigated three model systems: a bridged micro emulsion and a entangled solution of wormlike micelle, and a “hybrid” system made of bridged micelles of tunable morphology. These systems are at thermodynamic equilibrium and behave as Maxwell fluids but they differ in microscopic structures. Bridged micro emulsions are made of surfactant-stabilzed oil droplet dispersed in water and bridged by telechelic polymers. Wormlike micelles are long semi flexible aggregates made from the self-assembly of surfactant in a water solution. Lastly, bridged micelles are made of surfactant aggregates of controllable shape (sphere -> cylinder -> worm) in water bridged by telechelic polymers. We choose to study these different systems in a confined geometry: a radial Hele-Shaw cell. The Hele-Shaw cell is made of two glass plates separated by spacers of controllable thickness. A hole is pierced in the center of the cell for injecting the fluids. The experiments consist in the injection at a controlled rate of low viscosity oil inside the highly viscous gel. Because of the high viscosity contrast between the two fluids, the oil/gel interface is unstable. Depending of the injection rate, we observed different instabilities. At lowest rates, an instability of visco-capillary origins appears and the oil/gel interface is deformed leading to a viscous fingering pattern. This instability called Saffman Taylor instability is widely known and has been extensively studied for Newtonian fluids. At highest rates another instability patterns arise of elasto capillary origin where the patterns are vastly different from the previous one and are made of cracks propagating through the gel. We have quantified the difference between the two types of instability. By combining direct visualization using high speed imaging and digital image correlation techniques we have characterized the displacement field of the gel around the crack tip, and in particular how its amplitude decays away from the tip. For bridged microemulsion, we have also evidenced the existence of a velocity discontinuity between the crack velocity and the velocity of the gel near the crack tip whereas no discontinuity occurs in the case of viscous fingering. Using bridged micelles of tunable morphologies we have also shown that the transition between the two instabilities is controlled by the viscoelasticity of the gel. Finally, for gel that can reorient under flow we have measured a birefringence signal associated to these reorganization. By studying this signal at the crack tip we were able to perform a measurement of the size of the “process zone” which could be considered as the first macroscopic quantitative analysis of the ductility of a crack in complex fluids. During complementary experiments which consist of the injection of wormlike micelles in themselves we have reported a new kind of flow instability. This instability is characterized by the transient loss of the radial symmetry during flow and by the apparitions of typical “branches” which propagates at very high speed through the sample and finally distort the air/gel interface.
127

Seismic retrofitting of rectangular reinforced concrete columns with partial interaction plating

Wu, Y. F. (Yu-Fei) January 2002 (has links) (PDF)
"June 2002" Includes bibliographical references (leaves 349-374)
128

Connection and flexural behaviour of steel RHS filled with high strength concrete

Brahmachari, Koushik, University of Western Sydney, Hawkesbury, Faculty of Science, Technology and Agriculture, School of Construction and Building Sciences January 1997 (has links)
Steel hollow section members filled with concrete have been frequently used in recent construction industry as columns and beams and beam-columns because of their superior performance and constructability. Previous research demonstrated that such system has large energy absorption capacity which is critical in the event of an earthquake. By filling steel RHS with concrete, the failure of the steel shell due to local buckling can be delayed and the ductility of the concrete core can be improved as a result of the confinement of the steel shell. This type of composite section may be used in various structures including frames of high rise buildings, bridges, offshore structures, cast-in-situ piles in foundation etc. Design methods for concrete-filled steel tubular sections are recommended in a number of code of practices. Due to the significant differences in the material properties between normal strength concrete and high strength concrete, there is a need to study the behaviour of composite sections with higher strength concretes. The study emphasises ultimate strength, ductility, post-failure strength reserve and interface bond. It also emphasises ductility and post-failure strength of the composite beams due to the brittle behaviour of higher strength concretes when compared to normal strength concrete. Spreadsheet graph were used to present the results such as load versus strains, load versus deflections etc. In this thesis analytical study is presented on the calculation of ultimate moment of resistance of the concrete-filled RHS beams. Among the main considerations of the derivation, the steel portion was assumed either elastic-perfectly plastic or perfectly plastic and concrete carries no strength in the tensile zone. At the interface both full bond and partial bond were assumed for comparison. Efforts were also made to calculate the midspan deflections of the composite beams. Simple analytical expressions derived from this study can be coded to a prgrammable calculator or in a small spreadsheet program for design use. Finite element studies were carried out by using a proprietorship software package ANSYS. In the analysis of concrete-filled, three types of elements with large deformation and nonlinear capabilities were used. A plastic shell element, a solid concrete element with cracking and crushing capabilities, and a nonlinear spring contact element were used to model the steel shell, the concrete core and the interface respectively. / Doctor of Philosophy (PhD)
129

Seismic retrofitting of rectangular reinforced concrete columns with partial interaction plating / by Yu-Fei Wu.

Wu, Y. F. (Yu-Fei) January 2002 (has links)
"June 2002" / Includes bibliographical references (leaves 349-374) / xxxix, 416 leaves : ill., plates ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Civil and Environmental Engineering, 2002
130

Selection and Scaling of Seismic Excitations for Time-History Analysis of Reinforced Concrete Frame Buildings

Galin, Sanja 01 February 2012 (has links)
Time history-analyses of building structures have been used for a quite long time for research at universities. Considering the advantage of time-history analysis relative to the equivalent static force method, the National Building of Canada and other modern building codes around the world require the use of time-history analysis in the design of specified types of buildings located in seismic regions. One of the main issues in the use of time-history analysis is related to the selection and scaling of the seismic excitations (i.e., accelerograms) to be compatible with the design spectrum for the location considered. Currently, both recorded (i.e., “real”) accelerograms and artificial accelerograms are used in the analyses. The objective of this study is to determine the effects of the selection and scaling of seismic excitations on the response of reinforced concrete frame buildings. Three reinforced concrete frame buildings with heights of 4 storey, 10 storey and 16 storey, designed for Vancouver (high seismic zone) were used in this study. Five sets of seismic excitations were used in the analysis – one set of “real” accelerograms, and four sets of artificial accelerograms obtained by different methods. All sets were scaled to be compatible with the design spectrum for Vancouver. Both linear and nonlinear time history analyses were conducted on the buildings considered. Interstorey drifts and storey shear forces were used as response parameters. The results from the linear analysis show that both the interstorey drifts and the shear forces are affected significantly by the type of the excitation set. Similarly, the effects of the type of the seismic excitations on the drifts from nonlinear analysis are substantial. On the other hand, the influence of the excitation sets on the storey shears from nonlinear analysis are quite small. Based on the results from this study, sets of scaled real records are preferred for use in time-history analysis of building structures. If such records are not available, then sets of simulated accelerograms based on the regional seismic characteristics should be used.

Page generated in 0.0475 seconds