• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 42
  • 26
  • 20
  • 18
  • 18
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 281
  • 281
  • 136
  • 76
  • 71
  • 66
  • 60
  • 58
  • 54
  • 52
  • 47
  • 41
  • 34
  • 33
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Měření a vyhodnocování spotřeby zařízení IoT / Power monitoring of IoT devices

Verčimák, Mário January 2017 (has links)
This thesis describes energy consumption and power supplying low-power IoT devices. There is general analysis of current consumption and selecting suitable primary battery cell depends of behavior battery type. The next point is analysis of low-power and high-effectivity DC/DC convertor’s feature. The second part contains available solutions for energy monitoring and current measurement. This thesis also contains design of device for measure these energy consumption, with user application, which interprets measured data.
212

Design and Implementation of Simplified Sliding-Mode Control of PWM DC-DC Converters for CCM

Al-Baidhani, Humam A. 08 June 2020 (has links)
No description available.
213

Analysis of a high step-up gain DC-DC converter for fuel cell and battery application

Törngren Sato, Kaj January 2023 (has links)
In sustainable energy systems those using fuel cells, high step-up gain converters are widely used to increase the output voltage to levels that can be used by other converters, such as inverters for grid connection or powering other AC loads. In order to obtain a higher voltage gain, in comparison to a traditional boost converter, often different topologies techniques are involved. In this project a new topology is studied, cascading to half bridges, each working similar to a boost converter but with magnetic coupled inductors in-between.    The converter design is modeled in PLECS Blockset and MATLAB Simulink to simulate and evaluate the performance with proper design procedure. The results showed that a high step-up gain was achieved, and the gain could easily be adjusted by changing the duty cycle and/or the coupling factor. The converter design showed similarities and differences to a traditional boost converter. The coupled inductor has its advantage reducing the fuel cell current ripple with the effect of the duty cycle.
214

Energy Harvesting from Exercise Machines: Forward Converters with a Central Inverter

Lovgren, Nicholas Keith 01 June 2011 (has links) (PDF)
This thesis presents an active clamp forward converter for use in the Energy Harvesting From Exercise Machines project. Ideally, this converter will find use as the centerpiece in a process that links elliptical trainers to the California grid. This active clamp forward converter boasts a 14V-60V input voltage range and 150W power rating, which closely match the output voltage and power levels from the elliptical trainer. The isolated topology outputs 51V, higher than previous, non-isolated attempts, which allows the elliptical trainers to interact with a central grid-tied inverter instead of many small ones. The final converter operated at greater than 86% efficiency over most of the elliptical trainer’s input range, and produced very little noise, making it a solid choice for this implementation.
215

Average Current-Mode Control

Chadha, Ankit January 2015 (has links)
No description available.
216

Green Electronics: High Efficiency On-chip Power Management Solutions for Portable and Battery-Powered Applications

Hu, Anqiao 17 December 2010 (has links)
No description available.
217

Evaluation of Silicon Carbide Power MOSFET Short-Circuit Ruggedness, and MMC-Based High Voltage-Step-Down Ratio Dc/Dc Conversion

Xing, Diang 02 September 2022 (has links)
No description available.
218

Bidirectional DC-DC Power Converter Design Optimization, Modeling and Control

Zhang, Junhong 26 February 2008 (has links)
In order to increase the power density, the discontinuous conducting mode (DCM) and small inductance is adopted for high power bidirectional dc-dc converter. The DCM related current ripple is minimized with multiphase interleaved operation. The turn-off loss caused by the DCM induced high peak current is reduced by snubber capacitor. The energy stored in the capacitor needs to be discharged before device is turned on. A complementary gating signal control scheme is employed to turn on the non-active switch helping discharge the capacitor and diverting the current into the anti-paralleled diode of the active switch. This realizes the zero voltage resonant transition (ZVRT) of main switches. This scheme also eliminates the parasitic ringing in inductor current. This work proposes an inductance and snubber capacitor optimization methodology. The inductor volume index and the inductor valley current are suggested as the optimization method for small volume and the realization of ZVRT. The proposed capacitance optimization method is based on a series of experiments for minimum overall switching loss. According to the suggested design optimization, a high power density hardware prototype is constructed and tested. The experimental results are provided, and the proposed design approach is verified. In this dissertation, a general-purposed power stage model is proposed based on complementary gating signal control scheme and derived with space-state averaging method. The model features a third-order system, from which a second-order model with resistive load on one side can be derived and a first-order model with a voltage source on both sides can be derived. This model sets up a basis for the unified controller design and optimization. The Δ-type model of coupled inductor is introduced and simplified to provide a more clearly physical meaning for design and dynamic analysis. These models have been validated by the Simplis ac analysis simulation. For power flow control, a unified controller concept is proposed based on the derived general-purposed power stage model. The proposed unified controller enables smooth bidirectional current flow. Controller is implemented with digital signal processing (DSP) for experimental verification. The inductor current is selected as feedback signal in resistive load, and the output current is selected as feedback signal in battery load. Load step and power flow step control tests are conducted for resistive load and battery load separately. The results indicate that the selected sensing signal can produce an accurate and fast enough feedback signal. Experimental results show that the transition between charging and discharging is very smooth, and there is no overshoot or undershoot transient. It presents a seamless transition for bidirectional current flow. The smooth transition should be attributed to the use of the complementary gating signal control scheme and the proposed unified controller. System simulations are made, and the results are provided. The test results have a good agreement with system simulation results, and the unified controller performs as expected. / Ph. D.
219

Arduino Based Hybrid MPPT Controller for Wind and Solar

Assaad, Michael 12 1900 (has links)
Renewable power systems are becoming more affordable and provide better options than fossil-fuel generation, for not only the environment, but a benefit of a reduced cost of operation. Methods to optimize charging batteries from renewable technologies is an important subject for off-grid and micro-grids, and is becoming more relevant for larger installations. Overcharging or undercharging the battery can result in failure and reduction of battery life. The Arduino hybrid MPPT controller takes the advantage of solar and wind energy sources by controlling two systems simultaneously. The ability to manage two systems with one controller is better for an overall production of energy, cost, and manageability, at a minor expense of efficiency. The hybrid MPPT uses two synchronous buck DC-DC converters to control both wind and solar. The hybrid MPPT performed at a maximum of 93.6% efficiency, while the individual controller operated at a maximum 97.1% efficiency when working on the bench test. When designing the controller to manage power production from a larger generator, the inductor size was too large due to the frequency provided by the Arduino. A larger inductor means less allowable current to flow before the inductor becomes over saturated, reducing the efficiency of the controller. Utilizing a different microcontroller like the PIC16C63A produces a much faster frequency, which will reduce the inductor size needed and allow more current before over saturation.
220

Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric Vehicles

Moshirvaziri, Mazhar 22 November 2012 (has links)
This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated half-bridge converter is developed for the LEV based HESS applications. A 2 kW, 100 V interleaved two-phase converter prototype was implemented. The peak efficiency of 97.5% and a minimum efficiency of 88% over the full load range are achieved. Furthermore, a power-mix optimizer utilizing the real-time Global Positioning System (GPS) data for the EV based HESS is proposed. For a specific design, it is shown that at the cost of less than 1.5% of the overall energy savings, the proposed scheme reduces the peak battery charge and discharge rates by 76% and 47%, respectively. A 30 kW bi-directional dc-dc converter is also designed and implemented for future deployment of the designed HESS into a prototype EV, known as A2B.

Page generated in 0.0717 seconds