Spelling suggestions: "subject:"deeplevel transient dpectroscopy"" "subject:"deeplevel transient espectroscopy""
41 |
Caractérisations des défauts profonds du SiC et pour l'optimisation des performances des composants haute tension / Deep levels characterizations in SiC to optimize high voltage devicesZhang, Teng 13 December 2018 (has links)
En raison de l'attrait croissant pour les applications haute tension, haute tempé-rature et haute fréquence, le carbure de silicium (SiC) continue d'attirer l'attention du monde entier comme l'un des candidats les plus compétitifs pour remplacer le sili-cium dans le champ électrique de puissance. Entre-temps, il est important de carac-tériser les défauts des semi-conducteurs et d'évaluer leur influence sur les dispositifs de puissance puisqu'ils sont directement liés à la durée de vie du véhicule porteur. De plus, la fiabilité, qui est également affectée par les défauts, devient une question incontournable dans le domaine de l'électricité de puissance.Les défauts, y compris les défauts ponctuels et les défauts prolongés, peuvent introduire des niveaux d'énergie supplémentaires dans la bande passante du SiC en raison de divers métaux comme le Ti, le Fe ou le réseau imparfait lui-même. En tant que méthode de caractérisation des défauts largement utilisée, la spectroscopie à transitoires en profondeur (DLTS) est supérieure pour déterminer l'énergie d'activa-tion Ea , la section efficace de capture Sigma et la concentration des défauts Nt ainsi que le profil des défauts dans la région d'épuisement grâce à ses divers modes de test et son analyse numérique avancée. La détermination de la hauteur de la barrière Schottky (HBS) prête à confusion depuis longtemps. Outre les mesures expérimentales selon les caractéristiques I-V ou C-V, différents modèles ont été proposés, de la distribution gaussienne du HBS au modèle de fluctuation potentielle. Il s'est avéré que ces modèles sont reliés à l'aide d'une hauteur de barrière à bande plate Phi_BF . Le tracé de Richardson basé sur Phi_BF ainsi que le modèle de fluctuation potentielle deviennent un outil puissant pour la caractérisation HBS. Les HBSs avec différents contacts métalliques ont été caractéri-sés, et les diodes à barrières multiples sont vérifiées par différents modèles. Les défauts des électrons dans le SiC ont été étudiés avec des diodes Schottky et PiN, tandis que les défauts des trous ont été étudiés dans des conditions d'injec-tion forte sur des diodes PiN. 9 niveaux d'électrons et 4 niveaux de trous sont com-munément trouvés dans SiC-4H. Une relation linéaire entre le Ea extrait et le log(sigma) indique l'existence de la température intrinsèque de chaque défaut. Cependant, au-cune différence évidente n'a été constatée en ce qui concerne l'inhomogénéité de la barrière à l'oxyde d'éther ou le métal de contact. De plus, les pièges à électrons près de la surface et les charges positives fixes dans la couche d'oxyde ont été étudiés sur des MOSFET de puissance SiC par polarisation de porte à haute température (HTGB) et dose ionisante totale (TID) provoquées par irradiation. Un modèle HTGB-assist-TID a été établi afin d'ex-plain l'effet de synergie. / Due to the increasing appeal to the high voltage, high temperature and high fre-quency applications, Silicon Carbide (SiC) is continuing attracting world’s attention as one of the most competitive candidate for replacing silicon in power electric field. Meanwhile, it is important to characterize the defects in semiconductors and to in-vestigate their influences on power devices since they are directly linked to the car-rier lifetime. Moreover, reliability that is also affected by defects becomes an una-voidable issue now in power electrics. Defects, including point defects and extended defects, can introduce additional energy levels in the bandgap of SiC due to various metallic impurities such as Ti, Fe or intrinsic defects (vacancies, interstitial…) of the cristalline lattice itself. As one of the widely used defect characterization method, Deep Level Transient Spectroscopy (DLTS) is superior in determining the activation energy Ea , capture cross section sigma and defect concentration Nt as well as the defect profile in the depletion region thanks to its diverse testing modes and advanced numerical analysis. Determination of Schottky Barrier Height (SBH) has been confusing for long time. Apart from experimental measurement according to I-V or C-V characteristics, various models from Gaussian distribution of SBH to potential fluctuation model have been put forward. Now it was found that these models are connected with the help of flat-band barrier height Phi_BF . The Richardson plot based on Phi_BF along with the potential fluctuation model becomes a powerful tool for SBH characterization. SBHs with different metal contacts were characterized, and the diodes with multi-barrier are verified by different models. Electron traps in SiC were studied in Schottky and PiN diodes, while hole traps were investigated under strong injection conditions in PiN diodes. 9 electron traps and 4 hole traps have been found in our samples of 4H-SiC. A linear relationship between the extracted Ea and log(sigma) indicates the existence of the intrinsic temper-ature of each defects. However, no obvious difference has been found related to ei-ther barrier inhomogeneity or contact metal. Furthermore, the electron traps near in-terface and fixed positive charges in the oxide layer were investigated on SiC power MOSFETs by High Temperature Gate Bias (HTGB) and Total Ionizing Dose (TID) caused by irradiation. An HTGB-assist-TID model was established in order to ex-plain the synergetic effect.
|
42 |
Reliability Assessment and Defect Characterization of Piezoelectric Thin FilmsHo, Kuan-Ting 19 October 2024 (has links)
The ensuring of reliability of piezoelectric thin films is crucial for a successful piezoelectric micro-electromechanical system (piezoMEMS) application. One of the most important limiting factors for reliability is resistance degradation, where the leakage current increases over time under electrical load. The understanding of resistance degradation in piezoelectric thin films requires knowledge about point defects inside the materials. In this dissertation, the resistance degradation mechanism in sputtered lead zirconate titanate (PZT) and lead-free alternative sodium potassium niobate (KNN) thin films is studied in both voltage polarities, and its relation to point defects is established. The conduction mechanism of both PZT and KNN thin films is found to be Schottky-limited. Furthermore, the resistance degradation is due to the reduction in Schottky barrier height, which results from the interfacial accumulation of additional charged defects. In order to study those defects, we use thermally stimulated depolarization current (TSDC) measurements and charge-based deep level transient spectroscopy (Q-DLTS) to characterize the defects in both PZT and KNN thin films. In PZT thin films, the resistance degradation take place in different waves of increasing leakage current. Both oxygen vacancies and lead vacancies contribute to the different waves of resistance degradation in both voltage polarities. A physical degradation model was developed based on hopping migration of oxygen vacancies at constant speed and exponent accumulation of lead vacancy trapping, where the natural logarithm of leakage current is proportional to the accumulated defect concentration to the power of 0.25. By using the oxygen vacancy concentration measured by TSDC and lead vacancy concentrations measured by Q-DLTS, the model successfully explained the resistance degradation behaviors of PZT films varying due to deposition non-uniformity and due to different process parameters. The accumulation of oxygen vacancies at cathode is supported by X-ray photoelectron spectroscopy (XPS), and the resistance degradation can be restored by proper heat and electrical treatment as predicted by the defect characterization results. In KNN thin films, oxygen vacancies contribute to the resistance degradation when a negative voltage is applied at the top electrode, whereas sodium and potassium vacancies contribute to the resistance degradation when a positive voltage is applied at the top electrode. The model developed for PZT can be applied also to KNN, where the model successfully explained the resistance degradation behaviors of KNN films varying due to the deposition non-uniformity by using the defect concentration measured by TSDC. The accumulation of oxygen vacancies at cathode and sodium plus potassium vacancies at anode are supported by transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDX), and the resistance degradation can be restored also by proper heat and electrical treatment as predicted by the defect characterization results. This dissertation revealed the similarity of the resistance degradation between sputtered PZT and KNN thin films. The degradation is controlled by the crystallography point defects created during deposition process inside the material, indicating the significance of process control on material reliability. This dissertation also demonstrates the applicability of TSDC and Q-DLTS as alternative methods to assess the quality of the piezoelectric thin films. Both measurement techniques provide additional information regarding specific defects when comparing with conventional highly accelerated lifetime test (HALT) or other relevant tests. / Die Sicherstellung der Zuverlässigkeit piezoelektrischer Dünnschichten ist entscheidend für eine erfolgreiche Anwendung in piezoelektrischen mikro-elektromechanischen Systemen (piezoMEMS). Einer der wichtigsten limitierenden Faktoren für die Zuverlässigkeit ist die Widerstandsdegradation, bei der der Leckstrom mit der Zeit unter elektrischer Last zunimmt. Das Verständnis der Widerstandsdegradation in piezoelektrischen Dünnschichten erfordert laut Literatur Kenntnisse über Punkt-Defekte innerhalb der Materialien. In dieser Dissertation wird der Mechanismus der Widerstandsdegradation in gesputterten Blei-Zirkonat-Titanat (PZT) Dünnschichten und dessen bleifreier alternative Kalium-Natrium-Niobat (KNN) in beiden Spannungspolaritäten untersucht und deren Zusammenhang mit Punkt-Defekte hergestellt. Der Leitungsmechanismus von PZT- und KNN-Dünnschichten ist Schottky-begrenzt. Außerdem ist die Widerstandsdegradation auf die Reduzierung der Schottky-Barrierhöhe zurückzuführen, die von der Akkumulation zusätzlicher aufgeladener -Defekte an der Grenzfläche stammt. Um diese -Defekte zu untersuchen, verwenden wir thermisch stimulierte Depolarisationsstrommessungen (Thermally stimulated depolarization current, TSDC) und ladungsbasierte Deep-Level-Transientenspektroskopie (Charge-based deep level transient spectroscopy, Q-DLTS), um die Defekte sowohl in PZT- als auch in KNN-Dünnschichten zu charakterisieren.Die Wiederstandsdegradation in PZT-Dünnschichten findet in unterschiedlichen Wellen des erhöhenden Leckstroms statt. Sowohl Sauerstofffehlstellen als auch Bleifehlstellen tragen zu den unterschiedlichen Wellen der Widerstandsdegradation in beiden Spannungspolaritäten bei. Ein physikalisches Degradationsmodell wurde entwickelt, basierend auf der Hopping-Migration von Sauerstofffehlstellen bei konstanter Geschwindigkeit und exponentieller Akkumulation von Ladungseinfang durch Bleifehlstellen, wobei der natürliche Logarithmus des Leckstroms proportional zur akkumulierten Defektkonzentration hoch 0,25 ist. Durch die Verwendung der Sauerstofffehlstellen- und Bleifehlstellenkonzentrationen konnte das Modell das Widerstandsdegradationsverhalten von PZT-Dünnschichten erklären, das wegen der Ungleichmäßigkeit der Deposition und wegen der verschiedenen Prozessparameters variiert. Die Sauerstofffehlstellenkonzentration wird durch TSDC gemessen und die Bleifehlstellenkonzentrationen wird durch Q-DLTS gemessen. Die Akkumulation von Sauerstofffehlstellen an der Kathode wird durch die Röntgen-Photoelektronenspektroskopie (X-ray photoelectron spectroscopy, XPS) unterstützt und die Widerstandsdegradation kann durch eine ordnungsgemäße Wärme- und elektrische Behandlung wiederhergestellt werden, wie durch die Ergebnisse von Defektecharakterisierung vorhergesagt wurde. Bei KNN-Dünnschichten tragen Sauerstofffehlstellen zu der Widerstandsdegradation bei, wenn eine negative Spannung an der oberen Elektrode anliegt, und Natrium- und Kaliumfehlstellen tragen zu der Widerstandsdegradation bei, wenn eine positive Spannung an der oberen Elektrode anliegt. Das für PZT entwickelte Modell kann auch auf KNN angewendet werden. Das Modell erklärt erfolgreich das Widerstandsdegradationverhalten von KNN-Dünnschichten, das durch die Ungleichmäßigkeit der Deposition variiert werden, was mithilfe der mit TSDC gemessenen Defektkonzentrationen erklärt werden kann. Die Akkumulation von Sauerstofffehlstellen an Kathode und Natrium- und Kaliumfehlstellen an der Anode wird durch die transmissionselektronenmikroskopische energiedispersive Röntgenspektroskopie (transmission electron microscopy energy dispersive X-ray spectroscopy, TEM-EDX) unterstützt, und die Widerstandsdegradation kann auch durch eine ordnungsgemäße Wärme- und elektrische Behandlung wiederhergestellt werden, wie durch die Ergebnisse von Defektecharakterisierung vorhergesagt wurde. Diese Dissertation zeigt die Ähnlichkeit der Widerstandsdegradation zwischen gesputterten PZT- und KNN-Dünnschichten. Die Degradation wird durch die kristallographischen Punkt-Defekte gesteuert, die während des Abscheidungsprozesses im Material entstehen. Das weist auf die Bedeutung der Prozesskontrolle für die Zuverlässigkeit des Materials hin. Diese Dissertation zeigt auch die Anwendbarkeit von TSDC und Q-DLTS als alternative Methoden zur Beurteilung der Qualität der piezoelektrischen Dünnschichten. Beide Messtechniken liefern zusätzliche Informationen zu spezifischen Defekte im Vergleich zu traditionellen HALT-Prüfungen (highly accelerated lifetime test).
|
43 |
Capacitance Spectroscopy of Point Defects in Silicon and Silicon CarbideÅberg, Denny January 2001 (has links)
No description available.
|
44 |
Growth and characterization of SiC and GaNCiechonski, Rafal January 2007 (has links)
At present, focus of the SiC crystal growth development is on improving the crystalline quality without polytype inclusions, micropipes and the occurrence of extended defects. The purity of the grown material, as well as intentional doping must be well controlled and the processes understood. High-quality substrates will significantly improve device performance and yield. One of the aims of the thesis is further understanding of polytype inclusion formation as well as impurity control in SiC bulk crystals grown using PVT method also termed seeded sublimation method. Carbonization of the source was identified as a major reason behind the polytype inclusion occurrence during the growth. The aim of this work was further understanding of sublimation growth process of 4H-SiC bulk crystals in vacuum, in absence of an inert gas. For comparison growth in argon atmosphere (at 5 mbar) was performed. The effect of the ambient on the impurity incorporation was studied for different growth temperatures. For better control of the process in vacuum, tantalum as a carbon getter was utilized. The focus of the SiC part of the thesis was put on further understanding of the PVT epitaxy with an emphasis on the high growth rate and purity of grown layers. High resistivity 4H-SiC samples grown by sublimation with high growth rate were studied. The measurements show resistivity values up to high 104 cm. By correlation between the growth conditions and SIMS results, a model was applied in which it is proposed that an isolated carbon vacancy donor-like level is a possible candidate responsible for compensation of the shallow acceptors in p-type 4H-SiC. A relation between cathodoluminescence (CL) and DLTS data is taken into account to support the model. To meet the requirements for high voltage blocking devices such as high voltage Schottky diodes and MOSFETs, 4H-SiC epitaxial layers have to exhibit low doping concentration in order to block reverse voltages up to few keV and at the same time have a low on-state resistance (Ron). High Ron leads to enhanced power consumption in the operation mode of the devices. In growth of thick layers for high voltage blocking devices, the conditions to achieve good on-state characteristics become more challenging due to the low doping and pronounced thicknesses needed, preferably in short growth periods. In case of high-speed epitaxy such as the sublimation, the need to apply higher growth temperature to yield the high growth rate, results in an increased concentration of background impurities in the layers as well as an influence on the intrinsic defects. On-state resistance Ron estimated from current density-voltage characteristics of Schottky diodes on thick sublimation layers exhibits variations from tens of mΩ.cm2 to tens of Ω.cm2 for different doping levels. In order to understand the occurrence of high on-state resistance, Schottky barrier heights were first estimated for both forward and reverse bias with the application of thermionic emission theory and were in agreement with literature reported values. Decrease in mobility with increasing temperature was observed and its dependencies of T–1.3 and T–2.0 for moderately doped and low doped samples, respectively, were estimated. From deep level measurements by Minority Carrier Transient Spectroscopy (MCTS), an influence of shallow boron related levels and D-center on the on-state resistance was observed, being more pronounced in low doped samples. Similar tendency was observed in depth profiling of Ron. This suggests a major role of boron in a compensation mechanism. In the second part of the thesis growth and characterization of GaN is presented. Excellent electron transport properties with high electron saturate drift velocity make GaN an excellent candidate for electronic devices. Especially, AlGaN/GaN based high electron mobility transistors (HEMT) have received an increased attention in last years due to their attractive properties. The presence of strong spontaneous and piezoelectric polarization due to the lattice mismatch between AlGaN and GaN is responsible for high free electrons concentrations present in the vicinity of the interface. Due to the spatial separation of electrons and ionized donors or surface states, 2DEG electron gas formed near the interface of the heterostructure exhibits high sheet carrier density and high mobility of electrons. Al0.23Ga0.77N/GaN based HEMT structures with an AlN exclusion layer on 100 mm semiinsulating 4H-SiC substrates have been grown by hot-wall MOCVD. The electrical properties of the two-dimensional electron gas (2DEG) such as electron mobility, sheet carrier density and sheet resistance were obtained from Hall measurements, capacitance-voltage and contact-less eddy-current techniques. The effect of different scattering mechanisms on the mobility have been taken into account and compared to the experimental data. Hall measurements were performed in the range of 80 to 600 K. Hall electron mobility is equal to 17140 cm2(Vs)-1 at 80 K, 2310 cm2(Vs)-1 at room temperature, and as high as 800 cm2(Vs)-1 at 450 K, while the sheet carrier density is 1.04x1013 cm-2 at room temperature and does not vary very much with temperature. Estimation of different electron scattering mechanisms reveals that at temperatures higher than room temperature, experimental mobility data is mainly limited by optical phonon scattering. At relevant high power device temperature (450 K) there is still an increase of mobility due to the AlN exclusion layer. We have studied the behaviour of Ga-face GaN epilayers after in-situ thermal treatment in different gas mixtures in a hot-wall MOCVD reactor. Influence of N2, N2+NH3 and N2+NH3+H2 ambient on the morphology was investigated in this work. The most stable thermal treatment conditions were obtained in the case of N2+NH3 gas ambients. We have also studied the effect of the increased molar ratio of hydrogen in order to establish proper etching conditions for hot-wall MOCVD growth.
|
45 |
Capacitance Spectroscopy of Point Defects in Silicon and Silicon CarbideÅberg, Denny January 2001 (has links)
No description available.
|
46 |
Optimisation et analyse des propriétés de transport électroniques dans les structures à base des matériaux AlInN/GaN / Optimization and analysis of electronic transport properties in structures based on InAlN/GaN materialsLatrach, Soumaya 19 December 2018 (has links)
Les matériaux III-N ont apporté un gain considérable au niveau des performances des composants pour les applications en électronique de puissance. Les potentialités majeures du GaN pour ces applications résident dans son grand champ de claquage qui résulte de sa large bande interdite, son champ de polarisation élevé et sa vitesse de saturation importante. Les hétérostructures AlGaN/GaN ont été jusqu’à maintenant le système de choix pour l’électronique de puissance. Les limites sont connues et des alternatives sont étudiées pour les surmonter. Ainsi, les hétérostructures InAlN/GaN en accord de maille ont suscité beaucoup d’intérêts, notamment pour des applications en électronique de puissance à haute fréquence. L’enjeu de ce travail de thèse consiste à élaborer et caractériser des hétérostructures HEMTs (High Electron Mobility Transistors) afin d’établir des corrélations entre défauts structuraux, électriques et procédés de fabrication. Une étude sera donc menée sur la caractérisation de composants AlGaN/GaN afin de cerner les paramètres de croissance susceptibles d’avoir un impact notable sur la qualité structurale et électrique de la structure, notamment sur l’isolation électrique des couches tampons et le transport des porteurs dans le canal. En ce qui concerne les HEMTs InAlN/GaN, l’objectif est d’évaluer la qualité de la couche barrière. Pour cela, une étude de l’influence des épaisseurs ainsi que la composition de la barrière sera menée. La combinaison de ces études permettra d’identifier la structure optimale. Ensuite, l’analyse des contacts Schottky par des mesures de courant et de capacité à différentes températures nous permettra d’identifier les différents modes de conduction à travers la barrière. Enfin, les effets de pièges qui constituent l’une des limites fondamentales inhérentes aux matériaux étudiés seront caractérisés par différentes méthodes de spectroscopie de défauts. / III-N materials have made a significant gain in component performance for power electronics applications. The major potential of GaN for these applications lies in its large breakdown field resulting from its wide bandgap, high polarization field and high electronic saturation velocity. AlGaN/GaN heterostructures have been, until recently, the system of choice for power electronics. The limits are known and alternatives are studied to overcome them. Thus, lattice matched InAlN/GaN heterostructures have attracted a great deal of research interest, especially for high frequency power electronic applications. The aim in this work of thesis consists in developing and in characterizing High Electron Mobility Transistors (HEMTs) to establish correlations between structural, electrical defects and technologic processes. A study will therefore be conducted on the characterization of AlGaN/GaN components to enhance the parameters of growth susceptible to have a notable impact on the structural and electrical quality of the structure, in particular on the electrical isolation of the buffer layers and the transport properties. For InAlN/GaN HEMTs, the objective is to evaluate the quality of the barrier layer. For this, a study of the influence of the thickness as well as the composition of the barrier will be conducted. The combination of these studies will allow identifying the optimum structure. Then, the analysis of Schottky contacts by measurements of current and capacity at different temperatures will allow us to identify the several conduction modes through the barrier. Finally, the effects of traps which constitute one of the fundamental limits inherent to the studied materials will be characterized by various defects spectroscopy methods.
|
47 |
Raumladungszonenspektroskopische Methoden zur Charakterisierung von weitbandlückigen HalbleiternSchmidt, Florian 15 December 2014 (has links)
Die Arbeit befasst sich mit der Untersuchung von weitbandlückigen Halbleitern über raumladungszonenspektroskopische Methoden. Dabei liegt der Schwerpunkt auf der Detektion von elektronisch und optisch aktiven Defektzuständen in solchen Materialien. Die Experimente wurden exemplarisch an dem II-VI Halbleiter Zinkoxid (ZnO) durchgeführt, welcher inform von Volumenkristallen, Mikronadeln und Dünnfilmen zur Verfügung stand. Raumladungszonen wurden über Schottky-Kontakte realisiert. Nach einer Einführung in die Theorie der Raumladungszonenspektroskopie wird ein Überblick über Defekte in verschiedenartig gezüchteten ZnO gegeben. Dazu werden die Standardverfahren Strom-Spannungs-Messung, Kapazitäts-Spannungs-Messung, Thermische Admittanz- Spektroskopie (TAS) und Deep Level Transient Spectroscopy (DLTS) verwendet. Ergänzend wurden die auf weitbandlückige Halbleiter ausgelegten Verfahren Low Rate Deep Level Transient Spectroscopy (LR-DLTS) und Deep Level Optical Spectroscopy (DLOS) eingesetzt, mit welchen es möglich ist Defektzustände in der gesamten Bandlücke von ZnO nachzuweisen. Für die untersuchten Störstellenniveaus konnten somit die thermische Aktivierungsenergie, Einfangquerschnitte freier Ladungsträger und Photoionisationsquerschnitte bestimmt werden.
Typischerweise werden tiefe Defekte durch die Bestrahlung mit hochenergetischen Protonen erzeugt. Derartige Behandlungen wurden an binären ZnO- und ternären (Mg,Zn)ODünnfilmen durchgeführt, wobei die Generationsrate eines Defektes über Variation der verwendeten Strahlungsdosis bestimmt wurde. Ionenimplantationen spielen eine große Rolle im Herstellungsprozess von Bauelementen, sind jedoch für ZnO nicht etabliert. Die Auswirkung der Implantation von inerten Argon-Ionen, sowie die nachträgliche thermische Behandlung auf die Konzentration intrinsischer Defekte wurde untersucht. Zink- und Sauerstoff-Implantationen bewirken, neben der Generation von Defekten, eine lokale Änderung der Stöchiometrie. Durch einen Vergleich der Defektkonzentrationen nach Zn-, O-, Ne- und Ar-Implantation können Rückschlüsse auf die chemische Natur intrinsischer Defekte geschlossen werden.:1 Einleitung
I Grundlagen
2 Elektronische Eigenschaften von Defekten in Halbleitern
2.1 Typen und Klassifizierung von Defekten
2.2 Lokalisierte Zustände in Halbleitern
2.2.1 Donatoren und Akzeptoren
2.2.2 Flache Defekte und effektive Masse-Näherung
2.2.3 Tiefe Defekte
2.3 Besetzungsstatistik und Ratengleichungen
2.3.1 Thermische Emission
2.3.2 Optische Emission
2.3.3 Nichtstrahlender Einfang und Multiphononen Emission
2.3.4 Arrhenius Auswertung
2.3.5 Zeitentwicklung des Besetzungsgrades
3 Raumladungszonenspektroskopie
3.1 Metall-Halbleiter-Kontakte
3.2 Kapazitätstransienten
3.3 Kapazitäts-Spannungs-Messungen (C(U))
3.4 Thermische Admittanz Spektroskopie (TAS)
3.5 Deep level transient spectroscopy (DLTS)
3.6 Konzentrationsbestimmung
3.7 Laplace-Deep level transient spectroscopy (LDLTS)
3.7.1 Entstehung des LDLTS-Signals
3.7.2 Einschränkungen der Methode
3.8 Deep level optical spectroscopy (DLOS)
4 Die Halbleiter ZnO und MgZnO
4.1 Kristallstruktur und Gitterparameter
4.2 Bandstruktur
4.3 ZnO als transparentes leitendes Oxid
4.4 Defekte in ZnO
5 Probenherstellung und Charakterisierung
5.1 ZnO-Züchtung
5.1.1 ZnO-Volumenkristalle
5.1.2 ZnO-Dünnfilme
5.2 Kathodenzerstäubung
5.3 Protonenbestrahlung und Ionenimplantation
5.3.1 Bremsquerschnitt
5.3.2 Protonenbestrahlung
5.3.3 Ionenimplantation
5.4 Probenaufbau und Schottky-Kontakte
5.5 Raumladungszonenspektroskopie-Messplatz
5.6 Rasterkraftmikroskopie
5.7 Kelvinsondenkraftmikroskopie
5.8 Röntgendiffraktometrie
5.9 Photolumineszenzspektroskopie
II Charakterisierung züchtungsinduzierter Defekte
6 Defekte in ZnO-Volumenkristallen und -Dünnfilmen
6.1 Elektrische Eigenschaften
6.2 Thermische Admittanz-Spektroskopie
6.3 Deep-level transient spectroscopy
6.4 E3 und E3’ in ZnO Dünnfilmen
6.4.1 Low Rate – DLTS
6.4.2 Laplace-DLTS
6.4.3 thermisch aktivierter Einfang von E3’
6.5 Einfluss thermischer Nachbehandlung
6.6 Einfluss der Züchtungstemperatur
6.7 Die Meyer-Neldel Regel
6.8 E7, TH1 und T4 in ZnO – DLOS
6.8.1 Raumtemperatur DLOS des ZnO-Volumenkristall
6.8.2 Raumtemperatur DLOS des ZnO-Dünnfilm
6.8.3 DLOS-Messungen bei tiefen Temperaturen
6.9 Optische Anregung von E3’ in ZnO-Dünnfilmen
7 Defekte in (Mg,Zn)O-Dünnfilmen
7.1 (Mg,Zn)O-Dünnfilme auf a-Saphir
7.2 Photolumineszenz
7.3 XRD
7.4 DLTS-Untersuchungen
7.5 E3 in verspannten (Mg,Zn)O-Filmen
7.6 DLOS – T4 und TH1 in (Mg,Zn)O-Dünnfilmen
7.7 Zusammenfassung
8 Einfluss der Wachtumsorientierung auf die Defektstruktur von ZnO-Dünnfilmen
8.1 ZnO-Dünnfilme auf a-, m- und r-Saphir
8.2 Strukturelle Eigenschaften
8.3 Photolumineszenz
8.4 Elektrische Eigenschaften
8.5 Defektsignaturen
III Charakterisierung strahlungsinduzierter Defekte
9 Protonenbestrahlung an (Mg,Zn)O-Dünnfilmen
9.1 Der E4-Defekt in ZnO – Stand der Literatur
9.2 E4 in polaren (Mg,Zn)O-Dünnfilmen
9.2.1 Probenaufbau und Protonenbestrahlung
9.2.2 Elektrische Eigenschaften
9.2.3 DLTS-Untersuchungen
9.3 E4 in unpolaren ZnO-Dünnfilmen
9.4 Zusammenfassung
10 Defekte in Argon-implantierten ZnO-Dünnfilmen
10.1 Probenstruktur und Ionenimplantation
10.2 Thermische DLTS
10.3 DLTS mit monochromatischer Anregung
11 Defekte in Zn- und O-implantierten ZnO-Dünnfilmen
11.1 Proben und Ionenimplantation
11.2 Nettodotierkonzentration
11.3 Thermische DLTS
11.4 DLOS
11.5 Defekte mit geringen Konzentrationen – E470 und E390
12 Zusammenfassung und Ausblick
|
48 |
Quantitative spectroscopy of reliability limiting traps in operational gallium nitride based transistors using thermal and optical methodsSasikumar, Anup January 2014 (has links)
No description available.
|
49 |
Space Charge Spectroscopy applied to Defect Studies in Ion-Implanted Zinc Oxide Thin FilmsSchmidt, Matthias 12 March 2012 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Erzeugung und Detektion von Defekten im Halbleiter Zinkoxyd (ZnO). Der Fokus liegt dabei auf der Verwendung raumladungszonenspektroskopischer Techniken zur Detektion und Charakterisierung elektronischer Defektzustände. Es werden theoretische Aspekte von Raumladungszonen an Halbleitergrenzflächen und den darin enthaltenen elektronischen Defektzuständen behandelt. Das elektrische Potential in der Raumladungszone genügt einer nichtlinearen, eindimensionalen Poissongleichung, für die bekannte, näherungsweise Lösungen vorgestellt werden. Für eine homogen dotierte Raumladungszone gelang es, die exakte Lösung des Potentialverlaufs
als Integral anzugeben und einen analytischen Ausdruck für die Kapazität
der Raumladungszone zu berechnen. Desweiteren werden transiente und oszillatorische Lösungen der Differentialgleichung zur Beschreibung der Zeitentwicklung der Besetzungswahrscheinlichkeit von Defektzuständen für verschiedene experimentelle Bedingungen betrachtet. Sämtliche raumladungszonenspektroskopischen Experimente können durch geeignete Lösungen dieser beiden Differentialgleichungen beschrieben werden. Für die Fälle, für die keine analytischen Lösungen bekannt sind, wurde ein numerisches Modell entwickelt. Die Experimente wurden an ZnO Dünnfilmproben durchgeführt, welche mittels gepulster Laserablation auf Korundsubstraten abgeschieden wurden. Zur Erzeugung von Defekten wurden entweder Ionen in die Proben implantiert, die Proben mit hochenergetischen Elektronen bzw. Protonen bestrahlt oder einer thermischen Behandlung unterzogen. Die Raumladungszonen wurden durch Schottkykontakte realisiert. Durch die raumladungszonenspektroskopischen Verfahren, Kapazitäts-Spannungs Messungen, Admittanzspektroskopie, Deep-Level Transient Spectroscopy (DLTS), Minority Carrier Transient Spectroscopy, optische DLTS, Photokapazitäts- und Photostrommessungen, sowie der optischen Kapazitäts-Spannungs Messung konnten Defektzustände in der gesamten ZnO Bandlücke nachgewiesen werden. Durch Vergleiche der gemessenen Defektkonzentrationen in einer unbehandelten Referenzprobe mit denen in behandelten Proben konnten Aussagen über die experimentellen Bedingungen, unter denen intrinsische Defekte entstehen bzw. ausheilen, gewonnen und mit Stickstoff- bzw. Nickel- in Zusammenhang stehende Defekte identifiziert werden. Für eine Vielzahl untersuchter Defektzustände konnten die thermische Aktivierungsenergie der Ladungsträgeremission, Querschnitte für den Einfang freier Ladungsträger sowie die spektralen Photoionisationsquerschnitte bestimmt werden. Aus diesen Eigenschaften sowie den experimentellen Bedingungen unter denen der Defekt bevorzugt gebildet wird, wurden Rückschlüsse auf die mikroskopische Struktur einiger Defekte gezogen.
|
50 |
Space Charge Spectroscopy applied to Defect Studies in Ion-Implanted Zinc Oxide Thin FilmsSchmidt, Matthias 26 January 2012 (has links)
Die vorliegende Arbeit befasst sich mit der Erzeugung und Detektion von Defekten im Halbleiter Zinkoxyd (ZnO). Der Fokus liegt dabei auf der Verwendung raumladungszonenspektroskopischer Techniken zur Detektion und Charakterisierung elektronischer Defektzustände. Es werden theoretische Aspekte von Raumladungszonen an Halbleitergrenzflächen und den darin enthaltenen elektronischen Defektzuständen behandelt. Das elektrische Potential in der Raumladungszone genügt einer nichtlinearen, eindimensionalen Poissongleichung, für die bekannte, näherungsweise Lösungen vorgestellt werden. Für eine homogen dotierte Raumladungszone gelang es, die exakte Lösung des Potentialverlaufs
als Integral anzugeben und einen analytischen Ausdruck für die Kapazität
der Raumladungszone zu berechnen. Desweiteren werden transiente und oszillatorische Lösungen der Differentialgleichung zur Beschreibung der Zeitentwicklung der Besetzungswahrscheinlichkeit von Defektzuständen für verschiedene experimentelle Bedingungen betrachtet. Sämtliche raumladungszonenspektroskopischen Experimente können durch geeignete Lösungen dieser beiden Differentialgleichungen beschrieben werden. Für die Fälle, für die keine analytischen Lösungen bekannt sind, wurde ein numerisches Modell entwickelt. Die Experimente wurden an ZnO Dünnfilmproben durchgeführt, welche mittels gepulster Laserablation auf Korundsubstraten abgeschieden wurden. Zur Erzeugung von Defekten wurden entweder Ionen in die Proben implantiert, die Proben mit hochenergetischen Elektronen bzw. Protonen bestrahlt oder einer thermischen Behandlung unterzogen. Die Raumladungszonen wurden durch Schottkykontakte realisiert. Durch die raumladungszonenspektroskopischen Verfahren, Kapazitäts-Spannungs Messungen, Admittanzspektroskopie, Deep-Level Transient Spectroscopy (DLTS), Minority Carrier Transient Spectroscopy, optische DLTS, Photokapazitäts- und Photostrommessungen, sowie der optischen Kapazitäts-Spannungs Messung konnten Defektzustände in der gesamten ZnO Bandlücke nachgewiesen werden. Durch Vergleiche der gemessenen Defektkonzentrationen in einer unbehandelten Referenzprobe mit denen in behandelten Proben konnten Aussagen über die experimentellen Bedingungen, unter denen intrinsische Defekte entstehen bzw. ausheilen, gewonnen und mit Stickstoff- bzw. Nickel- in Zusammenhang stehende Defekte identifiziert werden. Für eine Vielzahl untersuchter Defektzustände konnten die thermische Aktivierungsenergie der Ladungsträgeremission, Querschnitte für den Einfang freier Ladungsträger sowie die spektralen Photoionisationsquerschnitte bestimmt werden. Aus diesen Eigenschaften sowie den experimentellen Bedingungen unter denen der Defekt bevorzugt gebildet wird, wurden Rückschlüsse auf die mikroskopische Struktur einiger Defekte gezogen.
|
Page generated in 0.0995 seconds