• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 54
  • 36
  • 16
  • 14
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 325
  • 80
  • 54
  • 52
  • 41
  • 38
  • 38
  • 34
  • 34
  • 34
  • 27
  • 27
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Interfacial Mechanics in Fiber-Reinforced Composites: Mechanics of Single and Multiple Cracks in CMCs

Ahn, Byung Ki 12 February 1998 (has links)
Several critical issues in the mechanics of the interface between the fibers and matrix in ceramic matrix composites (CMCs) are studied. The first issue is the competition between crack deflection and penetration at the fiber/matrix interface. When a matrix crack, the first fracture mode in a CMC, reaches the interface, two different crack modes are possible; crack deflection along the interface and crack penetration into the fibers. A criterion based on strain energy release rates is developed to determine the crack propagation at the interface. The Axisymmetric Damage Model (ADM), a newly-developed numerical technique, is used to obtain the strain energy in the cracked composite. The results are compared with a commonly-used analytic solution provided by He and Hutchinson (HH), and also with experimental data on a limited basis. The second issue is the stress distribution near the debond/sliding interface. If the interface is weak enough for the main matrix crack to deflect and form a debond/sliding zone, then the stress distribution around the sliding interface is of interest because it provides insight into further cracking modes, i.e. multiple matrix cracking or possibly fiber failure. The stress distributions are obtained by the ADM and compared to a simple shear-lag model in which a constant sliding resistance is assumed. The results show that the matrix axial stress, which is responsible for further matrix cracking, is accurately predicted by the shear-lag model. Finally, the third issue is multiple matrix cracking. We present a theory to predict the stress/strain relations and unload/reload hysteresis behavior during the evolution of multiple matrix cracking. The random spacings between the matrix cracks as well as the crack interactions are taken into account in the model. The procedure to obtain the interfacial sliding resistance, thermal residual stress, and matrix flaw distribution from the experimental stress/strain data is discussed. The results are compared to a commonly-used approach in which uniform crack spacings are assumed. Overall, we have considered various crack modes in the fiber-reinforced CMCs; from a single matrix crack to multiple matrix cracking, and have suggested models to predict the microscopic crack behavior and to evaluate the macroscopic stress/strain relations. The damage tolerance or toughening due to the inelastic strains caused by matrix cracking phenomenon is the key issue of this study, and the interfacial mechanics in conjunction with the crack behavior is the main issue discussed here. The models can be used to interpret experimental data such as micrographs of crack surface or extent of crack damage, and stress/strain curves, and in general the models can be used as guidelines to design tougher composites. / Ph. D.
142

Design of One-Story Hollow Structural Section (HSS) Columns Subjected to Large Seismic Drift

Kong, Hye-Eun 24 September 2019 (has links)
During an earthquake, columns in a one-story building must support vertical gravity loads while undergoing large lateral drifts associated with deflections of the vertical seismic force resisting system and deflections of the flexible roof diaphragm. Analyzing the behavior of these gravity columns is complex since not only is there an interaction between compression and bending, but also the boundary conditions are not perfectly pinned or fixed. In this research, the behavior of steel columns that are square hollow structural sections (HSS) is investigated for stability using three design methods: elastic design, plastic hinge design, and pinned base design. First, for elastic design, the compression and flexural strength of the HSS columns are calculated according to the AISC specifications, and the story drift ratio that causes the interaction equation to be violated for varying axial force demands is examined. Then, a simplified design procedure is proposed; this procedure includes a modified interaction equation applicable to HSS column design based on a parameter, Pnh/Mn, and a set of design charts are provided. Second, a plastic hinge design is grounded in the concept that a stable plastic hinge makes the column continue to resist the gravity load while undergoing large drifts. Based on the available test data and the analytical results from finite element models, three limits on the width to thickness ratios are developed for steel square HSS columns. Lastly, for pinned base design, the detailing of a column base connection is schematically described. Using FE modeling, it is shown that it is possible to create rotational stiffness below a limit such that negligible moment develops at the column base. All the design methods are demonstrated with a design example / Master of Science / One-story buildings are one of the most economical types of structures built for industrial, commercial, or recreational use. During an earthquake, columns in a one-story building must support vertical gravity loads while undergoing large lateral displacements, referred to as story drift. Vertical loads cause compression forces, and lateral drifts produce bending moments. The interaction between these forces makes it more complex to analyze the behavior of these gravity columns. Moreover, since the column base is not perfectly fixed to the ground, there are many boundary conditions applicable to the column base depending on the fixity condition. For these reasons, the design for columns subjected to lateral drifts while supporting axial compressive forces has been a growing interest of researchers in the field. However, many researchers have focused more on wide-flange section (I-shape) steel columns rather than on tube section columns, known as hollow structural section (HSS) steel columns. In this research, the behavior of steel square tube section columns is investigated for stability using three design methods: elastic design, plastic hinge design, and pinned base design. First, for elastic design, the compression and flexural strength of the HSS columns are calculated according to current code equations, and the story drift that causes failure for varying axial force demands is examined. Then, a simplified design procedure is proposed including design charts. Second, a plastic hinge design is grounded in the concept that controlled yielding at the column base makes the column continue to resist the gravity load while undergoing large drifts. Based on the available test data and results from computational models, three limits on the width to thickness ratios of the tubes are developed. Lastly, for pinned base design, concepts for detailing a column base connection with negligible bending resistance is schematically described. Using a computational model, it is shown that the column base can be detailed to be sufficiently flexible to allow rotation. All the design methods are demonstrated with a design example.
143

Development of structural condition thresholds for TSD measurements

Shrestha, Shivesh January 2017 (has links)
This thesis presents (a) results of a field evaluation of the Traffic Speed Deflectometer (TSD) in the United States (b) deflection thresholds to classify the pavement structural condition obtained from the TSD for a small subset of the Pennsylvania secondary road network. The results of the field evaluation included: (1) repeatability of the TSD, (2) ability of the TSD to identify pavement sections with varying structural conditions, and (3) consistency between the structural number (SNeff) calculated from the TSD and SNeff calculated by the Pennsylvania Department of Transportation (PennDOT). The results showed consistent error standard deviation in the TSD measurements and that the TSD was able to identify pavement sections that varied in structural condition. Comparison of the SNeff calculated with TSD measurements, using an empirically developed equation by Rohde, with the SNeff calculated by PennDOT’s Pavement Management System based on construction history showed similar trends, although the TSD-calculated SNeff was higher. In order to develop deflection thresholds, a model that related the pavement surface condition to pavement surface age and structural condition was developed. Structural condition thresholds were then selected so that the pavement surface condition predicted from the model for a 10-year-old pavement surface fell within one of the three condition categories (Good, Fair, and Poor), to identify pavements in good, fair and poor condition. With Overall Pavement Index(OPI) characterizing the surface condition and Deflection Slope Index(DSI) characterizing the structural condition, the DSI threshold that separates structurally good from structurally fair pavements was determined as follows: (1) the OPI threshold that separates pavements with good surface condition from those with fair surface condition was obtained from the Pennsylvania Pavement Management System (PMS) and (2) the DSI thresholds were calculated using the determined OPI value and the model equation. / Master of Science / This thesis presents (a) some of the results of a field evaluation of the Traffic Speed Deflectometer (TSD) in the United States (b) deflection thresholds to classify the pavement structural condition obtained from the TSD for a small subset of the Pennsylvania secondary road network. The results of the field evaluation included: (1) repeatability of the TSD: which is the variation in repeated TSD measurements on the same section of the road, (2) ability of the TSD to identify pavement sections with varying structural conditions, and (3) consistency between the structural number (SNeff) calculated from the TSD and SNeff calculated by the Pennsylvania Department of Transportation (PennDOT). The pavement structural number is an abstract number expressing the structural strength of the pavement. The results showed that the TSD measurements were repeatable and that the TSD was able to identify pavement sections that varied in structural condition. Comparison of the SNeff calculated with TSD measurements, using an empirically developed equation by Rohde, with the SNeff calculated by PennDOT Pavement Management System based on construction history showed similar trends, although the TSD-calculated SNeff was higher. In order to develop deflection thresholds to categorize pavements in different condition: good, fair and poor, a model that related the pavement surface condition to pavement surface age and structural condition was developed. Structural condition thresholds were then selected so that the pavement surface condition predicted from the model for a 10-year-old pavement surface fell within one of the three condition categories (Good, Fair, and Poor), to identify pavements in good, fair and poor condition. With Overall Pavement Index(OPI) characterizing the surface condition and Deflection Slope Index(DSI) characterizing the structural condition, the DSI threshold that separates structurally good from structurally fair pavements was determined as follows: (1) the OPI threshold that separates pavements with good surface condition from those with fair surface condition was obtained from the Pennsylvania Pavement Management System (PMS) and (2) the DSI thresholds were calculated using the determined OPI value and the model equation.
144

Identifying High Risk Individuals in Youth Football and Evaluating Tackling Technique

Gellner, Ryan Aaron 11 May 2018 (has links)
Nearly 3.5 million kids play youth football every year in the United States, many in independent organizations with few or no rules for limiting head impact exposure in practices or competition. Studies have found potential long-term effects of repetitive head impact exposure from a young age, even in the absence of concussion. The best methods for reducing head impact exposure include a multi-pronged approach: limiting contact through rules changes, teaching proper technique for contact when it does occur, and designing equipment with better protective capabilities. Four youth football teams were studied for one season each using helmet mounted accelerometer arrays. Head acceleration data indicated that youth teams often have a small subset of players who account for a disproportionately large number of high-risk head impacts. As few as six players (6%) accounted for over 50% of all high-risk impacts seen in practice sessions. Technique used during tackling and tackle-absorption had considerable effect on head acceleration. Both the tackler and ball carrier were found to be at greater risk for high magnitude head impacts when exhibiting poor form as defined by specific tackling recommendation criteria. These data suggest that individualized interventions encouraging proper form, especially for a subset of impact-prone players, may be beneficial in reducing high magnitude head impact exposure for an entire youth football team. This is especially critical because a majority of high-risk impacts are experienced in practice at the youth level. Results from this work could be applied by coaching staffs in youth football leagues to increase the safety of their athletes. / MS
145

Long-term In-service Evaluation of Two Bridges Designed with Fiber-Reinforced Polymer Girders

Kassner, Bernard Leonard 23 September 2004 (has links)
A group of researchers, engineers, and government transportation officials have teamed up to design two bridges with simply-supported FRP composite structural beams. The Toms Creek Bridge, located in Blacksburg, Virginia, has been in service for six years. Meanwhile, the Route 601 Bridge, located in Sugar Grove, Virginia, has been in service for two years. Researchers have conducted load tests at both bridges to determine if their performance has changed during their respective service lives. The key design parameters under consideration are: deflection, wheel load distribution, and dynamic load allowance. The results from the latest tests in 2003 yield little, yet statistically significant, changes in these key factors for both bridges. Most differences appear to be largely temperature related, although the reason behind this effect is unclear. For the Toms Creek Bridge, the largest average values from the 2003 tests are 440 me for service strain, 0.43 in. (L/484) for service deflection, 0.08 (S/11.1) for wheel load distribution, and 0.64 for dynamic load allowance. The values for the Route 601 Bridge are 220 me, 0.38 in. (L/1230), 0.34 (S/10.2), and 0.14 for the same corresponding paramters. The recommended design values for the dynamic load allowance in both bridges have been revised upwards to 1.35 and 0.50 for the Toms Creek Bridge and Route 601 Bridge, respectively, to account for variability in the data. With these increased factors, the largest strain in the toms Creek Bridge and Route 601 Bridge would be less than 13% and 12%, respectively, of ultimate strain. Therefore, the two bridges continue to provide a large factor of safety against failure. / Master of Science
146

Nonlinear Beam Deflection and Optical Properties of Semiconductors and Semimetals

Faryadras, Sanaz 01 January 2024 (has links) (PDF)
The nonlinear beam deflection (BD) technique is used to directly measure and time-resolve the nonlinearly-induced phase shift in a variety of materials. In this technique, a weak probe beam is spatially overlapped, while slightly displaced, with a strong excitation beam while the temporal delay is scanned. The excitation-induced index gradient, which for 3rd-order nonlinearities is proportional to the nonlinear refractive index 16 n2"> of the medium, deflects the weak probe beam. This deflection is determined using a position sensitive segmented detector after propagation to the far field. In this dissertation, we expand our previous work on BD theory to include the effects of the Gaussian spatial beam profile of the excitation, as opposed to a constant index gradient. We also explore the BD signal as we allow the spatial size and relative position of the probe with respect to the excitation beam, r, at the sample to vary to maximize the calculated signal. While the analysis requires numerical solutions, we find a simple empirical fitting function for the BD signal that allows determination of the nonlinear phase shift and thus the nonlinear refraction. We performed BD experiments at near-degenerate photon energies for various spot size ratios which resulted in very good agreement with our simulation results. In order to examine our empirical function the BD signal for various r (0.2-0.6) is measured while keeping the phase shift relatively constant. This helped us isolate the effect of spot size ratio on the BD signal. Our results showed the correct trend for the growth of BD signal as r increases, which is what is expected from our model. We also studied nondegenerate two-photon absorption (ND-2PA) in bulk silicon. We present the results of spectroscopic pump-probe measurements of ND-2PA in silicon across the indirect-gap (1.12 eV). We observed enhancement of the 2PA coefficient as the degree of degeneracy of pump and probe photon energies increased, and the dispersion compares favorably with our recently-developed semi-empirical theoretical model for the dispersion of indirect ND-2PA in silicon. Additionally, we experimentally investigated WTe2 which is a Weyl semimetal. Here, we prepared very thin flakes (10s of microns thick) of WTe2 and investigated the possibility of observing circular dichroism (CD) in pump-probe measurements, pumping at near IR and probing at mid-IR. Although we did not observe any CD, we believe this is because our pump photon energy is far from Weyl nodes and that we need to pump at mid-IR range.
147

Deflection of Ag-atoms in an inhomogeneous magnetic field

Kheswa, Bonginkosi Vincent 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: In the current design of the high temperature gas cooled reactor, a small fraction of coated fuel particles will be defective. Hence, 110Ag may be released from the fuel spheres into the coolant gas (helium) and plate out on the cooler surfaces of the main power system. This poses a radiation risk to operating personnel as well as general public. The objectives of this thesis were to design and construct an apparatus in which silver-109 atoms may be produced and deflected in an inhomogeneous and homogeneous magnetic field, compare experimental and theoretical results, and make a recommendation based on the findings of this thesis to the idea of removing silver-110 atoms from the helium fluid by deflecting them with an inhomogeneous magnetic field onto target plates situated on the inner perimeter of a helium pipe. The experimental results for the deflection of the collimated Ag- atoms with the round-hole collimators showed a deflection of 1.77° and 2.05° of the Ag- atoms due to an inhomogeneous magnetic field when the target plate was positioned 13 and 30 mm away from the magnet, respectively. These values were considerably greater than 0.01° and 0.02° that were calculated for the average velocity of atoms, v = 500 m/s. The case where Ag- atoms were collimated with a pair of slits and the target plate positioned 13mm away from the magnet showed the following: An inhomogeneous magnetic field changes the rectangular shape of the beam to a roughly elliptical shape. The beam of Ag- atoms was not split into two separate beams. This was caused by the beam of Ag- atoms consisting of atoms travelling at different speeds. The maximum deflection of Ag- atoms was 1.16° in the z direction and 1.12° in the x direction. These values were also significantly greater than 0.01 mm calculated at v = 500 m/s. This huge difference between the theoretical and experimental results raised a conclusion that the size of each Ag deposit depended mostly on the exposure time that was given to it. It was noticed that the beam of Ag- atoms was not split into two separate beams, in both cases. The conclusion was that the technique of removing Ag- atoms from the helium stream by means of an inhomogeneous magnetic field may not be effective. This is due to the inability of the inhomogeneous magnetic field to split the beam of Ag- atoms into two separate beams in a vacuum of ~10-5 mbar. It would be even more difficult for an inhomogeneous magnetic field to split the beam of Ag- atoms in helium, due to the Ag- atoms having a shorter mean free path in helium compared to a vacuum. / AFRIKAANSE OPSOMMING: In die huidige ontwerp van die hoë temperatuur gas afgekoelde reaktor, is 'n klein fraksie van omhulde brandstof deeltjies foutief. 110Ag kan dus vrygestel word vanaf die brandstof sfere in die verkoelingsgas (helium) wat dan op die koeler oppervlaktes van die hoofkragstelsel presipiteer. Hierdie 110Ag deeltjies hou 'n bestraling risiko vir die bedryfpersoneel sowel as vir die algemene publiek in. Die doelwitte van hierdie verhandeling is eerstens om 'n apparaat te ontwerp en konstrueer wat silwer-109 atome produseer en nie-homogene en homogene magnetiese velde deflekteer,. Tweedens om die eksperimentele en teoretiese resultate met mekaar te vergelyk. Derdens om 'n aanbeveling te maak gebasseer op die bevindinge van hierdie verhandeling rakende die verwydering van silwer-110 atome uit die helium vloeistof deur hulle met 'n nie-homogene magneetveld te deflekteer op die teikenplate binne-in 'n helium pyp. Die eksperimentele resultate vir die defleksie van die gekollimeerde Ag-atome met die ronde gat kollimators toon ‘n defleksie van 1.77° en 2.05° van die Ag-atome as gevolg van ‘n nie-homogene magneetveld wanneer die teikenplaat 13mm en 30mm, onderskeidelik, vanaf die magneet geposisioneer is. Hierdie waardes is aansienlik groter as die teoretiese defleksies van 0.01° en 0.02o wat bereken is vir ‘n gemiddelde snelheid van 500 m/s vir die atome. Die geval waar Ag-atome met 'n paar splete gekollimeer is en die teikenplaat 13 mm weg van magneet geposisioneer is, is die volgende resultate verkry: 'n nie-homogene magneetveld verander die reghoekige vorm van die bondel na 'n rowwe elliptiese vorm. Die bondel Ag-atome is nie volkome twee afsonderlike bundels verdeel nie. Dit is omdat die bondel van Ag-atome bestaan uit atome wat teen verskillende snelhede beweeg. Die maksimum defleksie van Ag-atome is 1.16° in die z-rigting en 1.12° in die x-rigting. Hierdie waardes is ook aansienlik groter as 0.01° bereken teen 500 m/s. Hierdie groot verskil tussen die teoretiese en eksperimentele resultate dui daarop dat die grootte van elke Ag neerslag grootliks afhanklik is van die blootstellingstyd wat daaraan gegee is. Daar is vasgestel dat die straal van Ag-atome in beide gevalle nie in twee afsonderlike bondels verdeel nie. Die gevolgtrekking is dat die tegniek van die verwydering van Ag-atome uit die helium stroom deur middel van 'n nie-homogene magneetveld nie effektief is nie. Dit is te wyte aan die onvermoë van die nie-homogene magneetveld om die bondel Ag-atome te verdeel in twee afsonderlike bondels in 'n vakuum van ~ 10-5 mbar. Dit sou selfs nog moeiliker vir 'n nie-homogene magnetiese veld wees om die bundel Ag-atome in helium te verdeel, weens die korter gemiddelde beskikbare pad van Ag-atome in helium wanneer dit met 'n vakuum vergelyk word.
148

Analysis of mechanical behaviour and damage of carbon fabric-reinforced composites in bending

Ullah, Himayat January 2013 (has links)
Carbon fabric-reinforced polymer (CFRP) composites are widely used in aerospace, automotive and construction structures thanks to their high specific strength and stiffness. They can also be used in various products in sports industry. Such products can be exposed to different in-service conditions such as large bending deformations caused by quasi-static and dynamic loading. Composite materials subjected to such bending loads can demonstrate various damage modes - matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in composites affects both their in-service properties and performance that can deteriorate with time. Such damage modes need adequate means of analysis and investigation, the major approaches being experimental characterisation and numerical simulations. This work deals with a deformation behaviour and damage in carbon fabric-reinforced polymer (CFRP) laminates caused by quasi-static and dynamic bending. Experimental tests are carried out first to characterise the behaviour of a CFRP material under tension, in-plane shear and large-deflection bending in quasi-static conditions. The dynamic behaviour of these materials under large-deflection bending is characterised by Izod-type impact tests employing a pendulum-type impactor. A series of impact tests is performed on the material at various impact energy levels up to its fracture, to obtain a transient response of the woven CFRP laminate. Microstructural examination of damage is carried out by optical microscopy and X-ray micro computed tomography (Micro-CT). The damage analysis revealed that through thickness matrix cracking, inter-ply delaminations, intra-ply delamination such as tow debonding, and fabric fracture was the prominent damage modes. These mechanical tests and microstructural studies are accompanied by advanced numerical models developed in a commercial code Abaqus. Among those models are (i) 2D FE models to simulate experimentally observed inter-ply delamination, intra-ply fabric fracture and their subsequent interaction under quasi-static bending conditions and (ii) 3D FE models based on multi-body dynamics used to analyse interacting damage mechanisms in CFRP under large-deflection dynamic bending conditions. In these models, multiple layers of bilinear cohesive-zone elements are placed at the damage locations identified in the Micro CT study. Initiation and progression of inter-laminar delamination and intra-laminar ply fracture are studied by employing cohesive elements. Stress-based criteria are used for damage initiation while fracture-mechanics techniques are employed to capture its progression in composite laminates. The developed numerical models are capable to simulate the studied damage mechanisms as well as their subsequent interaction observed in the tests and microstructural damage analysis. In this study, a novel damage modelling technique based on the cohesive-zone method is proposed for analysis of interaction of various damage modes, which is more efficient than the continuum damage mechanics approach for coupling between failure modes. It was observed that the damage formation in the specimens was from the front to the back at the impact location in the large-deflection impact tests, unlike the back-to-front one in drop-weight tests. The obtained results of simulations showed a good agreement with experimental data, thus demonstrating that the proposed methodology can be used for simulations of discrete damage mechanisms and their interaction during the ultimate fracture of composites in bending. The main outcome of this thesis is a comprehensive experimental and numerical analysis of the deformation and fracture behaviours of CFRP composites under large-deflection bending caused by quasi-static and dynamic loadings. Recommendations on further research developments are also suggested.
149

Feedback Control of Robotic Friction Stir Welding

De Backer, Jeroen January 2014 (has links)
The Friction Stir Welding (FSW) process has been under constant developmentsince its invention, more than 20 years ago. Whereas most industrial applicationsuse a gantry machine to weld linear joints, there are applications which consistof complex three-dimensional joints, requiring more degrees of freedom fromthe machines. The use of industrial robots allows FSW of materials alongcomplex joint lines. There is however one major drawback when using robotsfor FSW: the robot compliance. This results in vibrations and insufficient pathaccuracy. For FSW, path accuracy is important as it can cause the welding toolto miss the joint line and thereby cause welding defects.The first part of this research is focused on understanding how welding forcesaffect the FSW robot accuracy. This was first studied by measuring pathdeviation post-welded and later by using a computer vision system and laserdistance sensor to measure deviations online. Based on that knowledge, a robotdeflection model has been developed. The model is able to estimate thedeviation of the tool from the programmed path during welding, based on thelocation and measured tool forces. This model can be used for online pathcompensation, improving path accuracy and reducing welding defects.A second challenge related to robotic FSW on complex geometries is thevariable heat dissipation in the workpiece, causing great variations in the weldingtemperature. Especially for force-controlled robots, this can lead to severewelding defects, fixture- and machine damage when the material overheats.First, a new temperature method was developed which measures thetemperature at the interface of the tool and the workpiece, based on the thermoelectriceffect. The temperature information is used as input to a closed-looptemperature controller. This modifies primarily the rotational speed of the tooland secondarily the axial force. The controller is able to maintain a stablewelding temperature and thereby improve the weld quality and allow joining ofgeometries which were impossible to weld without temperature control.Implementation of the deflection model and temperature controller are twoimportant additions to a FSW system, improving the process robustness,reducing the risk of welding defects and allowing FSW of parts with highlyvarying heat dissipation.
150

Field performance of geogrid reinforced low-volume pavements

Joshi, Rutuparna Vidyadhar 05 November 2010 (has links)
For the past three decades, geosynthetics have been recognized as materials that can significantly improve the performance of pavements on weak subgrade. Pavements exhibit non-linear elasto-plastic behavior. The addition of geosynthetics is undoubtedly beneficial. This being said, researchers have concentrated more on lower life cycle cost and high benefit-cost ratio whereas much less attention has been given to the complex behavior of the reinforced pavement system. Comprehension of the short-term and long-term field performance of reinforced pavements under continued traffic and cyclic environmental loading has remained unexplored. There is empirical evidence indicating quantitative benefits of reinforced versus unreinforced pavement structure. However, quantification of the relative benefits of different types of reinforcement like geogrids and geotextiles lacks information. Further, evaluation of the benefits and comparison of chemical stabilization in the form of lime treatment with mechanical stabilization in the form of reinforcement for pavements on soft soils has received lack of attention. In view of this, full-scale instrumented reinforced and lime treated pavement sections with different schemes were studied. Regular Falling Weight Deflectometer (FWD) testing was conducted in a Farm-to-Market Road, in Grimes County, Texas. Three different geosynthetic products were used for base reinforcement and lime treatment was used for subbase stabilization. Deflection measurements for 9 field trips in 3.5 years were evaluated. Modified deflection basin parameters (DBPs) were defined to typically identify layer properties and were used to measure the relative damage to the base, subbase and subgrade for different sections. A modified Base Damage Index (BDI) and a modified Base Curvature Index (BCI) were defined as a part of this study to capture the benefit of reinforced base and lime stabilized subbase respectively. The variation in the DBPs over three periods of wetting and drying along with explanation of the observed trends forms a part of this research. In addition, a number of condition surveys were performed, during 3 years, to visually identify distresses in various sections. A unique distress quantification technique was developed for measuring deterioration of the pavement sections in terms of the observed distresses and FWD measurements. With this, an index of pavement performance was developed. Thus, the FWD deflection data analyses complemented by visual observation, reveals important information on performance of different geosynthetics with the same base course. Analysis of the field performance of the multiple experimental sections throws light on the relative merits of base reinforcement against lime stabilization. / text

Page generated in 0.0987 seconds