• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 33
  • 8
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 147
  • 52
  • 34
  • 27
  • 26
  • 25
  • 23
  • 23
  • 22
  • 19
  • 19
  • 19
  • 17
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Sistema para medida de fotocondutividade resolvida em comprimento de onda em materiais fotocondutores / System for measure of photoconductivity resolved by wavelength in photoconductive materials

Araujo, William Roberto de, 1980- 27 August 2018 (has links)
Orientadores: Rangel Arthur, Jaime Frejlich / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia / Made available in DSpace on 2018-08-27T09:07:10Z (GMT). No. of bitstreams: 1 Araujo_WilliamRobertode_M.pdf: 5397089 bytes, checksum: d2eae9ba62023ba097143f2d74e0fd24 (MD5) Previous issue date: 2015 / Resumo: Neste trabalho foi desenvolvido um instrumento capaz de realizar medidas em materiais fotossensíveis. Para estudar materiais fotossensíveis, por exemplo, o Bi12TO20, que em geral geram correntes muito baixas da ordem de dezenas de picoamperes, fez-se necessário obter um instrumento capaz de medir nessa ordem de grandeza e com baixo ruído. Para identificar estados localizados dentro do band gap de um semicondutor, que são gerados por defeitos estruturais, é necessário ter uma intensidade de luz com energia acima do nível de Fermi que consiga penetrar no semicondutor, e pelos testes realizados não foram facilmente detectados pela técnica convencional, fonte de luz branca seguida de um monocromador. O uso de LED (Light Emitting Diode) se mostrou promissor por ser barato e ter uma intensidade de luz muito maior que a luz monocromática produzida pelo monocromador. O instrumento possui um computador embarcado (Raspberry PI) que realiza o controle do hardware e possui uma interface Ethernet para conexão remota. O hardware é composto de: uma fonte de alimentação para controle da intensidade e modulação para os LEDs, um controle do posicionamento dos LEDs na amostra, um controle da fonte de alta tensão e um sistema de detecção síncrona para melhor coleta dos dados. Os testes realizados com amostra Bi12TO20 se mostrou compatível com resultados já apresentados pela literatura / Abstract: This work aims to an instrument to perform measurements in photosensitive materials. To study photosensitive materials, for example, Bi12TO20, it was necessary to obtain an instrument capable of measuring the scale and with low noise, which generally lead to very low currents on the order of tens of picoamperes. To identify located states within the band gap of a semiconductor, which structural defects are generated, it is necessary to have a light intensity with energy above the Fermi level can penetrate into the semiconductor, and the tests were not easily detected by the technique conventional white light source followed by a monochromator. The use of LED (Light Emitting Diode) has shown promise for being cheap and having a much higher light intensity that monochromatic light produced by the monochromator. The instrument has an embedded computer (Raspberry-PI) that performs hardware the control and an Ethernet interface for remote connection. The hardware is comprised of: a power supply for the control of intensity and modulation for the LED, a control of the positioning of LEDs on the sample, a high voltage supply control and a synchronous detection system for improved data acquisition. The results of performed tests with sample Bi12TO20 were compatible with results have been presented in the literature / Mestrado / Tecnologia e Inovação / Mestre em Tecnologia
112

Characterization of Multi Plate Field Mill for Lunar Deployment

Forssén, Clayton January 2018 (has links)
During the Apollo 10 and 17 missions NASA astronauts reported that they saw streamers emanating from the surface of the moon. They concluded that the streamers were produced by light scattering from dust particles. The particles are believed to be transported by an ambient electric field. This theorized electric field has never been measured directly, although the electric potential on the surface and above it has. The exact behavior and origin of the electric field is unknown, but has been approximated to be between 1 and 12 V/m. To measure this electrical field a new type of instrument, called Multi Plate Field Mills (MPFM) has been developed. This type of instrument is capable of measuring both the amplitude and directionality of the electrical field. Three of these instruments will be mounted on a 1U CubeSat to be lunched with the PTS mission to the moon scheduled to Q4 2019. In this work the MPFM were characterized. The precision of the instrument for electrical fields applied along the z, y and x axis was found to be 0.6, 1.3, 1.4 (V/m)/(Hz)^(1/2) respectively for measurements in air and 0.14, 0.6, 0.6 (V/m)/(Hz)^(1/2) for measurements in vacuum. This sensitivity outperforms the current state of the art Field Mills and, in addition to that, it provides an assessment of the directionality of the electrical field. / Umeå Lunar Venture
113

Wave Propagation Experiment on FPGA with Miniaturized Payload for Sounding Rocket Application

Filippeschi, Leonardo January 2022 (has links)
This bachelor's thesis aims to implement a wave propagation experiment on Field-Programmable Gate Array to detect the signal strength at pre-defined frequencies for use in sounding rocket experiments. This includes the choice of suitable components such as analog to digital converters, filters, voltage regulators, and amplifiers. The board prototype was designed by keeping in mind the need for a miniaturized solution that would still provide the wanted results, by following design guidelines. The second part of the project involves the design of the software in a hardware description language. An analysis in MATLAB® was done to determine the parameters needed to successfully reconstruct the transmitted signal on the receiver, while still being able to fit on the given FPGA. To make sure of that, a simulation was performed on ModelSim a tool for simulation and debugging for VHDL. From the simulations, it can be concluded that this design is feasible and that this project gives the basis for further development, to create a viable solution for a wave propagation experiment with a miniaturized payload. / Denna kandidatuppsats syftar till att implementera ett vågutbredningsexperiment på Field-Programmable Gate Array för att detektera signalstyrkan vid fördefinierade frekvenser för användning i sonderingsraketexperiment. Detta inkluderar val av lämpliga komponenter som analog till digital omvandlare, filter, spänningsregulatorer och förstärkare. Kortprototypen designades genom att ha i åtanke behovet av en miniatyriserad lösning som fortfarande skulle ge önskat resultat, genom att följa designriktlinjerna. Den andra delen av projektet involverar design av programvaran i ett hårdvarubeskrivningsspråk. En analys i MATLAB® gjordes för att bestämma parametrarna som behövs för att framgångsrikt rekonstruera den sända signalen på mottagaren, samtidigt som den fortfarande kan passa på den givna FPGA. För att säkerställa det gjordes en simulering på ModelSim ett verktyg för simulering och felsökning för VHDL. Från simuleringarna kan man dra slutsatsen att denna design är genomförbar och att detta projekt ger grunden för vidareutveckling, för att skapa en hållbar lösning för ett vågutbredningsexperiment med en miniatyriserad nyttolast. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
114

NEW GENERATION COMMAND RECEIVER FOR SATELLITE USING BENEFITS OF DIGITAL PROCESSING.

Monica, G. Della, Tonello, E. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / Presentation of Alcatel Espace last studies and developments regarding TT&C receiver Products for satellite. This document lays on 3 parts: · a technical point of view showing digital demodulation principles used (base band recovery, analytical head, PM or FM demodulation) and their related offered possibilities(digital controlling loop, lock status detection, jammer detection,....) · a technology/design description · a synthesis showing performance and results
115

Advanced Interferometry for Gravitational Wave Detection

Shaddock, Daniel Anthony, Daniel.Shaddock@jpl.nasa.gov January 2001 (has links)
In this thesis we investigate advanced techniques for the readout and control of various interferometers. In particular, we present experimental investigations of interferometer configurations and control techniques to be used in second generation interferometric gravitational wave detectors. We also present a new technique, tilt locking, for the readout and control of optical interferometers. ¶ We report the first experimental demonstration of a Sagnac interferometer with resonant sideband extraction (RSE). We measure the frequency response to modulation of the length of the arms and demonstrate an increase in signal bandwidth of by a factor of 6.5 compared to the Sagnac with arm cavities only. We compare Sagnac interferometers based on optical cavities with cavity-based Michelson interferometers and find that the Sagnac configuration has little overall advantage in a cavity-based system. ¶ A system for the control and signal extraction of a power recycled Michelson interferometer with RSE is presented. This control system employs a frontal modulation scheme requiring a phase modulated carrier field and a phase modulated subcarrier field. The system is capable of locking all 5 length degrees of freedom and allows the signal cavity to be detuned over the entire range of possibilities, in principle, whilst maintaining lock. We analytically investigate the modulation/demodulation techniques used to obtain these error signals, presenting an introductory explanation of single sideband modulation/demodulation and double demodulation. ¶ This control system is implemented on a benchtop prototype interferometer. We discuss technical problems associated with production of the input beam modulation components and present several solutions. Operation of the interferometer is demonstrated for a wide range of detunings. The frequency response of the interferometer is measured for various detuned points and we observe good agreement with theoretical predictions. The ability of the control system to maintain lock as the interferometer is detuned is experimentally demonstrated. ¶ Tilt locking, a new technique to obtain an error signal to lock a laser to an optical cavity, is presented. This technique produces an error signal by efficient measurement of the interference between the TEM00 and TEM10 modes. We perform experimental and theoretical comparisons with the widely used Pound-Drever-Hall (PDH) technique. We derive the quantum noise limit to the sensitivity of a measurement of the beam position, and using this result calculate the shot noise limited sensitivity of tilt locking. We show that tilt locking has a quantum efficiency of 80%, compared to 82% for the PDH technique. We present experimental demonstrations of tilt locking in several applications including frequency stabilisation, continuous-wave second harmonic generation, and injection locking of a Nd:YAG slab laser. In each of these cases, we demonstrate that the performance of tilt locking is not the limiting factor of the lock stability, and show that it achieves similar performance to the PDH based system. ¶ Finally, we discuss how tilt locking can be effectively applied to two beam interferometers. We show experimentally how a two beam interferometer typically gives excellent isolation against errors arising from changes in the photodetector position, and experimentally demonstrate the use of tilt locking as a signal readout system for a Sagnac interferometer.
116

Performance of cooperative relaying systems with co-channel interference

Yu, Hyungseok 16 July 2012 (has links)
The cooperative relaying scheme is a promising technique for increasing the capacity and reliability of wireless communication. Even though extensive research has performed in information theoretical aspect, there are still many unresolved practical problems of cooperative relaying system. This dissertation analyzes the performance of cooperative decode-and-forward (DF) relaying systems in the presence of multiple interferers and improve network throughput for these systems. We propose and summarize various systems in the view of network topology, transmission structure, and slot allocation. We present closed-form expressions for the end-to-end outage probability, average symbol-error-probability, average packet-error-probability, and network throughput of the proposed systems. This dissertation shows that the robustness of the destination against interference is more important than robustness of the relay against interference from an interference management perspective, and increasing the number of branches yields better outage and error performance improvements against shadowing than increasing the number of hops. In cellular networks, the cooperative diversity systems can outperform the dual-Rx antenna system, but only when the relay is located in a relatively small portion of the total cell area with respect the the destination mobile terminal. The results also show that since the effective regions of the uplink and the downlink do not overlap, different relays should be utilized for cell sectorization in the uplink and the downlink. Finally, the proposed variable-slot selection DF scheme can reduce the system complexity and make the maximum throughput point in the low and moderate signal-to-interference-plus-noise ratio region.
117

The Double Mach-Zehnder Interferometric Hydrophone Based on a Dual Sagnac Ring Configuration

Liu, Shu-Xuan 14 July 2004 (has links)
This paper reports a reciprocal Mach-Zehnder interferometer in a dual Sagnac ring configuration, and one of two arms in Mach-Zehnder interferometer is used for underwater optic fiber hydrophone. Two Mach-Zehnder interferometers operated in opposite sense are simultaneously induced from the underwater acoustic wave and the PZT phase modulation. Thus, at the output, four interferometric beams occur such that the intensity of interferometric beams will enhance. In general, one stage of a double Mach-Zehnder interferometer is just used as a sensor, another one for compensation. Specially, this paper presents two stages of a double Mach-Zehnder interferometer sense the measurand at the same time due to the topology structure of Sagnac ring pairs. In the other words, the characteristic is to win the affection of two beauties at the same time. Two rings in the same direction make a Mach-Zehnder interferometer. Besides, the inner ring in the clockwise direction and the outer one in the counterclockwise direction also make a Mach-Zehnder interferometer. So as to the unbalanced arms of the Mach-Zehnder interferometer, the underwater acoustic wave induces the light beam phase difference in optic fiber hydrophone interrogator to demodulate the acoustic wave signal by PGC circuit.
118

Advanced Readout And Control Electronics For Mems Gyroscopes

Temiz, Yuksel 01 August 2007 (has links) (PDF)
This thesis reports the development of advanced readout and control electronics for MEMS gyroscopes developed at METU. These gyroscope electronics are separated into three main groups: high sensitive interface circuits, drive mode amplitude controlled self oscillation loops, and sense mode phase sensitive amplitude demodulators. The proposed circuits are first implemented with discrete components, and then integrated on CMOS chips. A self oscillation loop enabling constant amplitude drive mode vibrations independent of sensor parameters and ambient conditions is developed. A fully functional angular rate system, which is constructed by employing this advanced control electronics together with the transresistance amplifier type interfaces and sense mode electronics, is implemented on a dedicated PCB having 5.4x2.4 cm2 area. This system demonstrates an impressive performance far better than the best performance achieved by any angular rate system developed at METU. Bias instability and angle random walk values are measured as 14.3 &ordm / /hr and 0.126 &ordm / /&amp / #8730 / hr, respectively. The scale factor of the system is found as 22.2 mV/(&ordm / /sec) with a nonlinearity of 0.01%, and a zero rate output of 0.1 &ordm / /sec, in &plusmn / 50 &ordm / /sec measurement range. CMOS unity gain buffer (UGB) and transimpedance amplifier (TIA) type resistive and capacitive interfaces are characterized through AC, transient, and noise tests. It is observed that on chip biasing mechanisms properly DC-bias the high impedance nodes to 0 V potential. UGB type capacitive interfaces demonstrate superior performance than TIA counterparts due to stability problems associated with TIA interfaces. CMOS differential drive mode control and sense mode demodulation electronics give promising results for the future performance tests.
119

Development Of A Dsp-fpga-based Resolver-to-digital Converter For Stabilized Gun Platforms

Zengin, Yasin 01 May 2010 (has links) (PDF)
Resolver, due to its reliability and durability, has been used for the aim of shaft position sensing of military rotary systems such as tank turrets and gun stabilization platforms for decades. Ready-to-use resolver-to-digital converter integrated circuits which convert the resolver signals into position and speed measurements are utilized in servo systems most commonly. However, the ready-to-use integrated circuits increase the dependency of the servo system to hardware components which in turn decrease the efficiency and flexibility of the servo system for changing system structures such as for changing resolver carrier frequency or changing position and speed sensors. The proposed solution to increase the efficiency and flexibility of the servo system is a software-based resolver-to-digital converter which does not require aforesaid special hardware components and presents a complete software-based solution for the conversion. The proposed software-based resolver-to-digital converter makes use of common programmable hardware v components, that is, FPGA and DSP which form the heart of the servo controller technology in recent years. The proposed structure for the conversion has three components. The first component is the signal conditioner which minimizes the disturbances coming from the resolver signals as harmonic distortions and noise. The second component, the phase-sensitive demodulator, as the name implies, is responsible for phase-sensitive demodulation of resolver signals. The third component is the estimator filter. In order to determine the optimal estimator filter, five different estimator filters with the aforesaid two components are implemented in ASELSAN&rsquo / s stabilized gun system STAMP and they are compared in terms of both estimation performance and computational complexity. The implemented filters include nonlinear observer type filter which is already proposed in the literature for resolver conversion, tracking differentiator adapted to resolver conversion and kalman filters adapted to resolver conversion in different forms such as linear kalman filter, extended kalman filter and unscented kalman filter. At the end of the study, stability and sensitivity analyses are also performed for the proposed system.
120

Noncoherent Differential Demodulation Of Cpm Signals With Joint Frequency Offset And Symbol Timing Estimation

Culha, Onur 01 October 2011 (has links) (PDF)
In this thesis, noncoherent differential demodulation of CPM signals with joint carrier frequency offset and symbol timing estimation is investigated. CPM is very attractive for wireless communications owing to major properties: good spectral efficiency and a constant envelope property. In order to demodulate the received CPM signal differentially, the symbol timing and the carrier frequency offset have to be estimated accurately. There are numerous methods developed for the purpose. However, we have not encountered studies (which are based on autocorrelation estimation and hence suitable for blind synchronization) that give expectable performance for both M-ary and partial response signaling. Thus, in this thesis we analyze a feedforward blind estimation scheme, which recovers the symbol timing and the frequency offset of M-ary CPM signals and partial response CPM signals. In addition, we surveyed low complexity symbol detection methods for CPM signals. Reduced state Viterbi differential detector incorporated to the joint frequency offset and symbol timing estimator is also examined. The performance of the examined demodulator scheme is assessed for the AWGN channel by computer simulations.

Page generated in 0.128 seconds