• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Experimental Assessment of Charge Flow in Electrospinning

Stanger, Jonathan Jeffrey January 2013 (has links)
Electrospinning is a method of using high voltage electric fields to transform polymer solutions into nano-scale fibres. The field has seen significant work on processing different polymers and their resulting fibres but less work has focused the electrospinning process itself. The aim of this thesis is to present experimental observations of charge behaviour in the electrospinning process in the context of the underlying physics typically used to describe electrospinning. This thesis presents a review of existing methods of measuring aspects of the electrospinning process, and reviews published mathematical models of the process as representative examples of the current understanding of the underlying physics that drive the electrospinning phenomena. A novel measurement technique is introduced - high frequency data capture of the electric current flow simultaneously at the high voltage and collector electrode. This is used in three ways: to examine bulk charge density, to measure fibre flight time, and to quantify charge lost from the fibre in flight. Charge density is studied by comparing current and mass flow at the Taylor cone under a wide range of conditions. For 8% PVOH in water a constant bulk charge density was found of 7.7 C/kg. Flight time is studied by determining the time from the application of high voltage to the charged fibre first arriving at the collector electrode. It was found that for 8% PVOH the flight time depended strongly on applied voltage while electrode distance had a negligible effect. Charge loss was studied by comparing the magnitude of the simultaneous current flows in the quasi-steady state to determine if the charge flowing into the Taylor cone arrives with the fibre at the collector. For 8% PVOH, 8% PVOH with ionic salt, 9% PVOH in water and 18% PVB in ethanol, it was found that charge is always lost.
12

The impact of process variables on the chemical vapour deposition of silicon carbide

Cromarty, Robert Douglas 30 May 2013 (has links)
High temperature gas cooled nuclear reactors often make use of Tristructural Isotropic (TRISO) coated fuel particles. In these particles, a layer of silicon carbide plays the key role of providing mechanical strength and acting as a diffusion barrier so preventing the release of fission products. TRISO particles are produced by a chemical vapor deposition (CVD) process in a spouted bed coater. Operating conditions of chemical vapor deposition processes are known to influence the properties of the deposited material. In the case of silicon carbide deposited by pyrolysis of methyltrichlorosilane (MTS) in a hydrogen atmosphere, process parameters that may influence the properties of the silicon carbide deposited include deposition temperature, MTS concentration and hydrogen flow rates. In this study the coating process was investigated using a laboratory scale spouted bed CVD coater. In all the test work conducted, carbon coated zirconia particles were used as a starting material. Only silicon carbide was deposited during these trials. Process parameters investigated were temperature, MTS concentration and hydrogen flow rate. The range investigated was 1250 °C to 1550 °C for temperature, 0.5 % to 2.5 % for MTS concentration and 10.0 l.minute-1 to 15.0 l.minute-1 for hydrogen flow. This covered the range that is typically used for small-scale production coaters. Two different gas inlet configurations, a conventional water cooled inlet and an inlet without any cooling, were used in the investigation. Properties of the coating process, such as the deposition rate and coating efficiency, as well as material properties were measured. Material properties investigated included: density, crush strength, micro-hardness, fracture toughness, nano-hardness, Young’s modulus, elemental composition, phase composition and microstructure. It was found that, of the variables investigated, temperature had the strongest effect while hydrogen flow rate had the least effect on material properties. There was considerable variability in all measured parameters; this introduced considerable uncertainty into the predicted effects of process conditions on material properties. / Thesis (PhD)--University of Pretoria, 2012. / Materials Science and Metallurgical Engineering / unrestricted
13

Hot-wire chemical vapor deposition of silicon nitride thin films

Adams, Abdulghaaliq January 2013 (has links)
Magister Scientiae - MSc / Amorphous silicon nitride (a-SiN:H) thin films has a multitude of applications, stemming from the tunability of the material properties. Plasma enhanced chemical vapour deposition (PECVD) is the industrial workhorse for production of device quality a-SiN:H. However, this technique has drawbacks in terms of film quality, rooting from ion bombardment, which then results in undesirable oxidation. Hot wire chemical vapour deposition (HWCVD) has shown to be a viable competitor to its more costly counterpart, PECVD. A thin film produced by HWCVD lacks ion bombardment due to the deposition taking place in the absence of plasma. This study will focus on optimising the MVsystems ® HWCVD chamber at The University of the Western Cape, for production of device quality a-SiN:H thin films at low processing parameters. The effect of these parameters on the structural, optical and morphological properties was investigated, for reduction of production costs. The films were probed by heavy ion elastic recoil detection, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, Xray diffraction, and ultraviolet visible spectroscopy. It was shown that silicon rich, device quality a-SiN:H thin films could be produced by HWCVD at wire temperatures as low as 1400 °C and the films showed considerable resistance to oxidation in the bulk.
14

Real time detectionof airborne fungal spores and investigations into their dynamics in indoor air

Kanaani, Hussein January 2009 (has links)
Concern regarding the health effects of indoor air quality has grown in recent years, due to the increased prevalence of many diseases, as well as the fact that many people now spend most of their time indoors. While numerous studies have reported on the dynamics of aerosols indoors, the dynamics of bioaerosols in indoor environments are still poorly understood and very few studies have focused on fungal spore dynamics in indoor environments. Consequently, this work investigated the dynamics of fungal spores in indoor air, including fungal spore release and deposition, as well as investigating the mechanisms involved in the fungal spore fragmentation process. In relation to the investigation of fungal spore dynamics, it was found that the deposition rates of the bioaerosols (fungal propagules) were in the same range as the deposition rates of nonbiological particles and that they were a function of their aerodynamic diameters. It was also found that fungal particle deposition rates increased with increasing ventilation rates. These results (which are reported for the first time) are important for developing an understanding of the dynamics of fungal spores in the air. In relation to the process of fungal spore fragmentation, important information was generated concerning the airborne dynamics of the spores, as well as the part/s of the fungi which undergo fragmentation. The results obtained from these investigations into the dynamics of fungal propagules in indoor air significantly advance knowledge about the fate of fungal propagules in indoor air, as well as their deposition in the respiratory tract. The need to develop an advanced, real-time method for monitoring bioaerosols has become increasingly important in recent years, particularly as a result of the increased threat from biological weapons and bioterrorism. However, to date, the Ultraviolet Aerodynamic Particle Sizer (UVAPS, Model 3312, TSI, St Paul, MN) is the only commercially available instrument capable of monitoring and measuring viable airborne micro-organisms in real-time. Therefore (for the first time), this work also investigated the ability of the UVAPS to measure and characterise fungal spores in indoor air. The UVAPS was found to be sufficiently sensitive for detecting and measuring fungal propagules. Based on fungal spore size distributions, together with fluorescent percentages and intensities, it was also found to be capable of discriminating between two fungal spore species, under controlled laboratory conditions. In the field, however, it would not be possible to use the UVAPS to differentiate between different fungal spore species because the different micro-organisms present in the air may not only vary in age, but may have also been subjected to different environmental conditions. In addition, while the real-time UVAPS was found to be a good tool for the investigation of fungal particles under controlled conditions, it was not found to be selective for bioaerosols only (as per design specifications). In conclusion, the UVAPS is not recommended for use in the direct measurement of airborne viable bioaerosols in the field, including fungal particles, and further investigations into the nature of the micro-organisms, the UVAPS itself and/or its use in conjunction with other conventional biosamplers, are necessary in order to obtain more realistic results. Overall, the results obtained from this work on airborne fungal particle dynamics will contribute towards improving the detection capabilities of the UVAPS, so that it is capable of selectively monitoring and measuring bioaerosols, for which it was originally designed. This work will assist in finding and/or improving other technologies capable of the real-time monitoring of bioaerosols. The knowledge obtained from this work will also be of benefit in various other bioaerosol applications, such as understanding the transport of bioaerosols indoors.
15

Electrical properties of amorphous selenium based photoconductive devices for application in x-ray image detectors

Belev, Gueorgui Stoev 14 February 2007
In the last 10-15 years there has been a renewed interest in amorphous Se (a-Se) and its alloys due to their application as photoconductor materials in the new fully digital direct conversion flat panel x-ray medical image detectors. For a number of reasons, the a-Se photoconductor layer in such x-ray detectors has to be operated at very high electric fields (up to 10 Volts per micron) and one of the most difficult problems related to such applications of a Se is the problem of the dark current (the current in the absence of any radiation) minimization in the photoconductor layer. <p>This PhD work has been devoted to researching the possibilities for dark current minimization in a-Se x-ray photoconductors devices through a systematic study of the charge transport (carrier mobility and carrier lifetimes) and dark currents in single and multilayered a-Se devices as a function of alloying, doping, deposition condition and other fabrication factors. The results of the studies are extensively discussed in the thesis. We have proposed a new technological method for dark current reduction in single and multilayered a-Se based photoconductor for x-ray detector applications. The new technology is based on original experimental findings which demonstrate that both hole transport and the dark currents in a-Se films are a very strong function of the substrate temperature (Tsubstrate) during the film deposition process. We have shown that the new technique reduces the dark currents to approximately the same levels as achievable with the previously existing methods for dark current reduction. However, the new method is simpler to implement, and offers some potential advantages, especially in cases when a very high image resolution (20 cycles/mm) and/or fast pixel readout (more than 30 times per second) are needed. <p>Using the new technology we have fabricated simple single and double (ni-like) photoconductor layers on prototype x-ray image detectors with CCD (Charge Coupled Device) readout circuits. Dark currents in the a-Se photoconductor layer were not a problem for detector operation at all tested electric fields. Compared to the currently available commercial systems for mammography, the prototype detectors have demonstrated an excellent imaging performance, in particular superior spatial resolution (20 cycles/mm). Thus, the newly proposed technology for dark current reduction has shown a potential for commercialization.
16

Electrical properties of amorphous selenium based photoconductive devices for application in x-ray image detectors

Belev, Gueorgui Stoev 14 February 2007 (has links)
In the last 10-15 years there has been a renewed interest in amorphous Se (a-Se) and its alloys due to their application as photoconductor materials in the new fully digital direct conversion flat panel x-ray medical image detectors. For a number of reasons, the a-Se photoconductor layer in such x-ray detectors has to be operated at very high electric fields (up to 10 Volts per micron) and one of the most difficult problems related to such applications of a Se is the problem of the dark current (the current in the absence of any radiation) minimization in the photoconductor layer. <p>This PhD work has been devoted to researching the possibilities for dark current minimization in a-Se x-ray photoconductors devices through a systematic study of the charge transport (carrier mobility and carrier lifetimes) and dark currents in single and multilayered a-Se devices as a function of alloying, doping, deposition condition and other fabrication factors. The results of the studies are extensively discussed in the thesis. We have proposed a new technological method for dark current reduction in single and multilayered a-Se based photoconductor for x-ray detector applications. The new technology is based on original experimental findings which demonstrate that both hole transport and the dark currents in a-Se films are a very strong function of the substrate temperature (Tsubstrate) during the film deposition process. We have shown that the new technique reduces the dark currents to approximately the same levels as achievable with the previously existing methods for dark current reduction. However, the new method is simpler to implement, and offers some potential advantages, especially in cases when a very high image resolution (20 cycles/mm) and/or fast pixel readout (more than 30 times per second) are needed. <p>Using the new technology we have fabricated simple single and double (ni-like) photoconductor layers on prototype x-ray image detectors with CCD (Charge Coupled Device) readout circuits. Dark currents in the a-Se photoconductor layer were not a problem for detector operation at all tested electric fields. Compared to the currently available commercial systems for mammography, the prototype detectors have demonstrated an excellent imaging performance, in particular superior spatial resolution (20 cycles/mm). Thus, the newly proposed technology for dark current reduction has shown a potential for commercialization.

Page generated in 0.0791 seconds