• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 13
  • 12
  • 11
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Appariement de contenus textuels dans le domaine de la presse en ligne : développement et adaptation d'un système de recherche d'information / Pairing textual content in the field of on-line news : development and adaptation of an information retrieval system

Désoyer, Adèle 27 November 2017 (has links)
L'objectif de cette thèse, menée dans un cadre industriel, est d'apparier des contenus textuels médiatiques. Plus précisément, il s'agit d'apparier à des articles de presse en ligne des vidéos pertinentes, pour lesquelles nous disposons d'une description textuelle. Notre problématique relève donc exclusivement de l'analyse de matériaux textuels, et ne fait intervenir aucune analyse d'image ni de langue orale. Surviennent alors des questions relatives à la façon de comparer des objets textuels, ainsi qu'aux critères mobilisés pour estimer leur degré de similarité. L'un de ces éléments est selon nous la similarité thématique de leurs contenus, autrement dit le fait que deux documents doivent relater le même sujet pour former une paire pertinente. Ces problématiques relèvent du domaine de la recherche d'information (ri), dans lequel nous nous ancrons principalement. Par ailleurs, lorsque l'on traite des contenus d'actualité, la dimension temporelle est aussi primordiale et les problématiques qui l'entourent relèvent de travaux ayant trait au domaine du topic detection and tracking (tdt) dans lequel nous nous inscrivons également.Le système d'appariement développé dans cette thèse distingue donc différentes étapes qui se complètent. Dans un premier temps, l'indexation des contenus fait appel à des méthodes de traitement automatique des langues (tal) pour dépasser la représentation classique des textes en sac de mots. Ensuite, deux scores sont calculés pour rendre compte du degré de similarité entre deux contenus : l'un relatif à leur similarité thématique, basé sur un modèle vectoriel de ri; l'autre à leur proximité temporelle, basé sur une fonction empirique. Finalement, un modèle de classification appris à partir de paires de documents, décrites par ces deux scores et annotées manuellement, permet d'ordonnancer les résultats.L'évaluation des performances du système a elle aussi fait l'objet de questionnements dans ces travaux de thèse. Les contraintes imposées par les données traitées et le besoin particulier de l'entreprise partenaire nous ont en effet contraints à adopter une alternative au protocole classique d'évaluation en ri, le paradigme de Cranfield. / The goal of this thesis, conducted within an industrial framework, is to pair textual media content. Specifically, the aim is to pair on-line news articles to relevant videos for which we have a textual description. The main issue is then a matter of textual analysis, no image or spoken language analysis was undertaken in the present study. The question that arises is how to compare these particular objects, the texts, and also what criteria to use in order to estimate their degree of similarity. We consider that one of these criteria is the topic similarity of their content, in other words, the fact that two documents have to deal with the same topic to form a relevant pair. This problem fall within the field of information retrieval (ir) which is the main strategy called upon in this research. Furthermore, when dealing with news content, the time dimension is of prime importance. To address this aspect, the field of topic detection and tracking (tdt) will also be explored.The pairing system developed in this thesis distinguishes different steps which complement one another. In the first step, the system uses natural language processing (nlp) methods to index both articles and videos, in order to overcome the traditionnal bag-of-words representation of texts. In the second step, two scores are calculated for an article-video pair: the first one reflects their topical similarity and is based on a vector space model; the second one expresses their proximity in time, based on an empirical function. At the end of the algorithm, a classification model learned from manually annotated document pairs is used to rank the results.Evaluation of the system's performances raised some further questions in this doctoral research. The constraints imposed both by the data and the specific need of the partner company led us to adapt the evaluation protocol traditionnal used in ir, namely the cranfield paradigm. We therefore propose an alternative solution for evaluating the system that takes all our constraints into account.
42

Diffusion de l’information dans les médias sociaux : modélisation et analyse / Information diffusion in social media : modeling and analysis

Guille, Adrien 25 November 2014 (has links)
Les médias sociaux ont largement modifié la manière dont nous produisons, diffusons et consommons l'information et sont de fait devenus des vecteurs d'information importants. L’objectif de cette thèse est d’aider à la compréhension du phénomène de diffusion de l’information dans les médias sociaux, en fournissant des moyens d’analyse et de modélisation.Premièrement, nous proposons MABED, une méthode statistique pour détecter automatiquement les évènements importants qui suscitent l'intérêt des utilisateurs des médias sociaux à partir du flux de messages qu'ils publient, dont l'originalité est d'exploiter la fréquence des interactions sociales entre utilisateurs, en plus du contenu textuel des messages. Cette méthode diffère par ailleurs de celles existantes en ce qu'elle estime dynamiquement la durée de chaque évènement, plutôt que de supposer une durée commune et fixée à l'avance pour tous les évènements. Deuxièmement, nous proposons T-BASIC, un modèle probabiliste basé sur la structure de réseau sous-jacente aux médias sociaux pour prédire la diffusion de l'information, plus précisément l'évolution du volume d'utilisateurs relayant une information donnée au fil du temps. Contrairement aux modèles similaires également basés sur la structure du réseau, la probabilité qu'une information donnée se diffuse entre deux utilisateurs n'est pas constante mais dépendante du temps. Nous décrivons aussi une procédure pour l'inférence des paramètres latents du modèle, dont l'originalité est de formuler les paramètres comme des fonctions de caractéristiques observables des utilisateurs. Troisièmement, nous proposons SONDY, un logiciel libre et extensible implémentant des méthodes tirées de la littérature pour la fouille et l'analyse des données issues des médias sociaux. Le logiciel manipule deux types de données : les messages publiés par les utilisateurs, et la structure du réseau social interconnectant ces derniers. Contrairement aux logiciels académiques existants qui se concentrent soit sur l'analyse des messages, soit sur l'analyse du réseau, SONDY permet d'analyser ces deux types de données conjointement en permettant l'analyse de l'influence par rapport aux évènements détectés. Les expérimentations menées à l'aide de divers jeux de données collectés sur le média social Twitter démontrent la pertinence de nos propositions et mettent en lumière des propriétés qui nous aident à mieux comprendre les mécanismes régissant la diffusion de l'information. Premièrement, en comparant les performances de MABED avec celles de méthodes récentes tirées de la littérature, nous montrons que la prise en compte des interactions sociales entre utilisateurs conduit à une détection plus précise des évènements importants, avec une robustesse accrue en présence de contenu bruité. Nous montrons également que MABED facilite l'interprétation des évènements détectés en fournissant des descriptions claires et précises, tant sur le plan sémantique que temporel. Deuxièmement, nous montrons la validité de la procédure proposée pour estimer les probabilités de diffusion sur lesquelles repose le modèle T-BASIC, en illustrant le pouvoir prédictif des caractéristiques des utilisateurs sélectionnées et en comparant les performances de la méthode d'estimation proposée avec celles de méthodes tirées de la littérature. Nous montrons aussi l'intérêt d'avoir des probabilités non constantes, ce qui permet de prendre en compte dans T-BASIC la fluctuation du niveau de réceptivité des utilisateurs des médias sociaux au fil du temps. Enfin, nous montrons comment, et dans quelle mesure, les caractéristiques sociales, thématiques et temporelles des utilisateurs affectent la diffusion de l'information. Troisièmement, nous illustrons à l'aide de divers scénarios l'utilité du logiciel SONDY, autant pour des non-experts, grâce à son interface utilisateur avancée et des visualisations adaptées, que pour des chercheurs du domaine, grâce à son interface de programmation. / Social media have greatly modified the way we produce, diffuse and consume information, and have become powerful information vectors. The goal of this thesis is to help in the understanding of the information diffusion phenomenon in social media by providing means of modeling and analysis.First, we propose MABED (Mention-Anomaly-Based Event Detection), a statistical method for automatically detecting events that most interest social media users from the stream of messages they publish. In contrast with existing methods, it doesn't only focus on the textual content of messages but also leverages the frequency of social interactions that occur between users. MABED also differs from the literature in that it dynamically estimates the period of time during which each event is discussed rather than assuming a predefined fixed duration for all events. Secondly, we propose T-BASIC (Time-Based ASynchronous Independent Cascades), a probabilistic model based on the network structure underlying social media for predicting information diffusion, more specifically the evolution of the number of users that relay a given piece of information through time. In contrast with similar models that are also based on the network structure, the probability that a piece of information propagate from one user to another isn't fixed but depends on time. We also describe a procedure for inferring the latent parameters of that model, which we formulate as functions of observable characteristics of social media users. Thirdly, we propose SONDY (SOcial Network DYnamics), a free and extensible software that implements state-of-the-art methods for mining data generated by social media, i.e. the messages published by users and the structure of the social network that interconnects them. As opposed to existing academic tools that either focus on analyzing messages or analyzing the network, SONDY permits the joint analysis of these two types of data through the analysis of influence with respect to each detected event.The experiments, conducted on data collected on Twitter, demonstrate the relevance of our proposals and shed light on some properties that give us a better understanding of the mechanisms underlying information diffusion. First, we compare the performance of MABED against those of methods from the literature and find that taking into account the frequency of social interactions between users leads to more accurate event detection and improved robustness in presence of noisy content. We also show that MABED helps with the interpretation of detected events by providing clearer textual description and more precise temporal descriptions. Secondly, we demonstrate the relevancy of the procedure we propose for estimating the pairwise diffusion probabilities on which T-BASIC relies. For that, we illustrate the predictive power of users' characteristics, and compare the performance of the method we propose to estimate the diffusion probabilities against those of state-of-the-art methods. We show the importance of having non-constant diffusion probabilities, which allows incorporating the variation of users' level of receptivity through time into T-BASIC. We also study how -- and in which proportion -- the social, topical and temporal characteristics of users impact information diffusion. Thirdly, we illustrate with various scenarios the usefulness of SONDY, both for non-experts -- thanks to its advanced user interface and adapted visualizations -- and for researchers -- thanks to its application programming interface.
43

Cell segmentation and tracking via proposal generation and selection

Akram, S. U. (Saad Ullah) 20 November 2017 (has links)
Abstract Biology and medicine rely heavily on images to understand how the body functions, for diagnosing diseases and to test the effects of treatments. In recent decades, microscopy has experienced rapid improvements, enabling imaging of fixed and living cells at higher resolutions and frame rates, and deeper inside the biological samples. This has led to rapid growth in the image data. Automated methods are needed to quantitatively analyze these huge datasets and find statistically valid patterns. Cell segmentation and tracking is critical for automated analysis, yet it is a challenging problem due to large variations in cell shapes and appearances caused by various factors, including cell type, sample preparation and imaging setup. This thesis proposes novel methods for segmentation and tracking of cells, which rely on machine learning based approaches to improve the performance, generalization and reusability of automated methods. Cell proposals are used to efficiently exploit spatial and temporal context for resolving detection ambiguities in high-cell-density regions, caused by weak boundaries and deformable shapes of cells. This thesis presents two cell proposal methods: the first method uses multiple blob-like filter banks for detecting candidates for round cells, while the second method, Cell Proposal Network (CPN), uses convolutional neural networks to learn the cell shapes and appearances, and can propose candidates for cells in a wide variety of microscopy images. CPN first regresses cell candidate bounding boxes and their scores, then, it segments the regions inside the top ranked boxes to obtain cell candidate masks. CPN can be used as a general cell detector, as is demonstrated by training a single model to segment images from histology, fluorescence and phase-contrast microscopy. This work poses segmentation and tracking as proposal selection problems, which are solved optimally using integer linear programming or approximately using iterative shortest cost path search and non-maximum suppression. Additionally, this thesis presents a method which utilizes graph-cuts and an off-the-shelf edge detector to accurately segment highly deformable cells. The main contribution of this thesis is a cell tracking method which uses CPN to propose cell candidates, represents alternative tracking hypotheses using a graphical model, and selects the globally optimal sub-graph providing cell tracks. It achieves state-of-the-art tracking performance on multiple public benchmark datasets from both phase-contrast and fluorescence microscopy containing cells of various shapes and appearances. / Tiivistelmä Biologia ja lääketiede nojaavat vahvasti kuvatietoon solujen ja kehon toimintojen ymmärtämiseksi sairauksien diagnostiikassa ja hoitojen vaikutusten seuraamisessa. Viime vuosikymmeninä mikroskopiassa on tapahtunut nopeaa teknistä kehitystä, mikä on mahdollistanut elävien solujen kuvantamisen tarkemmin, nopeammin sekä syvemmältä automatisoidusti useasta näytteestä. Tämä taas on johtanut kuvadatan nopeaan kasvuun ja suurempaan määrään biologisia kysymyksiä, joihin voidaan vastata. Kuvadatan räjähdysmäisen kasvun vuoksi kaikkia tuloksia ei voida enää tulkita pelkästään ihmistyövoimaa käyttämällä, mikä on johtanut tarpeeseen kehittää automaattisia menetelmiä analysoimaan kvantitatiivisesti suuria datajoukkoja ja löytämään tilastollisesti kelvollisia malleja. Solujen erottaminen niiden ympäristöstä ja toisista soluista (segmentointi) ja solujen seuranta ovat kriittisiä alkuvaiheen osia onnistuneessa automaattisessa analyysissä. Automaattisten menetelmien kehittämisessä solusegmentointi on kuitenkin osoittautunut hyvin haastavaksi ongelmaksi solujen muodon ja ulkonäön suurten muutosten vuoksi solutyypistä, näytteen valmistelusta ja kuvantamisjärjestelmästä johtuen. Tämä väitöskirja esittää uusia menetelmiä solujen segmentointiin ja seurantaan keskittyen koneoppimiseen perustuviin lähestymistapoihin, jotka parantavat automaattisten menetelmien suorituskykyä ja uudelleenkäytettävyyttä. Spatiaalista ja ajallista kontekstia tehokkaasti hyödyntäviä soluehdotelmia käytetään ratkaisemaan solujen heikosti erottuvista reunoista ja joustavista muodoista johtuvaa solujen muodon monitulkintaisuutta erityisesti silloin kun tutkittava solutiheys on suuri. Tämä väitöskirja esittää kaksi menetelmää soluehdotelmille; ensimmäinen menetelmä käyttää useita läikkätyyppisiä suodatinpankkeja ilmaisemaan kandidaatteja pyöreänmuotoisille soluille, kun taas toinen menetelmä nimeltään soluehdotelmaverkko (Cell Proposal Network, CPN) käyttää konvoluutionaalisia neuroverkkoja oppiakseen tunnistamaan solut niiden muodon sekä ulkonäön perusteella erityyppisissä mikroskooppikuvissa. CPN regressoi ensin solukandidaatteja ympäröivät suorakaiteet ja niiden pistemäärän, jonka jälkeen se segmentoi alueet parhaiten sijoittuneiden suorakaiteiden joukosta tuottaen solukandidaattimaskit. CPN:ää voidaan mahdollisesti käyttää yleisenä soluilmaisimena erityyppisilla kuvantamistekniikoilla tuotetuissa kuvissa mukaan lukien histologisen valo-, fluoresenssi- ja vaihekontrastimikroskooppian. Väitöskirja esittää solujen segmentoinnin ja seurannan soluehdotelmien valintaongelmina, mitkä ratkaistaan joko optimaalisesti käyttämällä kokonaislukuoptimointia tai likimääräisesti käyttämällä iteratiivista lyhimmän kustannuspolun hakua sekä ei-maksimien vaimennusta. Tämä väitöskirja esittää myös verkon leikkaukseen (graph cut) perustuvan menetelmän, mikä hyödyntää valmiiksi saatavilla olevaa reunanilmaisinta segmentoimaan tarkasti muotoaan voimakkaasti muuttavia soluja. Väitöskirjatutkimuksen keskeinen tulos on uusi solujen seurantamenetelmä, mikä käyttää CPN:ää solukandidaattien ehdottamiseen, esittää vaihtoehtoiset seurantahypoteesit verkkomallia hyödyntämällä, ja valitsee globaalisti optimaalisen aliverkon solujen kulkemille reitille. Verrattuna useisiin muihin julkisesti saatavilla oleviin kuva-analyysiohjelmistoihin tässä väitöskirjassa kehitetyt menetelmät olivat suorituskyvyltään parhaita vaihekontrasti- ja fluoresenssimikroskopialla tuotettujen kuva-aineistojen analyyseissa, joissa solujen ulkomuoto oli hyvin vaihteleva.
44

Radar-based Application of Pedestrian and Cyclist Micro-Doppler Signatures for Automotive Safety Systems

Held, Patrick 12 May 2022 (has links)
Die sensorbasierte Erfassung des Nahfeldes im Kontext des hochautomatisierten Fahrens erfährt einen spürbaren Trend bei der Integration von Radarsensorik. Fortschritte in der Mikroelektronik erlauben den Einsatz von hochauflösenden Radarsensoren, die durch effiziente Verfahren sowohl im Winkel als auch in der Entfernung und im Doppler die Messgenauigkeit kontinuierlich ansteigen lassen. Dadurch ergeben sich neuartige Möglichkeiten bei der Bestimmung der geometrischen und kinematischen Beschaffenheit ausgedehnter Ziele im Fahrzeugumfeld, die zur gezielten Entwicklung von automotiven Sicherheitssystemen herangezogen werden können. Im Rahmen dieser Arbeit werden ungeschützte Verkehrsteilnehmer wie Fußgänger und Radfahrer mittels eines hochauflösenden Automotive-Radars analysiert. Dabei steht die Erscheinung des Mikro-Doppler-Effekts, hervorgerufen durch das hohe Maß an kinematischen Freiheitsgraden der Objekte, im Vordergrund der Betrachtung. Die durch den Mikro-Doppler-Effekt entstehenden charakteristischen Radar-Signaturen erlauben eine detailliertere Perzeption der Objekte und können in direkten Zusammenhang zu ihren aktuellen Bewegungszuständen gesetzt werden. Es werden neuartige Methoden vorgestellt, die die geometrischen und kinematischen Ausdehnungen der Objekte berücksichtigen und echtzeitfähige Ansätze zur Klassifikation und Verhaltensindikation realisieren. Wird ein ausgedehntes Ziel (z.B. Radfahrer) von einem Radarsensor detektiert, können aus dessen Mikro-Doppler-Signatur wesentliche Eigenschaften bezüglich seines Bewegungszustandes innerhalb eines Messzyklus erfasst werden. Die Geschwindigkeitsverteilungen der sich drehenden Räder erlauben eine adaptive Eingrenzung der Tretbewegung, deren Verhalten essentielle Merkmale im Hinblick auf eine vorausschauende Unfallprädiktion aufweist. Ferner unterliegen ausgedehnte Radarziele einer Orientierungsabhängigkeit, die deren geometrischen und kinematischen Profile direkt beeinflusst. Dies kann sich sowohl negativ auf die Klassifikations-Performance als auch auf die Verwertbarkeit von Parametern auswirken, die eine Absichtsbekundung des Radarziels konstituieren. Am Beispiel des Radfahrers wird hierzu ein Verfahren vorgestellt, das die orientierungsabhängigen Parameter in Entfernung und Doppler normalisiert und die gemessenen Mehrdeutigkeiten kompensiert. Ferner wird in dieser Arbeit eine Methodik vorgestellt, die auf Grundlage des Mikro- Doppler-Profils eines Fußgängers dessen Beinbewegungen über die Zeit schätzt (Tracking) und wertvolle Objektinformationen hinsichtlich seines Bewegungsverhaltens offenbart. Dazu wird ein Bewegungsmodell entwickelt, das die nichtlineare Fortbewegung des Beins approximiert und dessen hohes Maß an biomechanischer Variabilität abbildet. Durch die Einbeziehung einer wahrscheinlichkeitsbasierten Datenassoziation werden die Radar-Detektionen ihren jeweils hervorrufenden Quellen (linkes und rechtes Bein) zugeordnet und eine Trennung der Gliedmaßen realisiert. Im Gegensatz zu bisherigen Tracking-Verfahren weist die vorgestellte Methodik eine Steigerung in der Genauigkeit der Objektinformationen auf und stellt damit einen entscheidenden Vorteil für zukünftige Fahrerassistenzsysteme dar, um deutlich schneller auf kritische Verkehrssituationen reagieren zu können.:1 Introduction 1 1.1 Automotive environmental perception 2 1.2 Contributions of this work 4 1.3 Thesis overview 6 2 Automotive radar 9 2.1 Physical fundamentals 9 2.1.1 Radar cross section 9 2.1.2 Radar equation 10 2.1.3 Micro-Doppler effect 11 2.2 Radar measurement model 15 2.2.1 FMCW radar 15 2.2.2 Chirp sequence modulation 17 2.2.3 Direction-of-arrival estimation 22 2.3 Signal processing 25 2.3.1 Target properties 26 2.3.2 Target extraction 28 Power detection 28 Clustering 30 2.3.3 Real radar data example 31 2.4 Conclusion 33 3 Micro-Doppler applications of a cyclist 35 3.1 Physical fundamentals 35 3.1.1 Micro-Doppler signatures of a cyclist 35 3.1.2 Orientation dependence 36 3.2 Cyclist feature extraction 38 3.2.1 Adaptive pedaling extraction 38 Ellipticity constraints 38 Ellipse fitting algorithm 39 3.2.2 Experimental results 42 3.3 Normalization of the orientation dependence 44 3.3.1 Geometric correction 44 3.3.2 Kinematic correction 45 3.3.3 Experimental results 45 3.4 Conclusion 47 3.5 Discussion and outlook 47 4 Micro-Doppler applications of a pedestrian 49 4.1 Pedestrian detection 49 4.1.1 Human kinematics 49 4.1.2 Micro-Doppler signatures of a pedestrian 51 4.1.3 Experimental results 52 Radially moving pedestrian 52 Crossing pedestrian 54 4.2 Pedestrian feature extraction 57 4.2.1 Frequency-based limb separation 58 4.2.2 Extraction of body parts 60 4.2.3 Experimental results 62 4.3 Pedestrian tracking 64 4.3.1 Probabilistic state estimation 65 4.3.2 Gaussian filters 67 4.3.3 The Kalman filter 67 4.3.4 The extended Kalman filter 69 4.3.5 Multiple-object tracking 71 4.3.6 Data association 74 4.3.7 Joint probabilistic data association 80 4.4 Kinematic-based pedestrian tracking 84 4.4.1 Kinematic modeling 84 4.4.2 Tracking motion model 87 4.4.3 4-D radar point cloud 91 4.4.4 Tracking implementation 92 4.4.5 Experimental results 96 Longitudinal trajectory 96 Crossing trajectory with sudden turn 98 4.5 Conclusion 102 4.6 Discussion and outlook 103 5 Summary and outlook 105 5.1 Developed algorithms 105 5.1.1 Adaptive pedaling extraction 105 5.1.2 Normalization of the orientation dependence 105 5.1.3 Model-based pedestrian tracking 106 5.2 Outlook 106 Bibliography 109 List of Acronyms 119 List of Figures 124 List of Tables 125 Appendix 127 A Derivation of the rotation matrix 2.26 127 B Derivation of the mixed radar signal 2.52 129 C Calculation of the marginal association probabilities 4.51 131 Curriculum Vitae 135 / Sensor-based detection of the near field in the context of highly automated driving is experiencing a noticeable trend in the integration of radar sensor technology. Advances in microelectronics allow the use of high-resolution radar sensors that continuously increase measurement accuracy through efficient processes in angle as well as distance and Doppler. This opens up novel possibilities in determining the geometric and kinematic nature of extended targets in the vehicle environment, which can be used for the specific development of automotive safety systems. In this work, vulnerable road users such as pedestrians and cyclists are analyzed using a high-resolution automotive radar. The focus is on the appearance of the micro-Doppler effect, caused by the objects’ high kinematic degree of freedom. The characteristic radar signatures produced by the micro-Doppler effect allow a clearer perception of the objects and can be directly related to their current state of motion. Novel methods are presented that consider the geometric and kinematic extents of the objects and realize real-time approaches to classification and behavioral indication. When a radar sensor detects an extended target (e.g., bicyclist), its motion state’s fundamental properties can be captured from its micro-Doppler signature within a measurement cycle. The spinning wheels’ velocity distributions allow an adaptive containment of the pedaling motion, whose behavior exhibits essential characteristics concerning predictive accident prediction. Furthermore, extended radar targets are subject to orientation dependence, directly affecting their geometric and kinematic profiles. This can negatively affect both the classification performance and the usability of parameters constituting the radar target’s intention statement. For this purpose, using the cyclist as an example, a method is presented that normalizes the orientation-dependent parameters in range and Doppler and compensates for the measured ambiguities. Furthermore, this paper presents a methodology that estimates a pedestrian’s leg motion over time (tracking) based on the pedestrian’s micro-Doppler profile and reveals valuable object information regarding his motion behavior. To this end, a motion model is developed that approximates the leg’s nonlinear locomotion and represents its high degree of biomechanical variability. By incorporating likelihood-based data association, radar detections are assigned to their respective evoking sources (left and right leg), and limb separation is realized. In contrast to previous tracking methods, the presented methodology shows an increase in the object information’s accuracy. It thus represents a decisive advantage for future driver assistance systems in order to be able to react significantly faster to critical traffic situations.:1 Introduction 1 1.1 Automotive environmental perception 2 1.2 Contributions of this work 4 1.3 Thesis overview 6 2 Automotive radar 9 2.1 Physical fundamentals 9 2.1.1 Radar cross section 9 2.1.2 Radar equation 10 2.1.3 Micro-Doppler effect 11 2.2 Radar measurement model 15 2.2.1 FMCW radar 15 2.2.2 Chirp sequence modulation 17 2.2.3 Direction-of-arrival estimation 22 2.3 Signal processing 25 2.3.1 Target properties 26 2.3.2 Target extraction 28 Power detection 28 Clustering 30 2.3.3 Real radar data example 31 2.4 Conclusion 33 3 Micro-Doppler applications of a cyclist 35 3.1 Physical fundamentals 35 3.1.1 Micro-Doppler signatures of a cyclist 35 3.1.2 Orientation dependence 36 3.2 Cyclist feature extraction 38 3.2.1 Adaptive pedaling extraction 38 Ellipticity constraints 38 Ellipse fitting algorithm 39 3.2.2 Experimental results 42 3.3 Normalization of the orientation dependence 44 3.3.1 Geometric correction 44 3.3.2 Kinematic correction 45 3.3.3 Experimental results 45 3.4 Conclusion 47 3.5 Discussion and outlook 47 4 Micro-Doppler applications of a pedestrian 49 4.1 Pedestrian detection 49 4.1.1 Human kinematics 49 4.1.2 Micro-Doppler signatures of a pedestrian 51 4.1.3 Experimental results 52 Radially moving pedestrian 52 Crossing pedestrian 54 4.2 Pedestrian feature extraction 57 4.2.1 Frequency-based limb separation 58 4.2.2 Extraction of body parts 60 4.2.3 Experimental results 62 4.3 Pedestrian tracking 64 4.3.1 Probabilistic state estimation 65 4.3.2 Gaussian filters 67 4.3.3 The Kalman filter 67 4.3.4 The extended Kalman filter 69 4.3.5 Multiple-object tracking 71 4.3.6 Data association 74 4.3.7 Joint probabilistic data association 80 4.4 Kinematic-based pedestrian tracking 84 4.4.1 Kinematic modeling 84 4.4.2 Tracking motion model 87 4.4.3 4-D radar point cloud 91 4.4.4 Tracking implementation 92 4.4.5 Experimental results 96 Longitudinal trajectory 96 Crossing trajectory with sudden turn 98 4.5 Conclusion 102 4.6 Discussion and outlook 103 5 Summary and outlook 105 5.1 Developed algorithms 105 5.1.1 Adaptive pedaling extraction 105 5.1.2 Normalization of the orientation dependence 105 5.1.3 Model-based pedestrian tracking 106 5.2 Outlook 106 Bibliography 109 List of Acronyms 119 List of Figures 124 List of Tables 125 Appendix 127 A Derivation of the rotation matrix 2.26 127 B Derivation of the mixed radar signal 2.52 129 C Calculation of the marginal association probabilities 4.51 131 Curriculum Vitae 135
45

Feasibility of Event-Based Sensors to Detect and Track Unresolved, Fast-Moving, and Short-Lived Objects

Tinch, Jonathan Luc 13 July 2022 (has links)
No description available.
46

Combining Trajectory with Temporal Appearance Features for Joint Detection and Tracking of Drones / Kombinering av trajektoria med utseende över tid för att upptäcka och spåra drönare

Puranen Åhfeldt, Theo January 2024 (has links)
As drones are becoming ubiquitous, robust detection and tracking of potentially hostile drones is becoming a necessity. Among the many approaches being investigated in this relatively new research area, one cost effective option is the use of optical cameras equipped with computer vision algorithms. With the use of deep learning, it becomes possible to achieve high accuracy by generalizing from large datasets. However, drones are small and visually similar to birds, which has proven to be a major difficulty for purely vision based systems. This thesis investigates the utility of trajectory information (velocity and acceleration) in addition to temporal appearance features for detection and tracking of drones. While both kinds of information has been used in a variation of ways, work combining the two is largely lacking. Our approach uses background subtraction to generate candidate objects that initialize an LSTM which in turn combines trajectory and appearance information over multiple frames for joint detection and tracking of drones. While our specific implementation fails to outperform a traditional object detector in the form of YOLOv8, this could change with the solution of two problems identified with our approach. First problem being how to effectively incorporate large amounts of background data into the training of our network. Second being how to avoid repeatedly proposing the same non-drone candidates, while still being able to quickly resume tracking of a lost drone. / I takt med att drönare blir allt vanligare stiger kraven på robusta system som kan upptäcka och spåra hotfulla drönare. Bland de flertal tillvägagångssätt som undersöks i detta relativt nya forskningsområde är användandet av optiska kameror utrustade med datorseende-algoritmer ett kostnadseffektivt val. Genom användningen av djupinlärning har det blivit möjligt att uppnå hög pricksäkerhet genom att generalisera utifrån stora dataset. Men, drönare är små och utseendemässigt sett lika fåglar vilket är ett svåröverkomligt problem för system som endast förlitar sig på datorseende. I detta examensarbete undersöks vilken nytta som kan fås om man även tar hänsyn till information om drönarens trajektoria i form av hastighet och acceleration. Trots att både visuellt utseende och trajektoria är välstuderat när det kommer till drönardetektering, saknas det till stor del forskning som behandlar båda tillsammans. Vi använder bakgrundssubtraktion för att generera kandidater som startpunkt för en LSTM för att sedan kombinera trajektoria med utseende för förenad detektering och spårning av drönare. Fastän vår specifika implementation inte lyckas överträffa en traditionell objektdetekterare i form av YOLOv8, skulle detta kunna ändras givet en lösning på två identifierade problem med vårt tillvägagångssätt. Det första problemet är att hitta ett effektivt sätt att inkorporera stora mängder bakgrundsdata i träningen av vårt nätverk. Det andra är att undvika att gång på gång föreslå samma kandidater och samtidigt kunna snabbt återuppta spårningen av en förlorad drönare.
47

Perception de l'environnement par radar hyperfréquence. Application à la localisation et la cartographie simultanées, à la détection et au suivi d'objets mobiles en milieu extérieur / Perception of the environment with a hyper-frequency radar. Application to simultaneous localization and mapping, to detection and tracking of moving objects in outdoor environment.

Vivet, Damien 05 December 2011 (has links)
Dans le cadre de la robotique mobile extérieure, les notions de perception et de localisation sont essentielles au fonctionnement autonome d’un véhicule. Les objectifs de ce travail de thèse sont multiples et mènent vers un but de localisation et de cartographie simultanée d’un environnement extérieur dynamique avec détection et suivi d’objet mobiles (SLAMMOT) à l’aide d’un unique capteur extéroceptif tournant de type radar dans des conditions de circulation dites "réalistes", c’est-à-dire à haute vitesse soit environ 30 km/h. Il est à noter qu’à de telles vitesses, les données acquises par un capteur tournant son corrompues par le déplacement propre du véhicule. Cette distorsion, habituellement considérée comme une perturbation, est analysée ici comme une source d’information. Cette étude vise également à évaluer les potentialités d’un capteur radar de type FMCW (onde continue modulée en fréquence) pour le fonctionnement d’un véhicule robotique autonome. Nous avons ainsi proposé différentes contributions : – une correction de la distorsion à la volée par capteurs proprioceptifs qui a conduit à une application de localisation et de cartographie simultanées (SLAM), – une méthode d’évaluation de résultats de SLAM basées segment, – une considération de la distorsion des données dans un but proprioceptif menant à une application SLAM, – un principe d’odométrie fondée sur les données Doppler propres au capteur radar, – une méthode de détection et de pistage d’objets mobiles : DATMO avec un unique radar. / In outdoor robotic context, notion of perception and localization is essential for an autonomous navigation of a mobile robot. The objectives of this PhD are multiple and tend to develop a simultaneous localization and mapping approach in a dynamic outdoor environment with detection and tracking of moving objects (SLAMMOT) with a unique exteroceptive radar sensor in real driving conditions, around 30 km/h. At such high speed, data obtained with a rotating range sensor are corrupted by the own vehicle displacement. This distortion, usually considered as a disturbance, is analyzed here as a source of information. This study explores radar frequency modulated continuous wave (FMCW) technology potential for mobile robotics in extended outdoor environment. In this work, we propose : – a distortion correction on-the-fly with proprioceptive sensors in order to realize a localization and mapping application (SLAM), – a line based SLAM evaluation method, – a consideration of distortion in a proprioceptive purpose for localization and mapping, – an odometry principle based on Doppler velocimetry provided by radar sensor, – a detection and tracking of mobile objects : DATMO, with a unique radar sensor.
48

Sledování více osob ve videu z jedné kamery / Multi-Person Tracking in Video from Mono-Camera

Vojvoda, Jakub January 2016 (has links)
Multiple person detection and tracking is challenging problem with high application potential. The difficulty of the problem is caused mainly by complexity of scene and large variations in articulation and appearance of person. The aim of this work is to design and implement system capable of detecting and tracking people in video from static mono-camera. For this purpose, an online method for tracking has been proposed based on tracking-by-detection approach. The method combines detection, tracking and fusion of responses to achieve accurate results. The implementation was evaluated on available dataset and the results show that it is suitable to use for this task. A method for motion segmentation was proposed and implemented to improve the tracking results. Furthermore, implementation of detector based on histogram of oriented gradients was accelerated by taking advantage of graphics processing unit (GPU).
49

Development and Evaluation of a Machine Vision System for Digital Thread Data Traceability in a Manufacturing Assembly Environment

Alexander W Meredith (15305698) 29 April 2023 (has links)
<p>A thesis study investigating the development and evaluation of a computer vision (CV) system for a manufacturing assembly task is reported. The CV inference results are compared to a Manufacturing Process Plan and an automation method completes a buyoff in the software, Solumina. Research questions were created and three hypotheses were tested. A literature review was conducted recognizing little consensus of Industry 4.0 technology adoption in manufacturing industries. Furthermore, the literature review uncovered the need for additional research within the topic of CV. Specifically, literature points towards more research regarding the cognitive capabilities of CV in manufacturing. A CV system was developed and evaluated to test for 90% or greater confidence in part detection. A CV dataset was developed and the system was trained and validated with it. Dataset contextualization was leveraged and evaluated, as per literature. A CV system was trained from custom datasets, containing six classes of part. The pre-contextualization dataset and post-contextualization dataset was compared by a Two-Sample T-Test and statistical significance was noted for three classes. A python script was developed to compare as-assembled locations with as-defined positions of components, per the Manufacturing Process Plan. A comparison of yields test for CV-based True Positives (TPs) and human-based TPs was conducted with the system operating at a 2σ level. An automation method utilizing Microsoft Power Automate was developed to complete the cognitive functionality of the CV system testing, by completing a buyoff in the software, Solumina, if CV-based TPs were equal to or greater than human-based TPs.</p>

Page generated in 0.1328 seconds