Spelling suggestions: "subject:"diamondlike carbon"" "subject:"diamondback carbon""
11 |
Studies of nucleation and growth of hard carbon coatings using energy-assisted chemical vapour deposition processesAli, Nasar January 2001 (has links)
No description available.
|
12 |
Fabrication and properties of diamond-like carbon films in discharge plasmasRybachuk, Maksym January 2007 (has links)
This thesis presents theoretical and experimental study of properties of amorphous diamond-like carbon (DLC) coatings synthesised using discharge plasma methods. There were two objectives in this study.
The first objective was to investigate the formation mechanism of hydrogenated DLC films (a-C:H) in an open hydrocarbon plasma source. The inductively coupled plasma (ICP) reactor was used to synthesise the films and the formation of sp2 and sp3 hybridised phases and the combination of these phases in the ICP plasma environment was studied. It was found that for a-C:H films with narrow distribution of the sp3 content the mechanical properties are determined by the degree of disorder of the sp2 fraction. The relationship between the sp3 content in fabricated films and hardness and Young's modulus was established. Raman and multi-wavelength (Vis – UV range) Raman spectroscopy was primarily used together with other suitable analytical methods to examine a-C:H films and it was found that films fabricated at higher ion energies displayed higher degree of clustering and bonding disorder than films produced at lower ion energies. All as fabricated a-C:H films were also found contain basic π-conjugated polymer inclusions as of trans-polyacetylene. The Raman results also reveal that the magnitude of Rayleigh scattered light is related to the relative density of the films, a feature that can be useful for monitoring film growth in-situ. The use of X-ray photoelectron spectroscopy (XPS) as a suitable method for measuring the sp3 content of the bulk DLC was also established.
The second objective was to develop a fabrication technique that would allow fabrication of DLC films using graphite target sputtering with a single focused ion beam source and producing films with medium-high sp3 content. This research was motivated by the industrial partner of the project Laserdyne Pty Ltd that required a simple DLC deposition apparatus to be integrated into a standard, stand alone, optical thin film deposition chamber. Such technique was developed on the basis of a conventional ion beam target sputtering. In our experiments hydrogen-free DLC films with medium sp3 content were produced using a single, Kaufmann type ion source operated at low energies. The fabrication technique, denoted a reactive ion beam sputter deposition (RIBSD), was based on sputtering a graphite target at low incident angles and positioning the substrate at the grazing angles to the incoming ions, thus the incident ions (Ar and Xe ions were used) were simultaneously bombarding the target and the growing film. The effect of angle of incidence of an ion beam to the target and to the substrate in creating the sp3 content in DLC was investigated. It was found that the infringement bombardment of the substrate was not favourable for DLC growth as it essentially provided for a secondary re-sputtering process. Quality DLC films with approximately 40 % of the sp3 content were fabricated at the optimal angle of the ion flux to the target of 30º and to the substrate of 0º (parallel to the ion bema axis). The increased ion energy contributed to structural changes in DLC from predominantly sp2 graphitic like bonding to tetrahedral sp3 bonding arrangement.
|
13 |
The mechanical properties of diamond-like carbon filmsHeidger, Susan Lynn January 1993 (has links)
No description available.
|
14 |
Electrodeposition of Diamond-like Carbon thin films on Silicon and their CharacteristicalWu, Jian-Guang 27 July 2010 (has links)
Diamond-like carbon (DLC) film exhibits an extreme hardness, low friction coefficient, chemical stability, heat conductivity, high resistance, and high optical transparency. There properties lead to remarkable on industrial applications Diamond-like carbon films were deposited onto the silicon (100) and ITO glass substrates. Under the same deposition conditions, the characteristics of DLC films were evaluated by the variations of deposited parameters such as the applied voltage, deposition temperature the concentrations of electrolyte; acetic acid. The properties due to the different substrate were compared and discussed in detail. In experimental work, the properties of DLC film were conducted by various measurements. Scanning electron microscopy can make an insight into the surface morphology also to reveal the uniformity of the DLC films. For the I-t curves of DLC film growth, it can be used to study of the growth mechanism by correlation the surface morphology observed by Scanning electron microscopy (SEM). The transmission, refraction index and optical band gap of DLC film was measured by the N &K analyzer. Finally, the hydrogen content, composition and microstructure of DLC films were characterized by the FTIR and XPS analyze
According to above results, DLC film using the electrolyte of acetic acid was more difficult to deposit on Silicon substrate because the very high activation energy and the high hydrogen ion existing in DI water firstly deposited on the surface of Si substrate. For FTIR measurement, The absorption wavenumber of various bonding observed were positioned at 610 cm-1,680 cm-1,1100 cm-1 and 3600 cm-1~3800 cm-1and to be cauterized as the bonding of Si-H¡BSi-O and O-H, respectively. The absorption peaks within the range from 2800 cm-1 to 3100 cm-1 were missing. Peaks observed were attributed to the bonding of Si-C¡B SP3 C-C¡B C-O¡BC-C¡BC=O and C=C and the CHn bonding was missing on the surface of substrate.
The reaction mechanism of DLC deposition can be suggested from the results of measurements. As bias voltage applied, the acetic ion; CH3COO- were attracted by the Anode as the state of C¡]Anode¡^-OOCCH3, and then to give electron and form the CH3+ion»PCO2. The hydrogen ion and methyl ion were attracted by cathode. The competitive reaction was built between ions to deposited DLC films and/or to form Si-H. However, experimental results show that the last was preferred and for forming the DLC film was forbidden.
|
15 |
Effect of silicon substrate treatment on the growth of DLC thin filmLi, Che-min 26 July 2011 (has links)
Diamond-like Carbon (DLC) film exhibits an extreme hardness, low friction coefficient, chemical stability, heat conductivity, and high resistance. Their properties lead to remarkable applications on industry. In the experiment, we use electrondeposition to deposit the DLC film on Si substrate. Different concentrations of electrolyte were used to deposit on the of silicon substrates with different roughness surface. KOH solution was used to etch and to get the different roughness on the surface of silicon substrates. the morphology of surface were observed by SEM and AFM. Composition and microstructure of the DLC film were characterized by the Raman spectroscopy and XPS, repectively. The optical properties of DLC film were investigated by the N&K analyzer.
From the AFM results, the surface morphology observed by KOH etching on the surface of silicon substrates during etching time as 0¡B20¡B40¡B60 min, the surface roughness increased from 2.64 to 14.07 nm. Based on thevariation of surface roughness, the growth rate was observed more quicker than the non etch surface. Moreover, to deposit the DLC film on the alkalinity solution was better then acid solution. However, the ID/IG ratio and the sp2/sp3 ratio obtained from Raman and XPS increase with the roughness surface from 1.09 to 1.82 and 0.985 to 2.15, respectively. It is because that the microstructure of DLC film varies and exchange to graphitization.
The mixed the ammonia water and ammonium acetate into acetic acid solution was used to deposit DLC film on Si surface, and film shows with lower ID/IG ratio. Additionally, as the amount of ammonium acetate was varied in the solution, the ID/IG ratio of the films observed as decrease from 1.2 to 0.93 with increasing amount of ammonium acetate 10g to 40g. It was due to the methyl radicals increase in the solution. Besides, we can find the optical band gap decreased with DLC films changing to graphitization.
|
16 |
Synthesis and characterization of diamond-like carbon and DLC-MoS2 composite thin films2014 December 1900 (has links)
In order to obtain diamond-like carbon (DLC) thin films with improved mechanical, tribological, thermal and corrosion properties for practical applications, the structure and properties of various DLC thin films including hydrogen-free DLC, hydrogenated DLC, and DLC-MoS2 composites synthesized under different conditions were investigated in this thesis. The research methodologies and the main results are summarized in following paragraphs.
Hydrogen-free DLC thin films were synthesized by biased target ion beam deposition (BTIBD) method, while hydrogenated DLC thin films were deposited by ion beam deposition technique using a Kaufman-type ion source and an end-Hall ion source. DLC-MoS2 composite thin films were also synthesized using BTIBD technique in which MoS2 was produced by sputtering a MoS2 target while DLC was simultaneously deposited by ion beam deposition. The influence of processing parameters on the bonding structure, morphology and properties of the deposited films was investigated using atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, synchrotron based near edge X-ray absorption fine structure spectroscopy, X-ray diffraction, scanning electron microscopy, nanoindentation, ball-on-disk and corrosion testing. Finally, the influence of annealing temperature on the structure and properties of pure DLC and DLC-MoS2 composite films in ambient air and low pressure environments was studied.
In the case of BTIBD method, hydrogen-free DLC thin films with exceptionally high smoothness and low friction coefficient were prepared by biased target sputtering of graphite target without additional ion bombardment either by negative bias of substrate or assisting ion source. For ion beam deposition technique with Kaufman ion source, the DLC thin films synthesized at ion energies of 300 eV showed the highest sp3 content and optimum properties. Regarding end-Hall ion source, the best properties achieved in DLC films synthesized at ion energies of 100 eV.
Comparing with pure DLC and pure MoS2 films, the DLC-MoS2 films deposited at low biasing voltages showed better tribological properties including lower coefficient of friction and wear coefficient in ambient air environment. Also, comparing with pure DLC films, the DLC-MoS2 thin films showed a slower rate of graphitization and higher structure stability throughout the range of annealing temperatures, indicating a relatively higher thermal stability.
|
17 |
Structural, mechanical, and electronic properties of pulsed laser deposited carbon thin films and C-Si-heterojunctionsKoivusaari, J. (Jarmo) 06 September 2000 (has links)
No description available.
|
18 |
Improvement of Homogeneity and Adhesion of Diamond-Like Carbon Films on Copper SubstratesVavilala, Suma 08 1900 (has links)
Electrodeposition method is used to deposit diamond-like carbon (DLC) films on copper substrates via anodic oxidation at low temperature. These films are characterized using Raman spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. Homogeneity of these films is studied using Raman spectroscopy and scanning electron microscopy. Scotch tape peel tests indicate adherent film on copper substrate. Carbon phase transformation is studied using thermal annealing experiments in conjunction with Raman spectroscopy and scanning electron microscopy. A cathodic electrochemical method is also studied to deposit diamond-like carbon films on copper substrates. However, films deposited by the cathodic route have poor adhesion and quality compared to anodically deposited films. It is also possible to grow diamond phase on copper substrates using acetylene in liquid ammonia via electrodeposition route. An electrochemical method is proposed for boron doping into DLC films.
|
19 |
Investigation of Structure and Properties of Low Temperature Deposited Diamond-Like Carbon FilmsPingsuthiwong, Charoendee 08 1900 (has links)
Electrodeposition is a novel method for fabrication of diamond-like carbon (DLC) films on metal substrates. In this work, DLC was electrochemically deposited on different substrates based on an anodic oxidation cyclization of acetylene in liquid ammonia. Successfully anodic deposition was carried out for DLC onto nickel substrate at temperatures below -40°C. Comparative studies were performed on a series of different carbon sources (acetylene, sodium acetylide, and a mixture of acetylene and sodium acetylide). The films were characterized using a variety of methods including Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), XPS valence band spectra, and/or scanning electron microscopy (SEM). Raman spectroscopy is used as a bench mark technique to verify the presence of deposited DLC films, to access the films homogeneities, and to provide the ratio of the different carbon phases, mainly disordered graphite (D) and graphite (G) phases in the films. A combination of the Raman with FTIR and valence band spectra analysis allowed the distinction between hydrogenated DLC and unhydrogenated DLC films. Three different kinds of DLC [(1) hydrogenated DLC (a-C:H); (2) tetrahedral hydrogenated DLC (ta-C:H); and (3) graphitic-like DLC] were deposited depending upon the deposition conditions and substrates. Temperature and current density are the most important parameters to govern the quality of the deposited films, where adding of acetylide into the electrolyte led to films with a higher degree of graphitic phases. The proposed mechanism for acetylene anodic oxidation does not involve direct electron transfer but electrochemical cyclization of acetylene radical cations and hydrogen abstraction at the termination steps. Sodium acetylide, however, dissociates to an acetylenic ion, C2H-, in liquid ammonia. The electrochemistry heterogeneity also leads to island and two-dimensional (2D) nucleation growth of DLC films. Different bond formations of metal to carbon and different chemisorptions of acetylene on metal play important roles in governing the film properties. Using mixed C2HNa and C2H2 as electrolyte, polycrystalline diamond and hexagonal diamond are formed on Mo and stainless steel, respectively. This is the first time to report that polycrystalline diamond can be grown electrochemically at temperature below -40ºC. The preliminary studies on substrate pretreatment with diamond powder and SiC 600 are studied. The effect of the substrate on the film quality for the electrodeposited DLC films described herein is similar to that for diamond deposition via chemical vapor deposition (CVD).
|
20 |
Mechanical Reliability Enhancement of Single Crystal Silicon Microstructures by Means of Diamond-Like Carbon Film Coating / ダイヤモンドライクカーボン膜の全面被覆による単結晶シリコン微細構造の機械的信頼性向上Zhang, Wenlei 23 January 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21462号 / 工博第4537号 / 新制||工||1707(附属図書館) / 京都大学大学院工学研究科マイクロエンジニアリング専攻 / (主査)教授 田畑 修, 教授 鈴木 基史, 准教授 土屋 智由, 教授 平方 寛之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
Page generated in 0.0465 seconds