• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • 3
  • 1
  • Tagged with
  • 35
  • 35
  • 10
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Prediction of the Active Layer Nanomorphology in Polymer Solar Cells Using Molecular Dynamics Simulation

Ashrafi Khajeh, Ali Reza Unknown Date
No description available.
12

SINGLE CRYSTAL ENGINEERING OF LINEAR TRI-BLOCK COPOLYMERS:CRYSTALLIZATION AND POLYMER BRUSHES

Xiong, Huiming 05 October 2006 (has links)
No description available.
13

Laser Lithography of Diblock Copolymer Films

Parete, Joseph 09 1900 (has links)
Laser lithography was used to create novel patterns in thin diblock copolymer films. These patterns were characterized and an examination of their formation and growth was conducted. The patterns occurred only in diblock films, due to the interaction between thermal gradient induced Marangoni flow and the self assembly of the molecules. Growth of the patterns was found to be strongly dependent on absorbed power. The impact of film thickness on pattern growth was mainly due to the corresponding changes in sample reflectance, however a periodic patterning was observed suggesting that growth is also dependent on the amount of 'excess' material (over that required to form complete lamella) available. It was also shown that the pattern growth can occur independently of laser lithography and the Marangoni effect, though laser lithography was required to direct this growth. / Thesis / Master of Applied Science (MASc)
14

Indium Tin Oxide Nanoparticles Formation for Organic Electronics

Yu, Hyeonghwa January 2016 (has links)
Indium tin oxide is a transparent conductive oxide electrode which is widely used for organic electronics. Morphology of ITO plays an important role in the performance of organic electronics. To understand the influence of the substrate morphology in device performance, a controllable route for producing periodic and aperiodic roughness of ITO surfaces are necessary. In this thesis, this was attempted by using various approaches to forming ITO nanostructures. Initially, ITO was deposited by a traditional sputtering procedure. However, the roughness distribution of the sputtered ITO resulted in a s Gaussian distribution, unsuitable to further studies of roughness. ITO nanostructures can also be formed by depositing ITO nanoparticles on an ITO sub- strates. Using acetate and chloride precursors, ITO films were produced from solution and formed into nanoparticles using the reverse micelles deposition approach. The acetate route (InAc+SnCl2+ethanol), was the most successful prior to the nanoparticle formation, showing high quality ITO with bixbyte crystal structure and Sn percentages of 20%, low enough to form a conductive film. Nanoparticles were fabricated with diblock copolymer reverse micelles(PS-b-P2VP). Reverse micelles were found to act as a nano reactor, restricting the size of nanoparticles by having hydrophilic reactants undergo chemical reactions inside the micelles. However, nanoparticles from the reverse micelles revealed Sn percentages much above 20%. This was attributed to the solubility difference of the precursors leading to displacing or preventing of pre- cursor loading into the reverse micelles. The change of the stirring time, the micelles concentration, the sequence of precursors loading, and the weight of precursors were not found to affect the Sn concentration; moreover, large variations in Sn concentrations were observed. From quantitative nano mechanical testing of the micelles, a maximum load amount for the precursors was observed, confirming that the high concentration of Sn was likely due to the solubility differences between the precursors and their ability to penetrate the micelle. By manipulating the nanoparticles distribution through spin coating speeds, micelles concentration, and deposited volume, several degrees of order were obtained, though hexagonal packing was not observed. In general, even though Sn concentration were found to be above 20%, nanoparticles were successfully fabricated with reverse micelles, confirming that the reverse micelle technique is a good strategy for future studies of roughness. / Thesis / Master of Applied Science (MASc)
15

Synthesis and Protein Adsorption Studies of Pegylated-Polyester Nanoparticles with Different Peg Architectures

Montenegro-Galindo, Gladys Rocio January 2013 (has links)
No description available.
16

Fabrication and characterization of sub-micron and nanoscale structures in commercial polymers

Ibrahim, Fathima Shaida January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Takashi Ito / This dissertation describes the fabrication and characterization of nanoscale structures in commercially available polymers via multiphoton ablation and bottom-up self assembly techniques. High-resolution surface imaging techniques, such as atomic force microscopy (AFM) and chemical force microscopy (CFM) were used to characterize the physical features and chemical properties, respectively, of these nanoscale structures. Fabrication using both top-down and bottom-up methods affords flexibility in that top-down allows random, user-defined patterning whereas bottom-up self assembly produces truly nanoscale (1-100nm) uniform features. Multiphoton induced laser ablation, a top-down method, was used to produce random sub-micron scale features in films of poly(methylmethacrylate) (PMMA), polystyrene (PS), poly(butylmethacrylate) (PBMA) and poly[2-(3-thienyl)ethyloxy-4-butylsulfonate] (PTEBS). Features with 120-nm lateral resolution were obtained in a PMMA film which was concluded to be the best polymer for use with this method. It was also found that etching resolution was highest for polymers having high glass transition temperatures, low molecular weights and no visible absorption. Bottom-up self assembly of polystyrene-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer and UV/acetic acid treatment produced nanoscale cylindrical domains supported by a substrate. AFM imaging at the free surface showed metastable vertical PMMA domain orientation on gold substrates. In contrast, horizontal orientation was obtained on oxide-coated silicon regardless of surface roughness and annealing conditions. The horizontal domain orientation on silicon substrates was ideal to probe simultaneously the difference in surface charge and hydrophilicity of the two distinct nanoscale domains of UV/AcOH treated PS-b-PMMA films. CFM on UV/acetic acid etched PS-b-PMMA revealed the presence of –COO- groups which were found to be more abundant inside the etched trenches than on the unetched PS matrix as shown by ferritin adsorption onto etched PS-b-PMMA. Lastly, the PS-b-PMMA was cast as a free-standing monolith at the end of a quartz micropipette. AFM revealed circular PMMA dots at the free surface, indicating alignment parallel to the long axis of capillary. Ion conductance within nanochannels indicated surface –charge governed ion transport at low KCl concentrations and flux of negatively-charged sulphorhodamine dye demonstrated the permselective nature of nanochannels.
17

Characterization of cylindrical nano-domains in thin films of polystyrene-poly(methyl methacrylate) diblock copolymer studied via atomic force microscopy

Maire, Helene C. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Takashi Ito / We have investigated the orientation of cylindrical domains in thin films of a polystyrene–poly(methylmethacrylate) diblock copolymer (PS-b-PMMA) on planar substrates having different surface roughnesses and hydrophilicities. The research in this dissertation covers the substrate surface modifications, the enhancement of the diblock copolymer film coating, and the refinement of the treatments leading to nanoporous material. Treatment of the substrate with organic mercaptans forming self-assembled-monolayer (SAM), leading to various hydrophilicities of the surfaces, was inconclusive as far as orienting the PMMA domains in the PS matrix due to thermal instability of some thiols. This directed us to a different approach involving substrate roughness. PS-b-PMMA films of 20~200 nm thick were prepared via spin-coating on silicon, gold or indium tin oxide (ITO) substrates, and annealed in vacuum at 170 °C for 60 hours to induce the formation of cylindrical PMMA domains. Atomic force microscopy (AFM) images indicated the domain orientation at the free surface. In PS-b-PMMA films much thicker than the domain periodicity (L0), the domains were oriented perpendicularly to the free surface regardless of underlying substrates, reflecting the balanced interactions of PS and PMMA blocks at the polymer–vacuum interface. In films having thickness similar to L0, vertically oriented domains were observed on the Au and ITO surfaces that are covered with nanoscale grains, whereas horizontal domains were observed on the smooth Si substrates. In particular, the cylindrical PMMA domains were efficiently perpendicularly aligned when the grain size nearly was equal to L0. The perpendicular domain alignment induced by the substrate roughness was corroborated using cyclic voltammetry (CV) for gold substrates coated with PS-b-PMMA films whose PMMA domains were removed by UV and subsequent acetic acid treatments. The CV data also suggested that the PMMA domains were successfully removed, leaving a nanoporous stable PS matrix on the substrate.
18

Nanocomposites plasmoniques anisotropes à base de copolymères à blocs et de nanoparticules d’or / Plasmonic anisotropic nanocomposite based on block copolymers and gold nanoparticles

Tallet, Clémence 06 December 2012 (has links)
La nanochimie et l’auto-assemblage sont des voies prometteuses de fabrication de matériaux nanostructurés aux propriétés optiques innovantes dans le domaine visible. Dans cette étude, des nanocomposites plasmoniques anisotropes sont formulés en introduisant sélectivement des nanoparticules métalliques dans des phases ordonnées de copolymères diblocs symétriques selon différentes stratégies d’incorporation. Pour la stratégie de post-incorporation, des nanoparticules d’or présynthétisées en milieu aqueux sont introduites sélectivement dans des phases pré-ordonnées d’un copolymère dibloc amphiphile. L’incorporation directe consiste àmélanger des nanoparticules d’or présynthétisées et un copolymère dibloc dans un solvant commun.La synthèse in situ de nanoparticules consiste à réduire des précurseurs métalliques préalablement introduits dans un des deux blocs d’un copolymère via une étape de réduction. Nous étudions, en particulier, comment la taille des nanoparticules d’or et leur fraction volumique influencent la nanostructure et les propriétés optiques de ces films nanocomposites. La morphologie des films macroscopiques est étudiée par microscopie électronique à transmission et diffusion des rayons Xaux petits angles. Les films minces de nanocomposites sont caractérisés structurellement parmicroscopie à force atomique, microscopie électronique à transmission et réflectivité des rayons X. Les indices optiques déterminés par ellipsométrie spectroscopique peuvent être décrits par un modèle de Maxwell-Garnett, prenant éventuellement en compte de façon phénoménologique les effets de couplage entre nanoparticules d’or. / Nanochemistry and self-assembly are promising ways to fabricate nanostructuredmaterials with innovative optical properties for visible light. In this work, anisotropic plasmonicnanocomposites are formulated by selectively introducing metallic nanoparticles in ordered phasesof symmetric dibloc copolymers with different strategies. For the strategy of post-incorporation, presynthesizedgold nanoparticles in aqueous medium are selectively introduced in pre-ordered phasesof an amphiphilic dibloc copolymer. Direct incorporation consists in mixing pre-synthesized goldnanoparticles and dibloc copolymer in a common solvent. In situ synthesis of nanoparticles consistsin reducing metallic precursors previously introduced in one of two blocks of a copolymer via areduction step. The influence of the size and the volume fraction of gold nanoparticles on thenanostructure and the optical properties of the nanocomposite films have been particularly studied.Morphology of macroscopic films is studied by transmission electron microscopy and small angle Xrayscattering. The nanocomposite thin films are structurally characterized by force atomicmicroscopy, transmission electron microscopy and X-ray reflectivity. The optical indices obtained byspectroscopic ellipsometry can be described with Maxwell-Garnett models, which can take intoaccount phenomenologically the effects of coupling between gold nanoparticles.
19

Fabrication, structural and optical study of self-assembled hyperbolic metamaterial / Fabrication et étude structurale et optique de métamatériaux hyperboliques auto-assemblés

Wang, Xuan 29 September 2017 (has links)
Des propriétés optiques inédites sont prédites si des nanorésonateurs optiques sont organisés dans un matériau, ce qui peut être réalisé par l’auto-assemblage de nanoparticules plasmoniques synthétisées chimiquement. Dans ce travail de doctorat, nous utilisons des structures ordonnées de copolymères à blocs pour organiser des nanoparticules plasmoniques. Nous étudions le lien entre la structure des nanocomposites en films minces, et en particulier la nature, la densité et l’organisation des nanoparticules, et leurs propriétés optiques. Pour cela, nous avons tout d’abord produit des phases lamellaires de copolymères diblocs poly(styrène)-block-poly(2-vinylpyridine) (PS-b-P2VP) en films minces d’épaisseur (100nm-700nm) et de période lamellaire (17nm-70nm) contrôlées, et dont l’alignement et l’homogénéité sont optimisés. Nous avons développé une synthèse in situ, au sein de ces films lamellaires, qui permet de produire de façon contrôlée et reproductible, des nanoparticules plasmoniques de diamètre 7-10nm sélectivement dans les domaines P2VP. Nous avons montré que la taille et la forme des particules d’or formées in situ peuvent être modifiées en jouant sur le solvant et le réducteur chimique mis en jeu. Nous avons étudié en détail la structure des nanocomposites formulés, ce qui est en particulier nécessaire à la bonne exploitation des données d’ellipsométrie spectroscopique afin de déterminer les réponses optiques. La structure des échantillons a été étudiée par différentes méthodes de microscopie (électronique en transmission ou à balayage, à force atomique), ainsi que de la diffusion des rayons X. Nous avons utilisé une microbalance à Quartz pour étudier la quantité d’or introduite dans les matrices lamellaires de manière « cinétique » au fil de son augmentation progressive. La quantité d’or atteint des valeurs de 40 % en volume. Les propriétés optiques des films nanocomposites sont déterminées par ellipsométrie spectroscopique à angle variable et analysées à l’aide de modèles de milieux effectifs. Les films sont homogènes et anisotropes uniaxes, et on peut définir leur tenseur de permittivité diélectrique avec une composante ordinaire εo (parallèle au substrat) et une composante extraordinaire εe (perpendiculaire au substrat). L’analyse permet de montrer que les deux composantes εo and εe présentent une résonance proche de la longueur d’onde =540nm, avec une amplitude très supérieure pour εo. Lorsque la quantité d’or dans la structure lamellaire est suffisante, εo devient négatif au voisinage de la résonance et le matériau atteint le régime appelé hyperbolique, ce qui constitue un jalon essentiel pour le développement de matériaux pour des applications en imagerie hyper-résolue. / Novel optical properties in the visible range are foreseen when organizing nanoresonators, which can be performed by the self-assembly of plasmonic nanoparticles prepared by wet chemistry. In this project, we use templating block copolymers structures to organize plasmonic particles. Our goal is to relate the structure of the prepared nanocomposites thin films, and in particular the nature, density and spatial organization of the nanoparticles, with their optical index.For this purpose, we first fabricate lamellar superlattices of diblock copolymers (poly(styrene)-block-poly(2-vinylpyridine) of controlled thickness (100nm-700nm), controlled lamellar period size(17 nm-70 nm) and optimized alignment and homogeneity. Following the fabrication of the multilayer templates, an in situ and reproducible synthesis of metallic nanoparticles was developed in order to generate nanocomposites selectively inside the P2VP layers. The size of Au nanoparticles can be well controlled around 7-10 nm. We also found that the reduction process could influence the shape (sphere, triangle or cylinder) and size by using different solvents or reducing agents. Because the extraction of accurate optical responses from the spectroscopic ellipsometry data, which will come in the last part, critically relies on the precise knowledge of the sample structure. We have used several experimental techniques to access a precise description of the produced materials. In particular, we used a Quartz Crystal Microbalance as a measurement tool to ‘kinetically’ study the volume fraction of Au loading. We find that the amount of gold in the composite layers can be varied up to typically 40 volume%. The optical properties of the nanocomposite films are determined by variable angle spectroscopic ellipsometry and analyzed by appropriately developed effective medium models. The films are structurally uniaxial and homogeneous, and we can define their dielectric permittivity tensor with the ordinary (parallel to the substrate) and extraordinary (normal to the substrate) components. The analysis of the lamellar structures allows the extraction of the components εo and εe, both presenting a resonance close to =540nm, with a significantly stronger amplitude for εo. When the gold load is high enough and the couplings between particles are strong enough, the values of εo become negative close to the resonance, and the material reaches the so-called hyperbolic regime, which constitutes a step towards applications in hyper-resolution imaging.
20

Synthesis and Characterization of Novel Amphiphilic Diblock Copolymers Poly (2-Ethyl-2-Oxazoline)-b-Poly (Vinylidene Fluoride)

Aljeban, Norah 06 1900 (has links)
Poly (2-ethyl-2-oxazoline)-based amphiphilic diblock copolymer has the potential to form promising membrane materials for water purification due to the thermal stability and good solubility in aqueous solution and also for gas separation because of the presence of polar amide group along the polymer backbone. Moreover, their self-assembly into micelles renders them candidate materials as nanocarriers for drug delivery applications. In this study, a novel well-defined linear PEtOx-based amphiphilic diblock copolymer with a hydrophobic fluoropolymer, i.e., PVDF, have been successfully synthesized by implementing a synthesis methodology that involves the following four steps. In the first step, poly (2-ethyl-2-oxazoline) (PEtOx) was synthesized via living cationic ring-opening polymerization (LCROP) of 2-ethyl-2-oxazoline (EtOx) monomer. The “living” nature of LCROP allows the desirable termination to occur by using the proper termination agent, namely, water, to achieve the polymer with a terminal hydroxyl group, i.e., PEtOx-OH. The hydroxyl end group in PEtOx-OH was converted to PEtOx-Br using 2-bromopropionyl bromide via an esterification reaction. In the third step, the PEtOx-Br macro-CTA was subsequently reacted with potassium ethyl xanthate to insert the necessary RAFT agent via nucleophilic substitution reaction to obtain PEtOx-Xanthate. It s worth mentioning that this step is vital for the sequential addition of the second block via the RAFT polymerization reaction of fluorinated monomer, i.e., VDF, to finally obtain the well-defined amphiphilic diblock copolymer with variable controlled chain lengths. Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR) and Fourier Transform Infrared Spectroscopy (FT-IR) confirmed the structure of the macroinitiator and final copolymer, respectively. Size Exclusion Chromatography (SEC) determined the number-average molecular weight (Mn) and the polydispersity index (PDI) of the obtained copolymer. Furthermore, the polymorphism of the diblock copolymer characterized by X-Ray Diffraction (XRD) indicated that the copolymer displays the electroactive α-phase. The resultant amphiphilic diblock copolymer exhibits spherical micelles morphology, as confirmed by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). Moreover, Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) investigated the thermal decomposition behavior of the copolymer and determined the glass transition temperature (Tg ≈ 70 °C), melting temperature (Tm ≈ 160-170 °C), and crystallization temperature (Tc ≈ 135-143 °C) of the diblock copolymer, respectively.

Page generated in 0.0386 seconds