• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prospects and Challenges of Functional Printing

Baumann, Reinhard R., Willert, Andreas, Blaudeck, Thomas 05 October 2009 (has links) (PDF)
After almost half a millennium of technological development, printing technologies have achieved a level to fulfill their mission: to satisfy the demands of a faithful human reception of the whole variety of shape and color from nature by discrete colored screen dots on substrates (e.g. paper, foil). Nowadays improvements of industrial printing are more or less solely limited to improvements of the production efficiency. During the last decade, several R&D and business approaches have been published which employ printing technologies for the production of items with functionalities other than color images. In case of these new applications, the major advantage of printing technologies is the full additivity of the material deposition addressing exactly the geometrical areas where it is needed – without lithography. Beyond that, the digital printing technique inkjet allows the handling of smallest amounts of rare (and therefore costly) functional materials. In our paper we introduce our strategy of functional printing that exploits the potential of cutting-edge printing technologies for the digital fabrication of items with advanced – i.e. “not only graphical” – functionalities. The presented examples comprise concepts for printed energy storage devices, packages with RFID functionality, printed membranes and micro sieves, electrically conducting tracks and outline further approaches to manufacture devices and components of organic and large-area electronics. The implementation of functional printing requires well-directed interdisciplinary efforts to manufacture stacks of functional layers and to understand their structure-property relationships. In many cases the envisaged functionality is directly related rather to the nanoscopic structures than to bulk materials properties. We introduce the integrated research approach of Printed Functionalities in Chemnitz comprising Chemnitz University of Technology for science, the Fraunhofer Institution for Electronic Nanosystems (FhG ENAS) for applied science and industrialization as well as world-class companies on the Chemnitz Smart Systems Campus for the exploitation of future organic and large-area electronics products.
2

Prospects and Challenges of Functional Printing

Baumann, Reinhard R., Willert, Andreas, Blaudeck, Thomas 05 October 2009 (has links)
After almost half a millennium of technological development, printing technologies have achieved a level to fulfill their mission: to satisfy the demands of a faithful human reception of the whole variety of shape and color from nature by discrete colored screen dots on substrates (e.g. paper, foil). Nowadays improvements of industrial printing are more or less solely limited to improvements of the production efficiency. During the last decade, several R&D and business approaches have been published which employ printing technologies for the production of items with functionalities other than color images. In case of these new applications, the major advantage of printing technologies is the full additivity of the material deposition addressing exactly the geometrical areas where it is needed – without lithography. Beyond that, the digital printing technique inkjet allows the handling of smallest amounts of rare (and therefore costly) functional materials. In our paper we introduce our strategy of functional printing that exploits the potential of cutting-edge printing technologies for the digital fabrication of items with advanced – i.e. “not only graphical” – functionalities. The presented examples comprise concepts for printed energy storage devices, packages with RFID functionality, printed membranes and micro sieves, electrically conducting tracks and outline further approaches to manufacture devices and components of organic and large-area electronics. The implementation of functional printing requires well-directed interdisciplinary efforts to manufacture stacks of functional layers and to understand their structure-property relationships. In many cases the envisaged functionality is directly related rather to the nanoscopic structures than to bulk materials properties. We introduce the integrated research approach of Printed Functionalities in Chemnitz comprising Chemnitz University of Technology for science, the Fraunhofer Institution for Electronic Nanosystems (FhG ENAS) for applied science and industrialization as well as world-class companies on the Chemnitz Smart Systems Campus for the exploitation of future organic and large-area electronics products.
3

Application of Hot-Melt Ink Jet Processes for Imaging at Offset Printing Form Cylinder

Abd El Kader, Magdy Ezzat 30 January 2004 (has links) (PDF)
The present work related to apply hot-melt ink-jet process for imaging at offset lithographic printing form, to utilise a reusable surface for many times and particularly related to validating thermal and ultrasonic erasing processes. This dissertation investigated systematically the role of certain factors towards affecting erasing image area process on print surfaces. Thermal erasing process approved to melt and suck the image area from the surface, the results were adopted by using contact angle measurements and scanning electron microscope. Ultrasonic erasing process permitted to solve the image area by choosing erasing chemistries, influence of selected erasing chemistries on printing surface, and evaluation the process, the results were tested by UV/Vis spectrometer, contact angle, profileometery and visual microscope. / Der Fortschritt im Bereich von Charakterisierung und Verständnis für Hot-melt Ink Jet Prozesse zur Bebilderung von Offsetdruckform-Zylindern ist ein Ergebnis dieser Forschung. Die Systematik dieser Arbeit basiert auf einem theoretischen Teil, um einen geeigneten Löschprozess auszuwählen. Der Löschprozess hängt von den Eigenschaften des Hot-melt Ink Jet Materials und der genutzten Aluminiumdruckoberfläche ab. Diese werden systematisch im Labormaßstab experimentell untersucht. Der thermische Prozess wurde einerseits durch Benetzbarkeitsprüfungen und anderseites durch Rasterelektronmikroskopaufnahmen bewertet.Der Ultraschallprozess ist ein nasser Löschprozess. Die Untersuchungen wurden in vier Stufen systematisch durchgeführt - Auswahl vom geeigneten Lösungsmitteln - Einflüsse von ausgewählten Lösungsmitteln auf nicht beschichtete und beschichtete Aluminium platten - Evaluation eines Ultraschalllöschprozesses - Validation eines Löschprozesses; zur Bewertung des Löschprozesses wurden mehrere Druckplattenproben bebildert und gelöscht Die Ergebnisse wurden durch UV/Vis Spektrometer, Kontaktwinkel, Profiliometrie und Visuelle Mikroskopie getestet.
4

Application of Hot-Melt Ink Jet Processes for Imaging at Offset Printing Form Cylinder

Abd El Kader, Magdy Ezzat 19 January 2004 (has links)
The present work related to apply hot-melt ink-jet process for imaging at offset lithographic printing form, to utilise a reusable surface for many times and particularly related to validating thermal and ultrasonic erasing processes. This dissertation investigated systematically the role of certain factors towards affecting erasing image area process on print surfaces. Thermal erasing process approved to melt and suck the image area from the surface, the results were adopted by using contact angle measurements and scanning electron microscope. Ultrasonic erasing process permitted to solve the image area by choosing erasing chemistries, influence of selected erasing chemistries on printing surface, and evaluation the process, the results were tested by UV/Vis spectrometer, contact angle, profileometery and visual microscope. / Der Fortschritt im Bereich von Charakterisierung und Verständnis für Hot-melt Ink Jet Prozesse zur Bebilderung von Offsetdruckform-Zylindern ist ein Ergebnis dieser Forschung. Die Systematik dieser Arbeit basiert auf einem theoretischen Teil, um einen geeigneten Löschprozess auszuwählen. Der Löschprozess hängt von den Eigenschaften des Hot-melt Ink Jet Materials und der genutzten Aluminiumdruckoberfläche ab. Diese werden systematisch im Labormaßstab experimentell untersucht. Der thermische Prozess wurde einerseits durch Benetzbarkeitsprüfungen und anderseites durch Rasterelektronmikroskopaufnahmen bewertet.Der Ultraschallprozess ist ein nasser Löschprozess. Die Untersuchungen wurden in vier Stufen systematisch durchgeführt - Auswahl vom geeigneten Lösungsmitteln - Einflüsse von ausgewählten Lösungsmitteln auf nicht beschichtete und beschichtete Aluminium platten - Evaluation eines Ultraschalllöschprozesses - Validation eines Löschprozesses; zur Bewertung des Löschprozesses wurden mehrere Druckplattenproben bebildert und gelöscht Die Ergebnisse wurden durch UV/Vis Spektrometer, Kontaktwinkel, Profiliometrie und Visuelle Mikroskopie getestet.
5

Towards Industrial Fabrication of Electronic Devices and Circuits by Inkjet Printing Technology

Mitra, Kalyan Yoti 09 June 2021 (has links)
Printing since many years has been a well-known high throughput technology for producing replications of graphic arts entities (texts, images, aesthetics, gloss and physical impressions) over large varieties of substrates which are dedicated for various needful applications like newspapers, magazines, posters, official documents, packages, braille, textiles, decorative articles and many more. Due to the fact, that printing is a liquid-solution based replication process, where basic ink and substrate are needed, it is now not only limited to printing of graphic arts. Whenever an ink is deposited over a defined substrate and the process can be multiplied, it can be termed as printing and once the final product contains a functionality other than graphic arts application, it can be called as “Printed Functionality”. Some examples for printed functionalities can be found in the following fields: A. Printed electronics (using inks having electronic properties); B. Printed micro-fluidics (using inks having polymeric and elastic properties for directive purposes); C. 3-Dimensional printing (using inks containing binding properties for developing three dimensional structures); D. Printed photonics (using inks having self-assembling properties for building-up symmetric micro-structures); E. Printed pyroelectrics (using inks containing thermally flammable properties); F. Printed ceramics (using inks with ceramic particles) and G. Printed optics and functional surfaces (using inks with transparency, absorbency and reflective properties). All these mentioned applications require functional inks which in turn exhibits some physical-chemical properties e.g. particle size, particle loading, fluid’s rheological properties etc. These properties determine the feasibility of the material’s deposition (in this case the functional inks) with a suitable printing technology. The inkjet printing technology among others has several advantages such as contactless deposition processability, digitalization (batch size one & turn-over time zero), user defined customization and adaptation, industrial relevance, minimal ink demand for R&Ds, freedom of substrate regularity and µm-scale print accuracy etc. Some of the imminent players in the inkjet printing technology market are Canon, Kodak, Hewlett Packard, Fujifilm Dimatix, Konica Minolta and XAAR. They provide print solutions from small to industrial scale printheads, printers, equipments and accessories for the realization of huge variety of application ideas. The inkjet is a versatile, but yet matured technology which finds its use in various application areas e.g. home office documentation, large format posters, variable data printing, security printing, textile printing, wallpapers, household articles, curved surfaces like bottles, printing over edible items, printing of elevated surfaces etc. And, hence there are several literatures published which show the use of the inkjet printing technology in the development of products for printed electronics. Some of the common examples are development of passive and active devices e.g. capacitors, resistors, thin-film-transistors, photovoltaics, sensors, circuits like logic gates for electronic switching, device arrays for detection purposes, point of care health applications, energy harvesting applications etc. But, the exploitation of the inkjet technology has not been intense enough to declare the industrial relevance of the technology to be utilized as a fabrication tool in the market. Meanwhile, all the researchers around the globe aim at a single goal, which is the development of “Proof of Concept” devices and applications. Thus, here in this dissertation the implementation of the inkjet printing technology as a digital fabrication tool is exploited to manufacture and up-scale the printed electronic products, which can show an industrial relevance to the commercial market. The main motivation why printed electronics is in great demand (scientific point of view) and has intensely emerged in the last decades, is because of the primary challenges faced in the fabrication process steps of the µ-electronics society. It is know that the classically fabricated µ-electronic products are in the market since long time due to their high reliability, consistent performance and defined applications in circuitry. But, what cannot be ignored is the involved fabrication steps promote several demerits such as the in-flexibility towards the fabrication process, material wastage, in-ability to up-scale into larger areas and huge quantities, and physical rigidity. Some of these mentioned problems are commonly seen e.g. spin coating, chemical vapor-phase deposition, physical vapor-phase deposition, atomic layer deposition and sputtering fabrication technologies. In this present dissertation, on the contrary, the challenges linked with the manufacturing process of the µ-electronic devices using the inkjet technology are focused and attempts are made to counteract them. Some of the foreseen challenges are: A. process workflow adaptation in device manufacturing; B. validation and evaluation of device performance; C. industrializing the inkjet technology (manufacturing µ-electronics in massive quantities); D. evaluating the fabrication yield of printed devices; D. Generating statistics regarding reliability and scalability; and E. demonstrating tolerances in electronic performances. These are definitely the challenges which must be overcome, and these key research points are addressed in the dissertation.
6

TU-Spektrum 3/2006, Magazin der Technischen Universität Chemnitz

Steinebach, Mario, Häckel-Riffler, Christine, Brabandt, Antje, Mahler, Janine, Chlebusch, Michael, Doriath, Thomas, Leithold, Nicole, Klein, Jana, Rodefeld, Sara 22 December 2006 (has links) (PDF)
zweimal im Jahr erscheinende Zeitschrift über aktuelle Themen der TU Chemnitz, ergänzt von Sonderheft(en)
7

TU-Spektrum 3/2006, Magazin der Technischen Universität Chemnitz

Steinebach, Mario, Häckel-Riffler, Christine, Brabandt, Antje, Mahler, Janine, Chlebusch, Michael, Doriath, Thomas, Leithold, Nicole, Klein, Jana, Rodefeld, Sara 22 December 2006 (has links)
zweimal im Jahr erscheinende Zeitschrift über aktuelle Themen der TU Chemnitz, ergänzt von Sonderheft(en)

Page generated in 0.0577 seconds