Spelling suggestions: "subject:"distributed atorage"" "subject:"distributed 2storage""
31 |
Etude des codes en graphes pour le stockage de données / Study of Sparse-Graph for Distributed Storage SystemsJule, Alan 07 March 2014 (has links)
Depuis deux décennies, la révolution technologique est avant tout numérique entrainant une forte croissance de la quantité de données à stocker. Le rythme de cette croissance est trop importante pour les solutions de stockage matérielles, provoquant une augmentation du coût de l'octet. Il est donc nécessaire d'apporter une amélioration des solutions de stockage ce qui passera par une augmentation de la taille des réseaux et par la diminution des copies de sauvegarde dans les centres de stockage de données. L'objet de cette thèse est d'étudier l'utilisation des codes en graphe dans les réseaux de stockage de donnée. Nous proposons un nouvel algorithme combinant construction de codes en graphe et allocation des noeuds de ce code sur le réseau. Cet algorithme permet d'atteindre les hautes performances des codes MDS en termes de rapport entre le nombre de disques de parité et le nombre de défaillances simultanées pouvant être corrigées sans pertes (noté R). Il bénéficie également des propriétés de faible complexité des codes en graphe pour l'encodage et la reconstruction des données. De plus, nous présentons une étude des codes LDPC Spatiallement-Couplés permettant d'anticiper le comportement de leur décodage pour les applications de stockage de données.Il est généralement nécessaire de faire des compromis entre différents paramètres lors du choix du code correcteur d'effacement. Afin que ce choix se fasse avec un maximum de connaissances, nous avons réalisé deux études théoriques comparatives pour compléter l'état de l'art. La première étude s'intéresse à la complexité de la mise à jour des données dans un réseau dynamique établi et déterminons si les codes linéaires utilisés ont une complexité de mise à jour optimale. Dans notre seconde étude, nous nous sommes intéressés à l'impact sur la charge du réseau de la modification des paramètres du code correcteur utilisé. Cette opération peut être réalisée lors d'un changement du statut du fichier (passage d'un caractère hot à cold par exemple) ou lors de la modification de la taille du réseau. L'ensemble de ces études, associé au nouvel algorithme de construction et d'allocation des codes en graphe, pourrait mener à la construction de réseaux de stockage dynamiques, flexibles avec des algorithmes d'encodage et de décodage peu complexes. / For two decades, the numerical revolution has been amplified. The spread of digital solutions associated with the improvement of the quality of these products tends to create a growth of the amount of data stored. The cost per Byte reveals that the evolution of hardware storage solutions cannot follow this expansion. Therefore, data storage solutions need deep improvement. This is feasible by increasing the storage network size and by reducing data duplication in the data center. In this thesis, we introduce a new algorithm that combines sparse graph code construction and node allocation. This algorithm may achieve the highest performance of MDS codes in terms of the ratio R between the number of parity disks and the number of failures that can be simultaneously reconstructed. In addition, encoding and decoding with sparse graph codes helps lower the complexity. By this algorithm, we allow to generalize coding in the data center, in order to reduce the amount of copies of original data. We also study Spatially-Coupled LDPC (SC-LDPC) codes which are known to have optimal asymptotic performance over the binary erasure channel, to anticipate the behavior of these codes decoding for distributed storage applications. It is usually necessary to compromise between different parameters for a distributed storage system. To complete the state of the art, we include two theoretical studies. The first study deals with the computation complexity of data update and we determine whether linear code used for data storage are update efficient or not. In the second study, we examine the impact on the network load when the code parameters are changed. This can be done when the file status changes (from a hot status to a cold status for example) or when the size of the network is modified by adding disks. All these studies, combined with the new algorithm for sparse graph codes, could lead to the construction of new flexible and dynamical networks with low encoding and decoding complexities.
|
32 |
The Sea of Stuff : a model to manage shared mutable data in a distributed environmentConte, Simone Ivan January 2019 (has links)
Managing data is one of the main challenges in distributed systems and computer science in general. Data is created, shared, and managed across heterogeneous distributed systems of users, services, applications, and devices without a clear and comprehensive data model. This technological fragmentation and lack of a common data model result in a poor understanding of what data is, how it evolves over time, how it should be managed in a distributed system, and how it should be protected and shared. From a user perspective, for example, backing up data over multiple devices is a hard and error-prone process, or synchronising data with a cloud storage service can result in conflicts and unpredictable behaviours. This thesis identifies three challenges in data management: (1) how to extend the current data abstractions so that content, for example, is accessible irrespective of its location, versionable, and easy to distribute; (2) how to enable transparent data storage relative to locations, users, applications, and services; and (3) how to allow data owners to protect data against malicious users and automatically control content over a distributed system. These challenges are studied in detail in relation to the current state of the art and addressed throughout the rest of the thesis. The artefact of this work is the Sea of Stuff (SOS), a generic data model of immutable self-describing location-independent entities that allow the construction of a distributed system where data is accessible and organised irrespective of its location, easy to protect, and can be automatically managed according to a set of user-defined rules. The evaluation of this thesis demonstrates the viability of the SOS model for managing data in a distributed system and using user-defined rules to automatically manage data across multiple nodes.
|
33 |
Codes With Locality For Distributed Data StorageMoorthy, Prakash Narayana 03 1900 (has links) (PDF)
This thesis deals with the problem of code design in the setting of distributed storage systems consisting of multiple storage nodes, storing many different data les. A primary goal in such systems is the efficient repair of a failed node. Regenerating codes and codes with locality are two classes of coding schemes that have recently been proposed in literature to address this goal. While regenerating codes aim to minimize the amount of data-download needed to carry out node repair, codes with locality seek to minimize the number of nodes accessed during node repair. Our focus here is on linear codes with locality, which is a concept originally introduced by Gopalan et al. in the context of recovering from a single node failure. A code-symbol of a linear code C is said to have locality r, if it can be recovered via a linear combination of r other code-symbols of C. The code C is said to have (i) information-symbol locality r, if all of its message symbols have locality r, and (ii) all-symbol locality r, if all the code-symbols have locality r. We make the following three contributions to the area of codes with locality.
Firstly, we extend the notion of locality, in two directions, so as to permit local recovery even in the presence of multiple node failures. In the first direction, we consider codes with \local error correction" in which a code-symbol is protected by a local-error-correcting code having local-minimum-distance 3, and thus allowing local recovery of the code-symbol even in the presence of 2 other code-symbol erasures. In the second direction, we study codes with all-symbol locality that can recover from two erasures via a sequence of two local, parity-check computations. When restricted to the case of all-symbol locality and two erasures, the second approach allows, in general, for design of codes having larger minimum distance than what is possible via the rst approach. Under both approaches, by studying the generalized Hamming weights of the dual codes, we derive tight upper bounds on their respective minimum distances. Optimal code constructions are identified under both approaches, for a class of code parameters. A few interesting corollaries result from this part of our work. Firstly, we obtain a new upper bound on the minimum distance of concatenated codes and secondly, we show how it is always possible to construct the best-possible code (having largest minimum distance) of a given dimension when the code's parity check matrix is partially specified. In a third corollary, we obtain a new upper bound for the minimum distance of codes with all-symbol locality in the single erasure case.
Secondly, we introduce the notion of codes with local regeneration that seek to combine the advantages of both codes with locality as well as regenerating codes. These are vector-alphabet analogues of codes with local error correction in which the local codes themselves are regenerating codes. An upper bound on the minimum distance is derived when the constituent local codes have a certain uniform rank accumulation (URA) property. This property is possessed by both the minimum storage regenerating (MSR) and the minimum bandwidth regenerating (MBR) codes. We provide several optimal constructions of codes with local regeneration, where the local codes are either the MSR or the MBR codes. The discussion here is also extended to the case of general vector-linear codes with locality, in which the local codes do not necessarily have the URA property.
Finally, we evaluate the efficacy of two specific coding solutions, both possessing an inherent double replication of data, in a practical distributed storage setting known as Hadoop. Hadoop is an open-source platform dealing with distributed storage of data in which the primary aim is to perform distributed computation on the stored data via a paradigm known as Map Reduce. Our evaluation shows that while these codes have efficient repair properties, their vector-alphabet-nature can negatively a affect Map Reduce performance, if they are implemented under the current Hadoop architecture. Specifically, we see that under the current architecture, the choice of number processor cores per node and Map-task scheduling algorithm play a major role in determining their performance. The performance evaluation is carried out via a combination of simulations and actual experiments in Hadoop clusters. As a remedy to the problem, we also pro-pose a modified architecture in which one allows erasure coding across blocks belonging to different les. Under the modified architecture, the new coding solutions will not suffer from any Map Reduce performance-loss as seen in the original architecture, while retaining all of their desired repair properties
|
34 |
Efficient Usage Of Flash Memories In High Performance ScenariosSrimugunthan, * 10 1900 (has links) (PDF)
New PCI-e flash cards and SSDs supporting over 100,000 IOPs are now available, with several usecases in the design of a high performance storage system. By using an array of flash chips, arranged in multiple banks, large capacities are achieved. Such multi-banked architecture allow parallel read, write and erase operations. In a raw PCI-e flash card, such parallelism is directly available to the software layer. In addition, the devices have restrictions such as, pages within a block can only be written sequentially. The devices also have larger minimum write sizes (>4KB). Current flash translation layers (FTLs) in Linux are not well suited for such devices due to the high device speeds, architectural restrictions as well as other factors such as high lock contention. We present a FTL for Linux that takes into account the hardware restrictions, that also exploits the parallelism to achieve high speeds. We also consider leveraging the parallelism for garbage collection by scheduling the garbage collection activities on idle banks. We propose and evaluate an adaptive method to vary the amount of garbage collection according to the current I/O load on the device.
For large scale distributed storage systems, flash memories are an excellent choice because flash memories consume less power, take lesser floor space for a target throughput and provide faster access to data. In a traditional distributed filesystem, even distribution is required to ensure load-balancing, balanced space utilisation and failure tolerance. In the presence of flash memories, in addition, we should also ensure that the numbers of writes to these different flash storage nodes are evenly distributed, to ensure even wear of flash storage nodes, so that unpredictable failures of storage nodes are avoided. This requires that we distribute updates and do garbage collection, across the flash storage nodes. We have motivated the distributed wearlevelling problem considering the replica placement algorithm for HDFS. Viewing the wearlevelling across flash storage nodes as a distributed co-ordination problem, we present an alternate design, to reduce the message communication cost across participating nodes. We demonstrate the effectiveness of our design through simulation.
|
35 |
Towards more scalability and flexibility for distributed storage systems / Vers un meilleur passage à l'échelle et une plus grande flexibilité pour les systèmes de stockage distribuéRuty, Guillaume 15 February 2019 (has links)
Les besoins en terme de stockage, en augmentation exponentielle, sont difficilement satisfaits par les systèmes de stockage distribué traditionnels. Alors que les performances des disques ont ratrappé celles des cartes réseau en terme d'ordre de grandeur, leur capacité ne croit pas à la même vitesse que l'ensemble des données requérant d'êtres stockées, notamment à cause de l'avènement des applications de big data. Par ailleurs, l'équilibre de performances entre disques, cartes réseau et processeurs a changé et les états de fait sur lesquels se basent la plupart des systèmes de stockage distribué actuels ne sont plus vrais. Cette dissertation explique de quelle manière certains aspects de tels systèmes de stockages peuvent être modifiés et repensés pour faire une utilisation plus efficace des ressources qui les composent. Elle présente une architecture de stockage nouvelle qui se base sur une couche de métadonnées distribuée afin de fournir du stockage d'objet de manière flexible tout en passant à l'échelle. Elle détaille ensuite un algorithme d'ordonnancement des requêtes permettant a un système de stockage générique de traiter les requêtes de clients en parallèle de manière plus équitable. Enfin, elle décrit comment améliorer le cache générique du système de fichier dans le contexte de systèmes de stockage distribué basés sur des codes correcteurs avant de présenter des contributions effectuées dans le cadre de courts projets de recherche. / The exponentially growing demand for storage puts a huge stress on traditionnal distributed storage systems. While storage devices' performance have caught up with network devices in the last decade, their capacity do not grow as fast as the rate of data growth, especially with the rise of cloud big data applications. Furthermore, the performance balance between storage, network and compute devices has shifted and the assumptions that are the foundation for most distributed storage systems are not true anymore. This dissertation explains how several aspects of such storage systems can be modified and rethought to make a more efficient use of the resource at their disposal. It presents an original architecture that uses a distributed layer of metadata to provide flexible and scalable object-level storage, then proposes a scheduling algorithm improving how a generic storage system handles concurrent requests. Finally, it describes how to improve legacy filesystem-level caching for erasure-code-based distributed storage systems, before presenting a few other contributions made in the context of short research projects.
|
36 |
[en] NEW NETWORK SOLUTIONS AND NEXT GENERATION ENTERTAINMENT SERVICES / [pt] NOVAS SOLUÇÕES DE REDES E SERVIÇOS DE ENTRETENIMENTO DE ÚLTIMA GERAÇÃOCARLOS ALBERTO GAROFALO 28 December 2005 (has links)
[pt] O principal objetivo desta dissertação consiste na
proposta de
implementação de uma rede de telecomunicações utilizando
novas tecnologias,
enfatizando as aplicações de entretenimento. As soluções
adotadas foram
orientadas pelas características econômicas verificadas
nas áreas nobres das
regiões metropolitanas brasileiras e também pelas novas
tecnologias de
roteamento, chaveamento, armazenamento e distribuição
local. A avaliação do
custo de investimento e operacional da rede, bem como a
formulação de um
modelo de negócios associado a uma estrutura de serviços
oferecidos foram
apresentadas e desenvolvidas. A construção de um plano de
negócio hipotético
para avaliar a relação custo-benefício resultante da
utilização da infra-estrutura da
rede proposta associado ao modelo e estrutura dos serviços
elaborados foi
implementado e executado. Quatro alternativas de
implementação de rede foram
avaliadas. / [en] The present dissertation is aiming at proposing a
telecommunications
network implementation using some new technologies where
the emphasis is put
on entertainment applications. The adopted solutions try
to offer a selection grid
that qualitatively cope with the economic level of some
selected noble
metropolitan areas in Brazil and rely in new routing,
switching storage and local
distribution technologies. The investment evaluation, the
operational network
costs and the formulation of a business model associated
with the respective used
service structure is subsequently introduced and
described. Next, a hypothetic
business plan service model is launched in order to
evaluate the cost-benefit ratio
between the network infrastructure proposed working
together with its new
service model and its new structure. Four possible
alternatives of network
implementation were evaluated and commented.
|
37 |
Efficient techniques for large-scale Web data management / Techniques efficaces de gestion de données Web à grande échelleCamacho Rodriguez, Jesus 25 September 2014 (has links)
Le développement récent des offres commerciales autour du cloud computing a fortement influé sur la recherche et le développement des plateformes de distribution numérique. Les fournisseurs du cloud offrent une infrastructure de distribution extensible qui peut être utilisée pour le stockage et le traitement des données.En parallèle avec le développement des plates-formes de cloud computing, les modèles de programmation qui parallélisent de manière transparente l'exécution des tâches gourmandes en données sur des machines standards ont suscité un intérêt considérable, à commencer par le modèle MapReduce très connu aujourd'hui puis par d'autres frameworks plus récents et complets. Puisque ces modèles sont de plus en plus utilisés pour exprimer les tâches de traitement de données analytiques, la nécessité se fait ressentir dans l'utilisation des langages de haut niveau qui facilitent la charge de l'écriture des requêtes complexes pour ces systèmes.Cette thèse porte sur des modèles et techniques d'optimisation pour le traitement efficace de grandes masses de données du Web sur des infrastructures à grande échelle. Plus particulièrement, nous étudions la performance et le coût d'exploitation des services de cloud computing pour construire des entrepôts de données Web ainsi que la parallélisation et l'optimisation des langages de requêtes conçus sur mesure selon les données déclaratives du Web.Tout d'abord, nous présentons AMADA, une architecture d'entreposage de données Web à grande échelle dans les plateformes commerciales de cloud computing. AMADA opère comme logiciel en tant que service, permettant aux utilisateurs de télécharger, stocker et interroger de grands volumes de données Web. Sachant que les utilisateurs du cloud prennent en charge les coûts monétaires directement liés à leur consommation de ressources, notre objectif n'est pas seulement la minimisation du temps d'exécution des requêtes, mais aussi la minimisation des coûts financiers associés aux traitements de données. Plus précisément, nous étudions l'applicabilité de plusieurs stratégies d'indexation de contenus et nous montrons qu'elles permettent non seulement de réduire le temps d'exécution des requêtes mais aussi, et surtout, de diminuer les coûts monétaires liés à l'exploitation de l'entrepôt basé sur le cloud.Ensuite, nous étudions la parallélisation efficace de l'exécution de requêtes complexes sur des documents XML mis en œuvre au sein de notre système PAXQuery. Nous fournissons de nouveaux algorithmes montrant comment traduire ces requêtes dans des plans exprimés par le modèle de programmation PACT (PArallelization ConTracts). Ces plans sont ensuite optimisés et exécutés en parallèle par le système Stratosphere. Nous démontrons l'efficacité et l'extensibilité de notre approche à travers des expérimentations sur des centaines de Go de données XML.Enfin, nous présentons une nouvelle approche pour l'identification et la réutilisation des sous-expressions communes qui surviennent dans les scripts Pig Latin. Notre algorithme, nommé PigReuse, agit sur les représentations algébriques des scripts Pig Latin, identifie les possibilités de fusion des sous-expressions, sélectionne les meilleurs à exécuter en fonction du coût et fusionne d'autres expressions équivalentes pour partager leurs résultats. Nous apportons plusieurs extensions à l'algorithme afin d’améliorer sa performance. Nos résultats expérimentaux démontrent l'efficacité et la rapidité de nos algorithmes basés sur la réutilisation et des stratégies d'optimisation. / The recent development of commercial cloud computing environments has strongly impacted research and development in distributed software platforms. Cloud providers offer a distributed, shared-nothing infrastructure, that may be used for data storage and processing.In parallel with the development of cloud platforms, programming models that seamlessly parallelize the execution of data-intensive tasks over large clusters of commodity machines have received significant attention, starting with the MapReduce model very well known by now, and continuing through other novel and more expressive frameworks. As these models are increasingly used to express analytical-style data processing tasks, the need for higher-level languages that ease the burden of writing complex queries for these systems arises.This thesis investigates the efficient management of Web data on large-scale infrastructures. In particular, we study the performance and cost of exploiting cloud services to build Web data warehouses, and the parallelization and optimization of query languages that are tailored towards querying Web data declaratively.First, we present AMADA, an architecture for warehousing large-scale Web data in commercial cloud platforms. AMADA operates in a Software as a Service (SaaS) approach, allowing users to upload, store, and query large volumes of Web data. Since cloud users support monetary costs directly connected to their consumption of resources, our focus is not only on query performance from an execution time perspective, but also on the monetary costs associated to this processing. In particular, we study the applicability of several content indexing strategies, and show that they lead not only to reducing query evaluation time, but also, importantly, to reducing the monetary costs associated with the exploitation of the cloud-based warehouse.Second, we consider the efficient parallelization of the execution of complex queries over XML documents, implemented within our system PAXQuery. We provide novel algorithms showing how to translate such queries into plans expressed in the PArallelization ConTracts (PACT) programming model. These plans are then optimized and executed in parallel by the Stratosphere system. We demonstrate the efficiency and scalability of our approach through experiments on hundreds of GB of XML data.Finally, we present a novel approach for identifying and reusing common subexpressions occurring in Pig Latin scripts. In particular, we lay the foundation of our reuse-based algorithms by formalizing the semantics of the Pig Latin query language with extended nested relational algebra for bags. Our algorithm, named PigReuse, operates on the algebraic representations of Pig Latin scripts, identifies subexpression merging opportunities, selects the best ones to execute based on a cost function, and merges other equivalent expressions to share its result. We bring several extensions to the algorithm to improve its performance. Our experiment results demonstrate the efficiency and effectiveness of our reuse-based algorithms and optimization strategies.
|
38 |
Scalable algorithms for cloud-based Semantic Web data management / Algorithmes passant à l’échelle pour la gestion de données du Web sémantique sur les platformes cloudZampetakis, Stamatis 21 September 2015 (has links)
Afin de construire des systèmes intelligents, où les machines sont capables de raisonner exactement comme les humains, les données avec sémantique sont une exigence majeure. Ce besoin a conduit à l’apparition du Web sémantique, qui propose des technologies standards pour représenter et interroger les données avec sémantique. RDF est le modèle répandu destiné à décrire de façon formelle les ressources Web, et SPARQL est le langage de requête qui permet de rechercher, d’ajouter, de modifier ou de supprimer des données RDF. Être capable de stocker et de rechercher des données avec sémantique a engendré le développement des nombreux systèmes de gestion des données RDF.L’évolution rapide du Web sémantique a provoqué le passage de systèmes de gestion des données centralisées à ceux distribués. Les premiers systèmes étaient fondés sur les architectures pair-à-pair et client-serveur, alors que récemment l’attention se porte sur le cloud computing.Les environnements de cloud computing ont fortement impacté la recherche et développement dans les systèmes distribués. Les fournisseurs de cloud offrent des infrastructures distribuées autonomes pouvant être utilisées pour le stockage et le traitement des données. Les principales caractéristiques du cloud computing impliquent l’évolutivité́, la tolérance aux pannes et l’allocation élastique des ressources informatiques et de stockage en fonction des besoins des utilisateurs.Cette thèse étudie la conception et la mise en œuvre d’algorithmes et de systèmes passant à l’échelle pour la gestion des données du Web sémantique sur des platformes cloud. Plus particulièrement, nous étudions la performance et le coût d’exploitation des services de cloud computing pour construire des entrepôts de données du Web sémantique, ainsi que l’optimisation de requêtes SPARQL pour les cadres massivement parallèles.Tout d’abord, nous introduisons les concepts de base concernant le Web sémantique et les principaux composants des systèmes fondés sur le cloud. En outre, nous présentons un aperçu des systèmes de gestion des données RDF (centralisés et distribués), en mettant l’accent sur les concepts critiques de stockage, d’indexation, d’optimisation des requêtes et d’infrastructure.Ensuite, nous présentons AMADA, une architecture de gestion de données RDF utilisant les infrastructures de cloud public. Nous adoptons le modèle de logiciel en tant que service (software as a service - SaaS), où la plateforme réside dans le cloud et des APIs appropriées sont mises à disposition des utilisateurs, afin qu’ils soient capables de stocker et de récupérer des données RDF. Nous explorons diverses stratégies de stockage et d’interrogation, et nous étudions leurs avantages et inconvénients au regard de la performance et du coût monétaire, qui est une nouvelle dimension importante à considérer dans les services de cloud public.Enfin, nous présentons CliqueSquare, un système distribué de gestion des données RDF basé sur Hadoop. CliqueSquare intègre un nouvel algorithme d’optimisation qui est capable de produire des plans massivement parallèles pour des requêtes SPARQL. Nous présentons une famille d’algorithmes d’optimisation, s’appuyant sur les équijointures n- aires pour générer des plans plats, et nous comparons leur capacité à trouver les plans les plus plats possibles. Inspirés par des techniques de partitionnement et d’indexation existantes, nous présentons une stratégie de stockage générique appropriée au stockage de données RDF dans HDFS (Hadoop Distributed File System). Nos résultats expérimentaux valident l’effectivité et l’efficacité de l’algorithme d’optimisation démontrant également la performance globale du système. / In order to build smart systems, where machines are able to reason exactly like humans, data with semantics is a major requirement. This need led to the advent of the Semantic Web, proposing standard ways for representing and querying data with semantics. RDF is the prevalent data model used to describe web resources, and SPARQL is the query language that allows expressing queries over RDF data. Being able to store and query data with semantics triggered the development of many RDF data management systems. The rapid evolution of the Semantic Web provoked the shift from centralized data management systems to distributed ones. The first systems to appear relied on P2P and client-server architectures, while recently the focus moved to cloud computing.Cloud computing environments have strongly impacted research and development in distributed software platforms. Cloud providers offer distributed, shared-nothing infrastructures that may be used for data storage and processing. The main features of cloud computing involve scalability, fault-tolerance, and elastic allocation of computing and storage resources following the needs of the users.This thesis investigates the design and implementation of scalable algorithms and systems for cloud-based Semantic Web data management. In particular, we study the performance and cost of exploiting commercial cloud infrastructures to build Semantic Web data repositories, and the optimization of SPARQL queries for massively parallel frameworks.First, we introduce the basic concepts around Semantic Web and the main components and frameworks interacting in massively parallel cloud-based systems. In addition, we provide an extended overview of existing RDF data management systems in the centralized and distributed settings, emphasizing on the critical concepts of storage, indexing, query optimization, and infrastructure. Second, we present AMADA, an architecture for RDF data management using public cloud infrastructures. We follow the Software as a Service (SaaS) model, where the complete platform is running in the cloud and appropriate APIs are provided to the end-users for storing and retrieving RDF data. We explore various storage and querying strategies revealing pros and cons with respect to performance and also to monetary cost, which is a important new dimension to consider in public cloud services. Finally, we present CliqueSquare, a distributed RDF data management system built on top of Hadoop, incorporating a novel optimization algorithm that is able to produce massively parallel plans for SPARQL queries. We present a family of optimization algorithms, relying on n-ary (star) equality joins to build flat plans, and compare their ability to find the flattest possibles. Inspired by existing partitioning and indexing techniques we present a generic storage strategy suitable for storing RDF data in HDFS (Hadoop’s Distributed File System). Our experimental results validate the efficiency and effectiveness of the optimization algorithm demonstrating also the overall performance of the system.
|
39 |
Étude des problèmes d’ordonnancement sur des plates-formes hétérogènes en modèle multi-portRejeb, Hejer 30 August 2011 (has links)
Les travaux menés dans cette thèse concernent les problèmes d'ordonnancement sur des plates-formes de calcul dynamiques et hétérogènes et s'appuient sur le modèle de communication "multi-port" pour les communications. Nous avons considéré le problème de l'ordonnancement des tâches indépendantes sur des plates-formes maîtres-esclaves, dans les contextes statique et dynamique. Nous nous sommes également intéressé au problème de la redistribution de fichiers répliqués dans le cadre de l'équilibrage de charge. Enfin, nous avons étudié l'importance des mécanismes de partage de bande passante pour obtenir une meilleure efficacité du système. / The results presented in this document deal with scheduling problems on dynamic and heterogeneous computing platforms under the "multiport" model for the communications. We have considered the problem of scheduling independent tasks on master-slave platforms, in both offline and online contexts. We have also proposed algorithms for replicated files redistribution to achieve load balancing. Finally, we have studied the importance of bandwidth sharing mechanisms to achieve better efficiency.
|
Page generated in 0.0927 seconds