Spelling suggestions: "subject:"division cellulaire"" "subject:"division acellulaire""
11 |
Branching processes for structured populations and estimators for cell division / Processus de branchement pour des populations structurées et estimateurs pour la division cellulaireMarguet, Aline 27 November 2017 (has links)
Cette thèse porte sur l'étude probabiliste et statistique de populations sans interactions structurées par un trait. Elle est motivée par la compréhension des mécanismes de division et de vieillissement cellulaire. On modélise la dynamique de ces populations à l'aide d'un processus de Markov branchant à valeurs mesures. Chaque individu dans la population est caractérisé par un trait (l'âge, la taille, etc...) dont la dynamique au cours du temps suit un processus de Markov. Ce trait détermine le cycle de vie de chaque individu : sa durée de vie, son nombre de descendants et le trait à la naissance de ses descendants. Dans un premier temps, on s'intéresse à la question de l'échantillonnage uniforme dans la population. Nous décrivons le processus pénalisé, appelé processus auxiliaire, qui correspond au trait d'un individu "typique" dans la population en donnant son générateur infinitésimal. Dans un second temps, nous nous intéressons au comportement asymptotique de la mesure empirique associée au processus de branchement. Sous des hypothèses assurant l'ergodicité du processus auxiliaire, nous montrons que le processus auxiliaire correspond asymptotiquement au trait le long de sa lignée ancestrale d'un individu échantillonné uniformément dans la population. Enfin, à partir de données composées des traits à la naissance des individus dans l'arbre jusqu'à une génération donnée, nous proposons des estimateurs à noyau de la densité de transition de la chaine correspondant au trait le long d'une lignée ainsi que de sa mesure invariante. De plus, dans le cas d'une diffusion réfléchie sur un compact, nous estimons par maximum de vraisemblance le taux de division du processus. Nous montrons la consistance de cet estimateur ainsi que sa normalité asymptotique. L'implémentation numérique de l'estimateur est par ailleurs réalisée. / We study structured populations without interactions from a probabilistic and a statistical point of view. The underlying motivation of this work is the understanding of cell division mechanisms and of cell aging. We use the formalism of branching measure-valued Markov processes. In our model, each individual is characterized by a trait (age, size, etc...) which moves according to a Markov process. The rate of division of each individual is a function of its trait and when a branching event occurs, the trait of the descendants at birth depends on the trait of the mother and on the number of descendants. First, we study the trait of a uniformly sampled individual in the population. We explicitly describe the penalized Markov process, named auxiliary process, corresponding to the dynamic of the trait of a "typical" individual by giving its associated infinitesimal generator. Then, we study the asymptotic behavior of the empirical measure associated with the branching process. Under assumptions assuring the ergodicity of the auxiliary process, we prove that the auxiliary process asymptotically corresponds to the trait along its ancestral lineage of a uniformly sampled individual in the population. Finally, we address the problem of parameter estimation in the case of a branching process structured by a diffusion. We consider data composed of the trait at birth of all individuals in the population until a given generation. We give kernel estimators for the transition density and the invariant measure of the chain corresponding to the trait of an individual along a lineage. Moreover, in the case of a reflected diffusion on a compact set, we use maximum likelihood estimation to reconstruct the division rate. We prove consistency and asymptotic normality for this estimator. We also carry out the numerical implementation of the estimator.
|
12 |
Le produit du gène dksA est une protéine de la réponse au choc thermique qui est requise pour la croissance à haute températureBoyle, Brian January 1994 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
13 |
Endoréduplication, division et expansion cellulaire : mécanismes acteurs de la croissance du fruit / Endoreduplication, cell division and expansion : fruit growth mechanismDeluche, Cynthia 30 October 2015 (has links)
La transformation de la paroi de l’ovaire en un péricarpe charnu implique une coordination entre les divisions cellulaires et l’expansion cellulaire. Des données considérables sur le développement et la maturation du fruit de tomate ont été établies, mais la coordination des divisions cellulaires, de l’expansion cellulaire et de l’endoréduplication durant la mise à fruit ainsi que durant la croissance du fruit de tomate reste grossièrement caractérisée au sein du péricarpe et de nombreuses questions ne sont pas résolues : comment ces deux processus sont-ils régulés et coordonnés durant le développement du fruit d’un point de vue cellulaire? Quand commence l’endoréduplication dans les tissus du fruit et quelle est sa fonction? La première partie de ce mémoire concerne la coordination des divisions cellulaires et de l’expansion cellulaire durant la fin du développement de l’ovaire et le début du développement du fruit. Une différenciation précoce des assises cellulaires composant la paroi de l’ovaire puis le péricarpe a été démontrée. Les divisions cellulaires se font principalement au sein de l’épiderme externe et montrent une synchronisation partielle tandis que l’expansion cellulaire se fait principalement dans le mésocarpe. L’endoréduplication semble être initiée avant l’anthèse. La deuxième partie est consacrée à l’analyse du RNA-seq nucléaire en fonction de quatre niveaux de ploïdie (4, 8, 16 et 32C). La majorité des gènes montrent une augmentation proportionnelle de leurs expressions en fonction des niveaux de ploïdie. Cependant, certains gènes révèlent une surexpression ou une sous-expression en fonction des niveaux de ploïdies. / The transformation of the ovary wall into a fleshy pericarp involves a coordinated pattern of cell division and cell expansion. Considerable data have been reported on tomato fruit development and ripening, but the pattern of cell division, cell expansion and endoreduplication at the tomato fruit set and during fruit growth remains grossly appreciated at the whole pericarp level and many questions are not yet resolved: How are cell division and cell expansion coordinated in tomato fruit a cellular level and according to developmental time? When does endoreduplication begin in fruit tissues and what is its function? The first part of this deals with the coordination of cell division and cell expansion during the end of tomato ovary development and the beginning of fruit growth. Evidence for early differentiation of cell layers in the ovary wall and then in fruit pericarp are presented. Cell division happens mainly in the external epidermis and shows partial synchronization, whereas cell expansion happens mostly in mesocarp cell layers. Endoreduplication is initiated as soon as before anthesis. The second part of this work is devoted to RNA-seq based transcriptome profiling of pericarp nuclei which have been sorted according to four ploidy levels (4, 8, 16 and 32C). We demonstrate that the expression of most of the pericarp-expressed genes shows a proportional increase according to ploidy level, on a nuclear basis. However, a significant amount of genes has been identified as over-expressed or under-expressed according to ploidy level.
|
14 |
Towards the identification and characterization of new regulators of fruit tissue morphology / Vers l’identification et la caractérisation de nouveaux régulateurs de la morphologie des tissus du fruitMusseau, Constance 14 December 2018 (has links)
La taille du fruit et la morphologie des tissus du fruit sont des caractères clés définissant la qualité finale du fruit. Parmi la grande diversité de fruits observée dans la nature, la domestication et la sélection ont entrainé d’importantes modifications de la taille et de la morphologie des tissus du fruit. Jusqu'à présent, seuls quelques régulateurs génétiques ont été identifiés, et les mécanismes cellulaires et moléculaires par lesquels la morphologie des tissus du fruit est définie restent imprécis. Dans ce contexte, l'objectif de ma thèse est d'identifier et de caractériser de nouveaux régulateurs impliqués dans la morphologie des tissus du fruit. Pour cela, j'ai utilisé une collection de mutants EMS de tomate comme source de diversité génétique et phénotypique et j'ai sélectionné deux mutants présentant des tendances opposées et extrêmes d'épaisseur du péricarpe. Grace à une stratégie de cartographie par séquençage, j’ai identifié une région génétique du chromosome 10, associée au phénotype péricarpe épais. J'ai également étudié le rôle de la Guanylate Binding Protein (GBP) à l’origine du phénotype péricarpe fin chez la tomate. La GBP est une grosse GTP binding protein qui n’a jamais été caractérisée chez les plantes. Afin d'approfondir l’étude de cette protéine, j'ai étudié en parallèle son rôle dans les modèles tomate et Arabidopsis" thaliana. J'ai démontré que les deux protéines homologues sont localisées dans le noyau. La mutation de la GBP chez la tomate induit de fortes altérations de la division et de l'expansion cellulaire à l'intérieur du péricarpe ainsi qu'une altération de la croissance des racines latérales chez la tomate et Arabidopsis, une caractéristique classiquement retrouvée chez les mutants altérés dans la mitose. Cette étude suggère que le GBP joue un rôle dans le contrôle précis des divisions cellulaires dans le péricarpe de tomate. / Fruit size and morphology are key characters defining the final fruit quality. Among the large fruit diversity observed in the nature, human domestication and selection has induced changes in fruit size and tissue morphology. Only a few genetic regulators have been identified so far, thus cellular and molecular mechanisms by which fruit tissue morphology is defined remain incomplete. In this context, the aim of my thesis is to identify and characterize new regulators of fruit tissue morphology. For this purpose, I used a collection of tomato EMS mutants as a source of genetic and phenotypic diversity. I selected two mutants presenting opposite trends of pericarp thickness. Through a mapping-by-sequencing strategy, I identified a genetic region on chromosome 10, associated with an extreme thick pericarp phenotype. I also investigated the role of the Guanylate Binding Protein (GBP) at the origin of a thin pericarp phenotype. The GBP is a large GTP binding protein that was never characterized in plants so far. In order to go deeper into its functional characterization in plants, I studied in parallel the role of the protein in tomato and Arabidopsis "thaliana" models. I showed that both homolog proteins are localized at the nucleus. Mutation of GBP in tomato induced strong alterations in cell division and cell expansion inside the pericarp and altered lateral root growth in tomato and Arabidopsis, a classical feature for mutants impaired in mitosis. This study suggests a role for the GBP in the fine control of cell division in the tomato pericarp.
|
15 |
Caractérisation des rôles de l"Anilline durant la cytokinèseKechad, Amel 04 1900 (has links)
No description available.
|
16 |
Contribution à l'étude d'une équation de transport à retards décrivant une dynamique de population cellulairePujo-Menjouet, Laurent 17 September 2001 (has links) (PDF)
Nous présentons un modèle de division de cellules sanguines basé sur la présence d'un facteur appelé maturation et le partage du cycle en une phase de prolifération et une phase de repos. Il est représenté par un système S de deux équations de transport structuré en âge et maturité. En intégrant par rapport à l'âge, S devient un système d'équations aux dérivées partielles à retards structuré en maturité. Dans le chapitre 1, nous introduisons le contexte biologique, et nous présentons notre modèle. Dans le chapitre 2, nous étudions le modèle quand la phase de prolifération est fixe et la division est égale. Nous montrons l'existence et l'unicité puis un résultat liant les solutions aux cellules souches ainsi qu'un résultat d'invariance, de comportement asymptotique et d'instabilité. Dans le chapitre 3, nous supposons que la phase de prolifération varie suivant la maturité des cellules. Nous prouvons des résultats analogues au chapitre 2. Dans le chapitre 4, la phase de prolifération est fixe mais nous supposons la division inégale. En utilisant la théorie des opérateurs de Markov, nous prouvons un résultat de stabilité globale.
|
17 |
Understanding the mechanisms underlying force transmission during epithelial cell division / Analyse des mécanismes moléculaires de transmission des forces mécaniques lors la division cellulairePinheiro, Diana 19 September 2016 (has links)
Au sein d'un tissu épithélial la division cellulaire doit être couplée à la formation de nouvelles jonctions intercellulaires entre les futures cellules-filles, afin de préserver l'intégrité du tissu et maintenir son adhésion et polarité. Chez les vertébrés et les invertébrés, lors de la constriction de l'anneau contractile les jonctions assemblées entre la cellule en division et ses voisines est remodelé. Concomitamment, la myosine non-musculaire II (MyoII) s'accumule dans les cellules voisines y produit la force nécessaire pour juxtaposer les membranes de la cellule en division, définissant ainsi la longueur de la future jonction formée entre les cellules-filles. Dans le cadre de mes travaux de doctorat, j'ai cherché à comprendre les mécanismes moléculaires sous-jacents au dialogue entre les cellules épithéliales pendant la division. J'ai montré que chaque division cellulaire est associée à un processus de mécano-transduction qui contrôle la dynamique de la MyoII dans les cellules voisines. Les forces produites par l'anneau contractile allongent localement la membrane des voisines diluant ainsi la concentration d'E-Cadhérine (E-Cad). En retour, cette réduction locale d'E-Cad, couplée à la contractilité intrinsèque des cellules voisines, génère des flux auto-organisés d'actine et myosine, qui conduisent à l'accumulation de MyoII dans les cellules voisines. En montrant que la cytocinèse épithéliale est une source endogène de contraintes mécaniques, mon travail définit un nouveau mécanisme de mécano-transduction qui coordonne les dynamiques d'actine et myosine dans les cellules en division et leurs voisines, et qui est permet de plus le remodelage des jonctions adhérentes. / During epithelial cytokinesis, the remodelling of adhesive cell-cell contacts between the dividing cell and its neighbours has profound roles in the integrity, the arrangement and morphogenesis of proliferative tissues. In both vertebrates and invertebrates, this remodelling requires the activity of non-muscle Myosin II (MyoII) in the interphasic cells neighbouring the dividing cells. However, the mechanisms coordinating cytokinesis and MyoII activity in the neighbours are unknown. Here, we found that, in the Drosophila notum epithelium, each cell division is associated with a mechano-sensing and transmission event controlling MyoII dynamics in the neighbours. We established that the ring pulling forces promote local junction elongation, resulting in a decrease of E-Cadherin (E-Cad) concentration at the ingressing adherens junction (AJ). In turn, the local reduction of E-Cad concentration and the contractility of the neighbouring cells promote self-organized actomyosin flows, ultimately leading to MyoII accumulation at the base of the ingressing AJ. While mechano-sensing has been extensively studied in the context of AJ reinforcement to stabilize the adhesive cell-cell contacts, we propose an alternative mechano-sensing mechanism able to coordinate actomyosin dynamics between epithelial cells and to sustain AJ remodelling in response to mechanical forces.
|
18 |
Etude du rôle de la région terminale du chromosome dans le positionnement, la ségrégation du chromosome et le contrôle de la division cellulaire chez Escherichia coli / Study of the role of the ter region in chromosome positioning, chromosome segregation and control of cell division in Escherichia coliLebailly, Elise 30 September 2016 (has links)
Escherichia coli, comme la majorité des bactéries, possède un unique chromosome circulaire. Au moins une copie du chromosome doit être transmise à chacune des cellules filles avant la division cellulaire afin d'assurer une prolifération cellulaire correcte. Une couplage spatio-temporel précis de la ségrégation avec la division cellulaire est donc nécessaire pour assurer la bonne répartition des deux chromosomes après réplication. La région terminale du chromosome (ter) est la dernière à être répliquée et ségrégée, et migre du pôle vers le centre de la cellule au moment de la mise en place du septum de division, à la fin du cycle cellulaire. Les loci de la région ter présentent une période de cohésion post-réplicative étendue. Cette cohésion étendue est contrôlée par la protéine MatP, qui se fixe spécifiquement au niveau des sites matS, présents uniquement dans ter. MatP se fixe à l'ADN sous forme de dimère, via son domaine N-terminal, et tétramérise via son domaine C-terminal. La tétramérisation est stimulée par la liaison à l'ADN et permet le pontage de deux sites matS distants. MatP interagit aussi avec ZapB, un composant du divisome, la machinerie protéique participant à la formation du septum. Alors que la tétramérisation de MatP semble importante pour la compaction de la région ter, son interaction avec ZapB, qui est localisée au septum via ZapA et FtsZ, participe au positionnement et à la cohésion étendue de cette région. Le couplage de la région ter avec le divisome est essentiel pour le bon déroulement de nombreux évènements tardifs du cycle cellulaire : (i) la ségrégation active, ordonnée et progressive de la région ter par FtsK, un composant du divisome, (ii) la résolution des dimères de chromosomes via la recombinaison spécifique de site XerCD/dif, activée par FtsK, (iii) la résolution des liens d'intercaténation par la TopoIV et (iv) la régulation positive de l'assemblage du divisome en absence des régulateurs négatifs MinCDE et SlmA. Pendant ma thèse, je me suis tout d'abord intéressée au rôle de MatP dans la structuration globale du chromosome. En utilisant un système permettant de visualiser deux loci marqués avec un site parSp1 et un site parSpMT1, reconnu par ParBp1 et ParBpMT1 spécifiquement, nous avons analysé le positionnement et l'orientation du chromosome dans la cellule. Nous avons montré que MatP est nécessaire au positionnement et à l'orientation de tout le chromosome à la fin du cycle cellulaire. La localisation de SlmA dans des souches wt et DeltamatP prouve que l'inactivation de MatP, induisant une mauvais positionnement du chromosome, s'accompagne d'une défaut de localisation de SlmA, et induit donc une inhibition de la division. Ces résultats pris ensemble montre que MatP, SlmA et leur communication à travers la structuration globale du chromosome sont importants pour le management du chromosome et le contrôle de la division cellulaire. En collaboration avec l'équipe d'Olivier Espeli, nous avons utilisé des méthodes de génomiques et de biologie moléculaire pour caractériser la régulation de la TopoIV au cours du cycle cellulaire d'E. coli. Nous avons montré qu'au site dif, les activités de fixation et de clivage de la TopoIV sont améliorées par la présence des recombinases XerCD et de MatP. L'amélioration de l'activité de la TopoIV favorise la décaténation des chromosomes nouvellement répliqués et assure, en lien avec d'autres processus, la séparation précise des chromosomes frères. Ces résultats permettent de mieux comprendre le réseau d'interactions dédiées au management du chromosome à la fin du cycle cellulaire, et l'influence du management du chromosome sur le contrôle de la division cellulaire. / Escherichia coli, as the majority of bacteria, has a unique circular chromosome. Faithfull cell proliferation requires that a least one copy of the chromosome is transmitted to sister cells prior to cell division. A strict temporal and spatial coupling of chromosome segregation with cell division is thus required to ensure the accurate separation of the two fully replicated chromosomes. The terminal region of the chromosome (ter) is the last one to be replicated and segregated, and moves from the pole to the middle of the cell where the division septum is formed, at the end of the cell cycle. Loci of the ter region display an extended cohesion period. This extended cohesion is controlled by the MatP protein, which binds specific matS sites restricted to the ter region. MatP binds DNA as a dimer and forms tetramers via its N-terminal and C-terminal domains respectively. Tetramerisation is stimulated by binding to DNA and pairs remote matS sites. MatP also interacts with ZapB, a component of the divisome, the protein machinery that contributes to septum formation. While tetramerisation of MatP appears important for compacting the ter region, its interaction with ZapB, which is localized at the septum via ZapA and FtsZ, is involved in the positioning and the extended cohesion of this region. The linkage of the ter region with the divisome is required for the success of many later events of the cell cycle : (i) the active, ordered and progressive segregation of the ter region by FtsK, a component of the divisome, (ii) resolution of chromosome dimers via the site-specifique recombination XerCD/dif, activated by FtsK, (iii) the resolution of intercatenation links by TopoIV and (iv) the positive regulation of divisome assembly in the absence of the negative regulators MinCDE and SlmA. During my thesis, I first studied the role of MatP in the chromosome management. By using pairs of loci tagged with parSp1 and parSpMT1 sites recognized by cognate ParB-XFP proteins, we directly analysed chromosome positioning and orientation in the cell. We show that MatP is required for normal positioning and orientation of the whole chromosome at the end of the cell cycle. The localisation of SlmA in wt and Delta matP strains proves that inactivation of MatP leads to inaccuracy of nucleoid positioning accompanied by defects in SlmA localisation, and thus induces division inhibition. Take together, these results show that MatP, SlmA and their interplay are important for chromosome management and control of cell division in E. coli. In collaboration with O. Espeli's team, we have used genomic and molecular biology methods to characterize TopoIV regulation during the E. coli cell cycle. We show that at the dif site, TopoIV binging and cleavage are enhanced by the presence of the XerCD recombinases and MatP. This enhancement of TopoIV activity at dif promotes decatenation of fully replicated chromosomes and ensure, through interaction with other processes, accurate separation of sister chromosomes. These results provide insight into the protein network dedicated to the final step of chromosome management during the cell cycle, and how the chromosome management is linked to cell division.
|
19 |
Etude comparative du positionnement du fuseau mitotique dans les espèces de C.elegans et C. briggsae / Comparative study of the mitotic spindle positioning in C. elegans and C. briggsae speciesRiche, Soizic 09 December 2015 (has links)
La division cellulaire asymétrique est un mécanisme fondamental qui assure la diversité cellulaire, le renouvellement des cellules souches et le maintien de l’identité cellulaire. Elle dépend du bon positionnement du fuseau mitotique car il dicte le plan de division des cellules. La première division des embryons de C. elegans, est asymétrique et génère deux cellules fille de taille et devenir différents. Elle consiste en deux étapes : la centration des pronoyaux en prophase puis le déplacement postérieur du fuseau mitotique en anaphase. Lors de l'anaphase le fuseau subit des oscillations transverses plus marquées au pôle postérieur qu’au pôle antérieur. Ces mouvements sont contrôlés par des forces de traction agissant sur les microtubules astraux. Les générateurs de force ont été moléculairement identifiés et sont évolutivement très conservés. Un complexe composé de protéines Gα, liées à GPR (protéine à domaine GoLoco, homologue de LGN/Pins), à LIN-5 (protéine à domaine super-enroulé, homologue de NuMA/Mud) et à la dynéine serait ancré au cortex et activé en début de mitose pour tirer le fuseau. En analysant la première division d’une espèce proche de C. elegans : C. briggsae, on observe des variations de trajectoire du fuseau. Les embryons de C. briggsae présentent un décalage antérieur des noyaux en prophase et les oscillations du fuseau sont réduites en anaphase. La combinaison de perturbations physiques et l'analyse de mutants dans ces espèces, ont montré que ces différences s’expliquent par des changements dans la régulation du complexe ternaire. Mais, nous avons découvert que dans les deux espèces 1) un switch positionnel conservé contrôle le démarrage des oscillations du fuseau, 2) la localisation postérieure de GPR détermine ce switch positionnel, et 3) l'amplitude maximum des oscillations est déterminée en partie par le temps passé dans la phase oscillatoire. Nous avons utilisés ces variants pour corréler les phénotypes, la localisation de GPR et la divergence de séquence entre espèces afin d’identifier les éléments de régulation de cette protéine. Nous avons alors échangé les protéines et construits des protéines chimères entre les deux espèces. Enfin, par optogénétique, nous avons essayé de contrôler la localisation temporelle de GPR et analyser les conséquences sur les mouvements des noyaux et du fuseau. En étudiant la microévolution d'un processus sous-cellulaire, nous avons identifié de nouveaux mécanismes qui contribuent à la compréhension du positionnement du fuseau. / Asymmetric cell division is a fundamental mechanism essential in all organisms to assure cell diversity, stem cell renewal and cellular identity maintenance. It is relying on proper mitotic spindle positioning because it dictates the cell division plan. In C. elegans one-cell embryos, the first division is asymmetric and gives rise to two daughter cells of unequal size and fate. It occurs in two steps: pronuclei centration during prophase and spindle posterior displacement during anaphase. During anaphase, the mitotic spindle undergoes transverse oscillations that are more pronounced for the posterior than the anterior pole. These movements are controlled by pulling forces acting on astral microtubules. The force generators are identified and are evolutionary conserved. A complex made of Gα proteins, linked to GPR (a GoLoco containing protein, the LGN/Pins homologues), LIN-5 (a coiled-coil protein, the NuMA/Mud homologues) and dynein is thought to be anchored at the cortex and activated at the onset of mitosis to pull on the spindle. We identified variations in spindle trajectories by analyzing the outwardly similar one-cell stage embryo of a close relative of C. elegans, C. briggsae. Compared to C. elegans, C. briggsae embryos exhibit an anterior shifting of nuclei in prophase and reduced anaphase spindle oscillations. By combining physical perturbations and mutant analysis in both species, we show that differences can be explained by inter-species changes in the regulation of the cortical Gα/GPR/LIN-5 complex. However, we uncover that in both species 1) a conserved positional switch controls the onset of spindle oscillations, 2) GPR posterior localization may set this positional switch, and 3) the maximum amplitude of spindle oscillations is determined in part by the time spent in the oscillating phase. Interestingly, GPR is poorly conserved at the amino acid level between these species. We use these variants to correlate phenotypes, GPR localization and sequence divergence to identify GPR regulatory elements. To this end, we performed protein replacement between species, as well as analysis of protein chimeras. Finally we tried to use optogenetics in order to control GPR localisation temporally and analyze the consequences on pronuclei and spindle movements during the first division. By investigating microevolution of a subcellular process, we identified new mechanisms that are instrumental to decipher spindle positioning.
|
20 |
Phylogénomique des structures multiprotéiques eucaryotes impliquées dans le cycle cellulaire et contribution à la phylogénie des eucaryotes. / Phylogenomics of eukaryotic multiprotein structures involved in cell cycle and contribution to the eukaryotic phylogenyEme, Laura 01 June 2011 (has links)
Retracer l'histoire évolutive des eucaryotes est une question majeure en évolution et fait l'objet de nombreux débats. Le développement de techniques à haut débit, en particulier en protéomique et en génomique, a permis d'obtenir de nombreuses données pouvant être exploitées lors d'analyses évolutives. Dans ce contexte, les structures multiprotéiques eucaryotes (SME) constituent des objets d'intérêt. En effet, ces gros complexes protéiques sont impliqués dans de nombreux processus fondamentaux de la cellule eucaryote, et n'ont pas d'homologues chez les procaryotes (même si les fonctions dans lesquelles ils sont impliqués peuvent exister). Ils ont donc certainement joué un rôle prépondérant dans l'eucaryogénèse. L'analyse phylogénomique de deux SME impliquées dans la division cellulaire (le midbody et l'APC/C) montre que ces systèmes ont une origine évolutive ancienne et étaient déjà présents chez le dernier ancêtre commun des eucaryotes (LECA), tout en étant issus d'innovations eucaryotes. Ceci implique que l'émergence de ces deux SME s'est faite après la divergence de la lignée eucaryote et avant la diversification ayant donné naissance aux lignées actuelles. Au-delà de ces considérations évolutives, l'analyse de ces SME ouvre des pistes sur certains aspects de la biologie de ces systèmes. En effet, si ces systèmes ont été globalement bien conservés au cours de la diversification des eucaryotes, leur analyse révèle une grande plasticité de composition dans certaines lignées de protistes. Ceci suggère des changements récents concernant certaines étapes du cycle cellulaire de ces organismes qu'il serait intéressant d'explorerexpérimentalement.En parallèle, ce travail a montré que, bien qu'étant des protéines opérationnelles, lescomposants de ces SME portent un signal phylogénétique exploitable pour inférer les relations de parentés entre lignées eucaryotes. La construction de supermatrices à partir de ces protéines a permis l'inférence de phylogénies de qualité, même si non totalement résolues, dans lesquelles, par exemple, la monophylie des Excavata ou encore le placement des microsporidies au sein des Fungi est bien supporté. La combinaison de ces données avec celles issues d'analyses basées sur des protéines informationnelles montrent des avancées significatives concernant la résolution des arbres inférés. Ces résultats ouvrent le champ des possibles quant à la recherche d'autres marqueurs encore inexploités parmi les protéines opérationnelles. L'intégration de ces nouveaux marqueurs associée à l'augmentation de l'échantillonnage taxonomique représente une piste prometteuse pour l'avenir.Ce travail illustre l'intérêt de généraliser les approches évolutives intégrées des systèmes biologiques pour l'étude de l'évolution et de la phylogénie des eucaryotes. / Tracing back the evolutionary history of eukaryotes is one of the major issues in the field of evolution and is hotly debated. The development of high throughput techniques, especially in proteomics and genomics has yielded extensive data that can be used in evolutionary analyses. In this context, eukaryotic multiprotein structures (EMS) are objects of interest. Indeed, these large protein complexes are involved in many fundamental processes of eukaryotic cells, and have no homologues in prokaryotes (even if the functions in which they are involved may exist) and therefore have certainly played a major role in the eukaryogenesis. The phylogenomic analysis of two EMS involved in cell division (the midbody and the APC/C) shows that these systems have an ancient evolutionary origin and were already present in the last common ancestor of eukaryotes (LECA), while resulting from eukaryotic innovations. This implies that the emergence of these two EMS occurred after the divergence of the eukaryotic lineage and before the diversification that gave rise to the current lineages. Beyond these evolutionary questions, analyses of these EMS uncover some biological aspects of these systems. Indeed, if these systems were generally well conserved during the diversification of eukaryotes, their analysis shows a high plasticity of composition in some protist lineages. This suggests that recent changes regarding certain phases of these organisms cell cycle which would be interesting to explore experimentally. Concomitantly, this work showed that, although being operational protein, components of these EMS carry a phylogenetic signal usable for inferring phylogenetic relationships among eukaryotic lineages. Construction of supermatrixes from these proteins led to the inference of phylogenies of high quality, even if not fully resolved, in which, for example, the monophyly of Excavata or the placement of Microsporidia within Fungi is well supported. Combining these data with those from analyses based on informational proteins show significant progress on the resolution of inferred trees. These results open the field of possibilities to find other markers among the untapped proteins operational. The integration of these new markers associated with increased taxonomic sampling represents a promising approach.This work illustrates the interest of generalizing integrated evolutionary approaches ofbiological systems for studying the evolution and phylogeny of eukaryotes.
|
Page generated in 0.059 seconds