• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 163
  • 50
  • 39
  • 36
  • 25
  • 17
  • 14
  • 9
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 653
  • 131
  • 67
  • 54
  • 51
  • 46
  • 44
  • 43
  • 40
  • 38
  • 35
  • 34
  • 34
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Etude numérique de l'écoulement de couche de mélange temporelle à viscosité variable / Numerical study of temporal mixing layer flow with variable viscosity

Taguelmimt, Noureddine 19 November 2015 (has links)
Depuis les travaux pionniers de Brown et Roshko portant sur les effets des variations de masse volumique au sein de l’écoulement de couche de mélange, plusieurs autres études tant théoriques, expérimentales ou numériques se sont attelées à étudier finement cet écoulement. Les motivations sont d’ordre pratiques (industrie de la chimie, l’aérodynamique, la combustion . . .) ou alors purement théoriques (rôle des structures cohérentes, instabilités secondaires. . .). Ces études se sont intéressées, entre autres, aux effets de compressibilité et/ou de masse volumique variable. A notre connaissance, les effets des variations de viscosité dans la configuration de couche de mélange sont peu abordés dans la littérature. L’objectif de ces travaux de recherche est l’exploration théorique et numérique de l’écoulement de couche de mélange temporelle à viscosité variable, plus particulièrement durant sa phase initiale de développement. D’un point de vu numérique, les équations de Navier-Stokes sont résolues,en formulation faiblement compressible, au moyen du solveur CHOC-WAVES, basé sur le schéma WENO. L’approche DNS est justifiée par l’absence, dans la littérature, de modèles de sous-maille capables de prendre en compte les effets de la viscosité variable. Les équations de transport des différentes grandeurs moyennes et fluctuantes en un point et en chaque échelle (bilan d’énergie cinétique) sont réécrites en formulations incompressible et à viscosité variable. Des termes supplémentaires, engendrés par les variations spatio-temporelles de la viscosité, apparaissent dans ces équations. Celles-ci sont utilisées comme outil, afin d’explorer l’écoulement de couche de mélange et d’étudier le développement de la turbulence dans un milieu hétérogène. Les rapports de viscosité simulés sont Rv = [1−18]. Les résultats numériques montrent que l’épaisseur de la zone de mélange δθ évolue plus rapidement lorsque le rapport de viscosité Rv est élevé. De même, les gradients verticaux de la vitesse longitudinale sont amplifiés par les gradients de viscosité, un gain de près de 60%, par rapport aux valeurs initiales, est observé. La production de l’énergie cinétique turbulente est également amplifiée.L’évolution temporelle des fluctuations des vitesse est accélérée, celles-ci sont augmentées de près de 120% par rapport à l’écoulement à viscosité constante. Le régime autosimilaire du tenseur de Reynolds est atteint plus rapidement par l’écoulement à viscosité variable et l’isotropie des fluctuations de vitesse est améliorée. / Since the pioneering work of Brown and Roshko on the effects of density variations within the mixed layer flow, several other theoretical, experimental and numerical studies harnessed to finely investigate this flow. The motivations are of practical order (chemical industry, aerodynamics, combustion. . .) or purely theoretical (the role of coherent structures,secondary instabilities). These studies have focused on, among others, the effects of compressibility and/or variable density. To our knowledge, the effects of viscosity variations in the mixing layer configuration are not discussed in the literature. The objective of this researchis the theoretical and numerical exploration of the variable viscosity temporal mixedlayer flow, especially during its initial phase of development. From a numerical viewpoint, the Navier-Stokes equations are solved in weakly compressible formulation, using the solver CHOC-WAVES, based on WENO scheme. The DNS approach is justified by the absence in the literature of subgrid models that account for the effects of variable viscosity. The transport equations of different mean and fluctuating quantities at a point and each scale (scale-by-scale energy budget) are rewritten in incompressible and variable-viscosity formulation. Additional terms, generated by the spatial and temporal variations of viscosity occur in these equations. These are used as a tool to explore the mixed layer flow and study the development of turbulence in a heterogeneous environment. The simulated viscosity ratios are Rv = [1 − 18]. The numerical results show that the mixing layer thickness δθ growsfaster when the viscosity ratio Rv is high. The vertical gradients of the longitudinal mean velocity are amplified by the viscosity gradients, a gain of almost 60 %, compared to initial values was observed. The production of turbulent kinetic energy is also amplified. The temporal evolution of the velocity fluctuations is accelerated, they are increased to nearly 120 % with respect to the constant viscosity flow. The self-similar regime of the Reynolds tensor is reached more quickly by the variable viscosity flow and the isotropy of the velocity fluctuations is improved.
402

Sequence Dependent Elasticity of DNA

Becker, Nils B. 27 July 2007 (has links)
The DNA contained in every living cell not only stores the genetic information; it functions in a complex molecular network that can condense, transcribe, replicate and repair genes. The essential role played by the sequence dependent structure and deformability of DNA in these basic processes of life, has received increasing attention over the past years. The present work aims at better understanding sequence dependent elasticity of double stranded DNA elasticity, across biologically relevant length scales. A theoretical description is developed that makes is possible to relate structural, biochemical and biophysical experiments and simulation. It is based on the rigid base–pair chain (rbc) model which captures all basic deformation modes on the scale of individual base–pair (bp) steps. Existing microscopic parametrizations of the rbc model rely on indirect methods. A way to relate them to biochemical experiments is provided by the indirect readout mechanism, where DNA elasticity determines protein–DNA complexation affinities. By correlating theoretical affinity predictions with in vitro measurements in a well–studied test case, different parameter sets were evaluated. As a result a new, hybrid parameter set is proposed which greatly reduces prediction errors. Indirect readout occurs mostly at particular binding subsites in a complex. A statistical marker is developed which localizes indirect readout subsites, by detecting elastically optimized sub-sequences. By a systematic coarse–graining of the rbc to the well–characterized worm–like chain (wlc) model, a quantitative connection between microscopic and kbp scale elasticity is established. The general helical rbc geometry is mapped to an effective, linear ‘on-axis’ version, yielding the full set of wlc elastic parameters for any given sequence repeat. In the random sequence case, structural variability adds conformational fluctuations which are correlated by sequence continuity. The sequence disorder correction to entropic elasticity in the rbc model is shown to coincide with the conformational correction. The results show remarkable overall agree- ment of the coarse–grained with the mesoscale wlc parameters, lending support to the model and to the microscopic parameter sets. A continuum version of the rbc is formulated as Brownian motion on the rigid motion group. Analytic expressions for angular correlation functions and moments of the end–to–end distance distribution are given. In an equivalent Lagrangian approach, conserved quantities along, and the linear response around, a general equilibrium shape are explored. / Die in jeder lebenden Zelle enthaltene DNS speichert nicht nur die genetische Information; Sie funktioniert innerhalb eines komplexen molekularen Netzwerks, das in der Lage ist, Gene zu kondensieren, transkribieren, replizieren und reparieren. Die zentrale Rolle, welche der sequenzabhängigen Struktur und Deformierbarkeit von DNS in diesen grundlegenden Lebensprozessen zukommt, erregte in den letzten Jahren zunehmendes Interesse. Die vorliegende Arbeit hat ein besseres Verständnis der sequenzabhängigen elastischen Eigenschaften von DNS auf biologisch relevanten Längenskalen zum Ziel. Es wird eine theoretische Beschreibung entwickelt, die es ermöglicht, strukturbiologische, biochemische und biophysikalische Experimente und Simulationen in Beziehung zu setzen. Diese baut auf dem Modell einer Kette aus starren Basenpaaren (rbc) auf, das alle wichtigen Deformationsmoden von DNS auf der Ebene von einzelnen Basenpaar (bp)–Schritten abbildet. Bestehende Parametersätze des rbc-Modells beruhen auf indirekten Methoden. Eine direkte Beziehung zu biochemischen Experimenten kann mithilfe des indirekten Auslese-Mechanismus hergestellt werden. Hierbei bestimmt die DNS– Elastizität Komplexierungsaffinitäten von Protein–DNS–Komplexen. Durch eine Korrelation von theoretischen Vorhersagen mit in vitro Messungen in einem gut untersuchten Beispielfall werden verschiedene Parametersätze bewertet. Als Resultat wird ein neuer Hybrid–Parametersatz vorgeschlagen, der die Vorhersagefehler stark reduziert. Indirektes Auslesen tritt meistens an speziellen Teilbindungsstellen innerhalb eines Komplexes auf. Es wird eine statistische Kenngröße entwickelt, die indirektes Auslesen durch Detektion elastisch optimierter Subsequenzen erkennt. Durch ein systematisches Coarse–Graining des rbc-Modells auf das gut charakterisierte Modell der wurmartigen Kette (wlc) wird eine quantitative Beziehung zwischen der mikroskopischen und der Elastizität auf einer kbp-Skala hergestellt. Die allgemeine helikale Geometrie wird auf eine effektive, lineare Version der Kette ‘auf der Achse’ abgebildet. Dies führt zur Berechnung des vollen Satzes von wlc-elastischen Parameters für eine beliebig vorgegebene periodische Sequenz. Im Fall zufälliger Sequenz führt die Strukturvariabilität zu zusätzlichen Konformationsfluktuationen, die durch die Kontinuität der Sequenz kurzreichweitig korreliert sind. Es wird gezeigt, daß die Sequenzunordnungs-Korrektur zur entropischen Elastizität im rbc-Modell identisch ist zur Korrektur der Konformationsstatistik. Die Ergebnisse zeigen eine bemerkenswerte Übereinstimmung der hochskalierten mikroskopischen mit den mesoskopischen wlc-Parameter und bestätigen so die Wahl des Modells und seiner mikroskopischen Parametrisierung. Eine Kontinuumsversion des rbc-Modells wird formuliert als Brownsche Bewegung auf der Gruppe der Starrkörpertransformationen. Analytische Ausdrücke für Winkelkorrelationsfunktionen und Momente der Verteilung des End-zu-End–Vektors werden angegeben. In einem äquivalenten Lagrange-Formalismus werden Erhaltungsgrößen entlang von Gleichgewichtskonformationen und die lineare Antwort in ihrer Umgebung untersucht.
403

A new Internet Naming System

Pfeifer, Gert 21 September 2009 (has links)
In this thesis I describe my research activities and results of the last 4 years. I also provide an outlook and guidelines on how to proceed with our project, that we named SEDNS - Security-Enhanced Domain Name System. This project’s ambitions are to complement DNS, the Domain Name System, in a way that allows us to keep using it in the future. The main reason for this strategy is, that it has proven to be difficult to change any part of the Internet infrastructure, such as parts of the protocols stack or well established Internet authorities, like ICANN or IANA. The main problems of DNS are twofold. (1) The DNS protocol does not contain any measures to prevent data from being tampered with. (2) Furthermore, it is difficult to configure DNS correctly since most of the configuration is done within the DNS data itself, e.g., delegating authority. It is well known that DNS problems lead to reduced availability of Internet-based services in many different ways. In this thesis, I present four main results. All of them contribute to improvements and deeper understanding of DNS’ dependability issues. First, I discuss, how well established cryptographic tools can be used to enhance DNS’ security without getting into the same problems that prevent DNSSEC from being globally deployed. These problems are explained as well. This is an important topic for the Internet and DNS community, since at the moment most of the protocol improvements are connected to DNSSEC. Second, I thoroughly discuss the technique that was used in the recent years to overcome any problems related to client-server architectures, i.e., peer-to-peer systems. Such solutions have been proposed to improve DNS’ availability and reduce configuration effort. I show, that those systems do not keep up with the expectations, neither as client side tools nor as server infrastructure replacement. To reach this conclusion, a novel DHT scheme has been developed. The evaluation of it is shown as well. Third, results of our DNS data mining show that it is useful to improve the quality of DNS data and therefore, to protect clients from malicious or erroneous information. And fourth, an outlook is presented, which combines all the results of the first three points to suggest an architecture that indeed can improve our supply with DNS data, omitting the shortcomings of the classical client-server-architecture and its peer-to-peer replacements. Note, that although the development of future DNS standards and protocols is subject to political struggle, e.g., on whether or not an international organization should maintain the root zone instead of the USA, this thesis focuses only on technical aspects. / In dieser Dissertation beschreibe ich meine Forschungsaktivitäten und Ergebnisse der letzten 4 Jahre. Ich gebe auch einen Ausblick und Hinweise, wie unser Project, das wir SEDNS - Security-Enhanced Domain Name System genannt haben, fortgesetzt werden sollte. Die Ambitionen dieses Projektes sind, DNS, das Domain Name System, zu in einer Art und Weise zu erweitern, die es uns erlauben soll, dieses System auch in der Zukunft weiter zu benutzen. Der Hauptgrund für diese Strategie ist, dass es sich in der Vergangenheit als schwierig erwiesen hat, Teile der Internet-Infrastruktur, wie zum Beispiel Teile des Protokollstapels oder gut etablierte Internet-Behörden wie ICANN oder IANA, zu ändern bzw. auszutauschen. Daher wollen wir nicht versuchen, DNS komplett zu ersetzen. DNS hat zwei Hauptprobleme: (1) Das DNS Protokoll bietet keinerlei Möglichkeiten, Daten vor Verfälschung zu schützen, und (2) es ist schwierig, DNS korrekt zu konfigurieren, weil ein Großteil der Konfiguration direkt innerhalb der DNS Daten selbst stattfindet, wie zum Beispiel die Delegation von Verantwortungsbereichen, und diese oft nicht global konsistent und korrekt sind. Diese Probleme sind umso bedeutender, weil es allgemein bekannt ist, dass DNS Probleme auf verschiedene Art und Weisen zu reduzierter Verfügbarkeit von wichtigen Internet-basierten Diensten führen. In dieser Arbeit präsentiere ich vier Hauptergebnisse. Zuerst diskutiere ich, wie gut etablierte kryptographische Werkzeuge benutzt werden können um die Sicherheit von DNS zu verbessern, ohne dabei auf dieselben Probleme zu stoßen, die DNSSEC davon abhalten, weltweit benutzt zu werden. Diese Probleme werden dabei erläutert. Es handelt sich dabei um ein wichtiges Thema für die Internet- und DNS-Community, weil im Moment die meisten Weiterentwicklungen des DNS Protokolls mit DNSSEC zusammenhängen. Als zweites diskutiere ich im Detail die Technik, die in den vergangenen Jahren benutzt wurde um Probleme beliebiger Client-Server Anwendungen zu überwinden: Peer-to-Peer Systeme. Derartige Lösungen wurden vorgeschlagen, um DNS' Verfügbarkeit zu verbessern und Konfigurationsaufwand zu reduzieren. Ich zeige allerdings, dass solche Lösungen nicht die in sie gesetzten Erwartungen erfüllen, weder als Client-seitige Tools noch als Ersatz für die Server-Infrastruktur. Um diesen Schluss zu ziehen, wurde ein neues, auf die Bedürfnisse von DNS zugeschnittenes DHT Schema entwickelt und evaluiert im Vergleich zu DNS und existierenden Systemen. Als drittes werden DNS Data Mining Ergebnisse präsentiert, die zeigen, wie sinnvoll es ist, die Qualität der DNS Daten zu verbessern, und somit Clients vor bösartigen oder fehlerhaften Informationen zu schützen. Als viertes wird ein Ausblick präsentiert, der die Ergebnisse der vorherigen drei Punkte kombiniert und eine Architektur vorschlägt, die unsere Versorgung mit DNS Daten tatsächlich verbessern kann und die Nachteile der klassischen Client-Server-Architektur und ihrer Peer-to-Peer Nachfolger vermeidet. Zu beachten ist, dass obwohl die Entwicklung zukünftiger DNS Standards und Protokolle Gegenstand politischer Konflikte ist, z.B. darüber ob anstelle der USA eine internationale Organisation die Root-Zone verwalten sollte, diese Arbeit nur auf die technischen Aspekte ausgerichtet ist.
404

Ovlivnění maximálního výkonu na kajakářském trenažéru metodou Dynamické neuromuskulární stabilizace u rychlostních kajakářů / Influence of Dynamic Neuromuscular Stabilization Approach on Maximum Kayak Paddling Power

Davídek, Pavel January 2020 (has links)
INTRODUCTION: The aim of this thesis is to identify the effect of trunk stabilization training based on Dynamic Neuromuscular Stabilization (DNS) on maximum kayak ergometer power output and reported self-disability in the shoulder girdle area. METHOD: Thirty flatwater kayakers of both genders (17 - 25 years old) were randomly divided into two groups. Crossover design was used for this study. Subjects in the experimental group (group A) integrated DNS exercises into standard flatwater training during the first phase. The control group (group B) conducted only common flat water training at the same time. After 6 weeks, the groups were switched. Then group B underwent the same DNS exercise with the same intensity and the same time. The intervention was the same for both phases and took 6 weeks. Group A performed only standard off-season training during the second phase. The maximum power output on kayak ergometer was measured three times (before study, after 6 weeks and after 12 weeks). Disabilities of the Arm, Shoulder and Hand (DASH) were analyzed at the same time. RESULTS: Initially, no significant differences in maximum power output on kayak ergometer and the DASH questionnaire score were identified between the groups. During the first phase the experimental group (group A) improved the maximum...
405

Měření aktivace břišní stěny v posturálních vývojových pozicích pomocí Ohm Beltu / Measurement of abdominal wall activation in developmental postural positions using Ohm Belt device

Svoboda, Petr January 2021 (has links)
Introduction: The aim of this work was to determine the difference in abdominal wall expansion and thus indirectly the amount of intra-abdominal pressure in various postural positions, first without any correction, then after verbal and manual instruction according to Dynamic Neuromuscular Stabilization (DNS) principles. The amount of activation of abdominal wall muscles in various postural positions helps determine the positions in which optimal postural stabilization is best activated. These positions may be suitable for postural therapy and training. The theoretical part introduces optimal trunk stabilization according to developmental kinesiology principles and DNS concept. Then, the relationship between the intra-abdominal pressure and postural activity of abdominal muscles is introduced as well as the most common methods of objectification. Participants and Methods: 30 healthy subjects (15 women and 15 men) aged 20 to 25 years (mean age 22.73 years, SD 1.88) were tested using the Ohm Belt device. This device uses pressure sensors that are attached to the abdominal wall in the area above the groin and in the trigonum lumbale and thus allows non-invasive monitoring of abdominal wall expansion and indirect measurement of the intra-abdominal pressure. The subjects were tested in five postural...
406

Lightweight Spam Filtering Methods

Blaskov, Vladimir January 2014 (has links)
<p>Validerat; 20140619 (global_studentproject_submitter)</p>
407

Heat and mass transfer to particles in pulsating flows

Heidinger, Stefan 24 January 2024 (has links)
The behaviour of particles in pulsating and oscillating flows is of practical interest in devices such as pulsation reactors and ultrasonic elevators. In addition to the resulting flow patterns, the influence of the flow on heat and mass transfer is often important. The state of the art in this area is already quite well developed with many different models, theories, and experiments published. However, only small parameter ranges of the behaviour of particles in pulsating and oscillating flows are considered, while an overarching theoretical framework does not yet exist. Therefore, this work presents a three-stage model for the behaviour of solid single particles in oscillating (pulsating) flows. The relative velocity between particle and fluid as well as the flow patterns around the particle, together with the heat and mass transfer at the particle are considered. The model levels build on top of each other, with the introduced ϵ-Re plain as a common connection between the levels. The number of input parameters could be limited to the five most important ones (fluid velocity amplitude, fluid oscillation frequency, fluid temperature, particle diameter, particle density), but these are considered in very large ranges. The relative velocity is largely calculated analytically using various flow resistance approaches. Direct numerical simulations were carried out to qualitatively estimate the flow patterns around the particle. The quantitative determination of a meta correlation for the entire ϵ-Re plane was carried out using 33 data sets from the literature. Conditions in pulsation reactors are particularly emphasized and their influence investigated.:Chapter 1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 3. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. Material Treatment in the Pulsation Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2. Particle Motion in an Oscillating Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3. Steady Streaming (Flow Pattern). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4. Heat and Mass Transfer in Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5. Heat and Mass Transfer in Pulsating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6. Non-continuum Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 4. Basic Assumptions and Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1. Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2. Pulsating Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3. Forces on the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4. Motion of Particles - Stokes Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5. Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6. Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7. The ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Chapter 5. Motion of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1. Drag Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2. Slip Velocity Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3. Particle Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.4. Navigation in the ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5. Extension of the Stokes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.6. Additional Effects at Micro Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.7. Analytical Particle Motion - Summary and Conclusion . . . . . . . . . . . . . . . . . . . . 61 Chapter 6. Flow Patterns in the Vicinity of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1. Creeping Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2. Quasi-steady Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3. Steady Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 7. Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2. The Quasi-Steady HMT Area of the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.3. Models for Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4. Meta Correlation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.5. Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.6. Quasi-Steady Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.7. Heat and Mass Transfer to Small Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.8. Conclusion of Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . 83 Chapter 8. Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.1. Model Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.2. Inŕuence of input parameters on the HMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3. The ϵ-Re Plane in the Special Case of the Pulsation Reactor . . . . . . . . . . . . . . 91 8.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Chapter 9. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Appendix A. Derivation and Solution of Particle Motion in the Stokes Model . . . . . i Appendix B. Derivation and Solution of Particle Motion in the Landau & Lifshitz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Appendix C. Derivation of Deviation between Stokes and Schiller & Naumann . . . . x Appendix D. Parameters and Algorithm of the Direct Numerical Simulation and Flow Pattern Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Appendix E. Conducted Data Preparation for HMT Models . . . . . . . . . . . . . . . . . . . . . . xv / Das Verhalten von Partikeln in pulsierenden und oszillierenden Strömungen findet praktisches Interesse in Apparaten wie Pulsationsreaktoren und Ultraschalllevitatoren. Dabei ist neben den entstehenden Strömungsmustern oft der Einfluss der Strömung auf den Wärme- und Stoffübergang von Bedeutung. Der Stand der Technik in der Literatur in diesem Bereich ist bereits recht weit entwickelt mit vielen verschiedenen Modellen, Theorien und Experimenten. Dabei werden jedoch stets nur kleine Parameterbereiche des Verhaltens von Partikeln in pulsierenden und oszillierenden Strömungen betrachtet, während ein übergreifender theoretischer Rahmen noch nicht existiert. Deshalb wird in dieser Arbeit ein dreistufiges Modell vorgestellt für das Verhalten von festen Einzelpartikeln in oszillierenden (pulsierenden) Fluidströmungen. Sowohl die Relativgeschwindigkeit zwischen Partikel und Fluid als auch die Strömungsmuster um das Partikel und der Wärme- und Stoffübergang am Partikel werden hierbei betrachtet. Die Modellebenen bauen aufeinander auf, wobei die eingeführte ϵ-Re-Ebene die Modellebenen miteinander verbinden. Die Anzahl der Eingangsparameter konnte auf die wichtigsten fünf (Fluidgeschwindigkeitsamplitude, Fluidoszillationsfrequenz, Fluidtemperatur, Partikeldurchmesser, Partikeldichte) begrenzt werden, diese werden jedoch in sehr großen Bereichen betrachtet. Die Relativgeschwindigkeit wird mittels verschiedener Strömungswiderstandsansätze größtenteils analytisch berechnet. Zur qualitativen Abschätzung der Strömungsmuster um das Partikel wurden direkte numerische Simulationen durchgeführt. Die quantitative Bestimmung einer Metakorrelation für die gesamte ϵ-Re-Ebene wurde mittels 33 Datensätze aus der Literatur durchgeführt. Dabei werden Bedingungen in Pulsationsreaktoren besonders herausgestellt und deren Einfluss untersucht.:Chapter 1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 3. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. Material Treatment in the Pulsation Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2. Particle Motion in an Oscillating Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3. Steady Streaming (Flow Pattern). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4. Heat and Mass Transfer in Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5. Heat and Mass Transfer in Pulsating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6. Non-continuum Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 4. Basic Assumptions and Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1. Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2. Pulsating Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3. Forces on the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4. Motion of Particles - Stokes Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5. Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6. Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7. The ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Chapter 5. Motion of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1. Drag Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2. Slip Velocity Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3. Particle Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.4. Navigation in the ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5. Extension of the Stokes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.6. Additional Effects at Micro Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.7. Analytical Particle Motion - Summary and Conclusion . . . . . . . . . . . . . . . . . . . . 61 Chapter 6. Flow Patterns in the Vicinity of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1. Creeping Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2. Quasi-steady Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3. Steady Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 7. Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2. The Quasi-Steady HMT Area of the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.3. Models for Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4. Meta Correlation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.5. Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.6. Quasi-Steady Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.7. Heat and Mass Transfer to Small Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.8. Conclusion of Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . 83 Chapter 8. Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.1. Model Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.2. Inŕuence of input parameters on the HMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3. The ϵ-Re Plane in the Special Case of the Pulsation Reactor . . . . . . . . . . . . . . 91 8.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Chapter 9. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Appendix A. Derivation and Solution of Particle Motion in the Stokes Model . . . . . i Appendix B. Derivation and Solution of Particle Motion in the Landau & Lifshitz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Appendix C. Derivation of Deviation between Stokes and Schiller & Naumann . . . . x Appendix D. Parameters and Algorithm of the Direct Numerical Simulation and Flow Pattern Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Appendix E. Conducted Data Preparation for HMT Models . . . . . . . . . . . . . . . . . . . . . . xv
408

Epigenetic reprogramming in mouse germ cells

Hajkova, Petra 05 March 2004 (has links)
Bei Säugerkeimzellen, Zygoten und Embryos in frühen Stadien kommt der epigenetischen Neuprogammierung eine außergewöhnlich wichtige Rolle in der Regulation der Genomfunktionen in entscheidenden Entwicklungsstadien zu. Die epigenetische Neuprogrammierung in Keimzellen löscht zuerst die Imprinting-Markierungen und Epi-Mutationen und stellt dann geschlechtsspezifische Markierungen (genomische Prägung) wieder her. Die vorliegende Arbeit bezieht sich auf das Löschen epigenetischer Modifikationen in primordialen Mauskeimzellen (primordial germ cells (PGCs)) zwischen dem 10.5 bis 13.5 Tag nach der Befruchtung. Entgegen früheren Annahmen zeigen unsere Ergebnisse, daß primordiale Mauskeimzellen (PGCs) beim Eintritt in die embryonalen Keimdrüsen noch immer DNS Methylierungsmarker besitzen, die ähnlich dem Marker in somatischen Zellen sind. Kurz nach dem Eintritt in die Keimdrüsen werden die DNS Methylierungsmarker, die in Verbindung mit geprägten und nicht geprägten Genen stehen, gelöscht. Für die Mehrzahl der Gene beginnt die Löschung der Marker in männlichen und weiblichen Embryos gleichzeitig und ist innerhalb eines Entwicklungstages abgeschlossen. Diese Kinetik deutet auf einen aktiven Demethylierungsprozess hin, initiiert durch ein somatisches Signal, ausgehend von der embryonalen Keimdrüse. Der Zeitpunkt der Neuprogrammierung in den primordialen Keimzellen ist entscheidend, da er sicherstellt, daß Keimzellen beiden Geschlechts einen epigenetisch äquivalenten Status erhalten, bevor sie geschlechtsspezifisch ausdifferenzieren und anschließend neu elterlich geprägt werden. Vollständiges Verständnis des Prozesses der Neuprogrammierung der Keimzellen ist nicht nur im Hinblick auf genomisches Imprinting wichtig, sondern auch für die Erforschung von Mechanismen für die Wiederherstellung von omnipotenten Zellen bei Klonierung und Stammzellenerhaltung. / Epigenetic reprogramming in mammalian germ cells, zygote and early embryos, plays a crucial role in regulating genome functions at critical stages of development. Germ line epigenetic reprogramming assures erasure of all the imprinting marks and epi-mutations and establishment of new sex-specific gametic imprints. The presented work focuses on the erasure of epigenetic modifications that occur in mouse primordial germ cells (PGCs) between day 10.5 to 13.5 post coitum (dpc). Contrary to previous assumptions, our results show that as they enter the genital ridge the PGCs still possess DNA methylation marks comparable to those found in somatic cells. Shortly after the entry of PGCs into the gonadal anlagen the DNA methylation marks associated with imprinted and non-imprinted genes are erased. For most genes the erasure commences simultaneously in PGCs of both male and female embryos and is completed within only one day of development. The kinetics of this process indicates that is an active demethylation process initiated by a somatic signal emanating from the stroma of the genital ridge. The timing of reprogramming in PGCs is crucial since it ensures that germ cells of both sexes acquire an equivalent epigenetic state prior to the differentiation of the definitive male and female germ cells in which, new parental imprints are established subsequently. Complete understanding of the germline reprogramming processes is important not only in the light of genomic imprinting but also for resolving other mechanisms connected with restoring cellular totipotency, such as cloning and stem cell derivation.
409

Theoretical and numerical studies of sound propagation in low-Mach-number duct flows

Weng, Chenyang January 2015 (has links)
When sound waves propagate in a duct in the presence of turbulent flow, turbulent mixing can cause attenuation of the sound waves extra to that caused by the viscothermal effects. Experiments show that compared to the viscothermal effects, this turbulent absorption becomes the dominant contribution to the sound attenuation at sufficiently low frequencies. The mechanism of this turbulent absorption is attributed to the turbulent stress and the turbulent heat transfer acting on the coherent perturbations (including the sound waves) near the duct wall, i.e. sound-turbulence interaction. The purpose of the current investigation is to understand the mechanism of the sound-turbulence interaction in low-Mach-number internal flows by theoretical modeling and numerical simulations. The turbulence absorption can be modeled through perturbation turbulent Reynolds stresses and perturbation turbulent heat flux in the linearized perturbation equations. In this thesis, the linearized perturbation equations are reviewed, and different models for the turbulent absorption of the sound waves are investigated. A new non–equilibrium model for the perturbation turbulent Reynolds stress is also proposed. The proposed model is validated by comparing with experimental data from the literature, and with the data from Direct Numerical Simulations (DNS) of pulsating turbulent channel flow. Good agreement is observed. / <p>QC 20150526</p>
410

Investigating and Implementing a DNS Administration System

Brännström, Anders, Nilsson, Rickard January 2007 (has links)
<p>NinetechGruppen AB is an IT service providing company with about 30 employees, primarily based in Karlstad, Sweden. The company began to have problems with their DNS administration because the number of administrated domains had grown too large. A single employee was responsible for all the administration, and text editors were used for modifying the DNS configuration files directly on the name servers. This was an error prone process which also easily led to inconsistencies between the documentation and the real world.</p><p>NinetechGruppen AB decided to solve the administrative problems by incorporating a DNS administration system, either by using an existing product or by developing a new sys-tem internally. This thesis describes the process of simplifying the DNS administration procedures of NinetechGruppen AB.</p><p>Initially, an investigation was conducted where existing DNS administration tools were sought for, and evaluated against the requirements the company had on the new system.</p><p>The system was going to have a web administration interface, which was to be developed in ASP.NET 2.0 with C# as programming language. The administration interface had to run on Windows, use SQL Server 2005 as backend database server, and base access control on Active Directory. Further, the system had to be able of integrating customer handling with the domain administration, and any changes to the system information had to follow the Informa-tion Technology Infrastructure Library change management process.</p><p>The name servers were running the popular name server software BIND and ran on two different Linux distributions – Red Hat Linux 9 and SUSE Linux 10.0.</p><p>The investigation concluded that no existing system satisfied the requirements; hence a new system was to be developed, streamlined for the use at NinetechGruppen AB. A requirement specification and a functional description was created and used as the basis for the development. The finalized system satisfies all necessary requirements to some extent, and most of them are fully satisfied.</p>

Page generated in 0.0463 seconds