• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 12
  • 11
  • 11
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generation of human induced pluripotent stem cells using non-synthetic mRNA

Rohani, Leili, Fabian, Claire, Holland, Heidrun, Naaldijk, Yahaira, Dressel, Ralf, Löffler-Wirth, Henry, Binder, Hans, Arnold, A., Stolzing, Alexandra 27 June 2016 (has links) (PDF)
Here we describe some of the crucial steps to generate induced pluripotent stemcells (iPSCs) usingmRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribedmRNA. V. virus\' 2′-O-Methyltransferase enzymecreates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein were expressed at high levels for over 48 h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach.
2

Integration-free mRNA reprogramming of human fibroblasts: The study of aging upon reprogramming

Rohanisarvestani, Leili 28 January 2015 (has links) (PDF)
The ability to reprogram adult somatic cells into induced pluripotent stem (iPS) cells could provide a valuable implement for in vitro disease modeling and drug discovery. More importantly, they may potentially serve as an unlimited source of cells for regenerative medicine. However, most of the iPS cells have been generated by retroviral vectors, and therefore they carry the risk of viral integration into the host genome. This problem prevents their use for clinical applications and regenerative medicine. mRNA-mediated delivery of reprogramming factors is an alternative approach for cellular reprogramming. mRNA-based reprogramming offers the advantage of being completely free of genomic integration and is therefore highly suitable for clinical translation. However, there are some limitations which must be overcome so that mRNA can be widely used for successful cellular reprogramming. In the current thesis, the attempt was to generate stable mRNA-iPS cells through overcoming those limitations. Several human donor cells were transfected with mRNA encoding reprogramming factors and the generation of two stable mRNA-iPS cell lines was shown. The resultant mRNA-iPS colonies were assessed for pluripotency markers. Their pluripotency features were evaluated by the viral-iPS cells produced by conventional retroviral vectors. It was noticed that the generation of mRNA-iPS cells was largely affected by the parental cells from which they were derived. However, characterization and evaluation of the generated mRNA-iPS cells proved their pluripotency states comparable to the viral-iPS cells. On the other hand, the aging hallmarks of the iPS cells were assessed in the second part of this thesis. The potential aging signatures of the iPS cells should be conducted before their use in clinical applications. Currently, there are controversial data regarding the ability of reprogramming to fully rejuvenate an aged somatic cell and reverse agerelated changes such as shortened telomeres, dysfunctional mitochondria and DNA damage. Moreover, mixed findings have been published regarding whether the iPS cells are fully rejuvenated or they might retain some of the aging hallmarks from the cells which they were derived. This thesis studied these controversies through the investigation of three hallmarks of aging including telomere length, mitochondrial alteration and DNA damage. Telomere elongation was indicated in the iPS cells. Furthermore, mitochondrial morphology and function were improved into more immature features in iPS cell lines than their corresponding fibroblasts. Moreover, the iPS cell lines were shown to have less amount of DNA damage compared to their parental fibroblasts. In summary, it can be concluded that generation of mRNA-iPS cells is largely affected by the primary donor cells from which they are derived. Furthermore, it seems that reprogramming enables reversion of aging signatures to a more youthful state.
3

Integration-free mRNA reprogramming of human fibroblasts: The study of aging upon reprogramming

Rohanisarvestani, Leili 15 January 2015 (has links)
The ability to reprogram adult somatic cells into induced pluripotent stem (iPS) cells could provide a valuable implement for in vitro disease modeling and drug discovery. More importantly, they may potentially serve as an unlimited source of cells for regenerative medicine. However, most of the iPS cells have been generated by retroviral vectors, and therefore they carry the risk of viral integration into the host genome. This problem prevents their use for clinical applications and regenerative medicine. mRNA-mediated delivery of reprogramming factors is an alternative approach for cellular reprogramming. mRNA-based reprogramming offers the advantage of being completely free of genomic integration and is therefore highly suitable for clinical translation. However, there are some limitations which must be overcome so that mRNA can be widely used for successful cellular reprogramming. In the current thesis, the attempt was to generate stable mRNA-iPS cells through overcoming those limitations. Several human donor cells were transfected with mRNA encoding reprogramming factors and the generation of two stable mRNA-iPS cell lines was shown. The resultant mRNA-iPS colonies were assessed for pluripotency markers. Their pluripotency features were evaluated by the viral-iPS cells produced by conventional retroviral vectors. It was noticed that the generation of mRNA-iPS cells was largely affected by the parental cells from which they were derived. However, characterization and evaluation of the generated mRNA-iPS cells proved their pluripotency states comparable to the viral-iPS cells. On the other hand, the aging hallmarks of the iPS cells were assessed in the second part of this thesis. The potential aging signatures of the iPS cells should be conducted before their use in clinical applications. Currently, there are controversial data regarding the ability of reprogramming to fully rejuvenate an aged somatic cell and reverse agerelated changes such as shortened telomeres, dysfunctional mitochondria and DNA damage. Moreover, mixed findings have been published regarding whether the iPS cells are fully rejuvenated or they might retain some of the aging hallmarks from the cells which they were derived. This thesis studied these controversies through the investigation of three hallmarks of aging including telomere length, mitochondrial alteration and DNA damage. Telomere elongation was indicated in the iPS cells. Furthermore, mitochondrial morphology and function were improved into more immature features in iPS cell lines than their corresponding fibroblasts. Moreover, the iPS cell lines were shown to have less amount of DNA damage compared to their parental fibroblasts. In summary, it can be concluded that generation of mRNA-iPS cells is largely affected by the primary donor cells from which they are derived. Furthermore, it seems that reprogramming enables reversion of aging signatures to a more youthful state.
4

Human induced pluripotent stem cell–based modeling of hepatogenesis

Matz, Peggy 08 June 2016 (has links)
In dieser Studie wurden nicht-integrative Vektorkonstrukte zur Reprogrammierung von zwei menschlichen Zelllinien (HFF1, HUVEC) verwendet, um integrations-freie, episomal generierte iPSC Zelllinien (E-iPSCs) zu generieren. Darüber hinaus wurden diese iPSCs zu sogenannten Leberzell-ähnlichen Zellen (HLCs) differenziert. Hierzu konnten die verschiedenen Stufen der Hepatogenese und die potentielle Reifung zu Leberzellen untersucht sowie mit fötalen und ausgereiften menschlichen Leberzellen verglichen werden. Diese Studie konnte Gen-regulierende Netzwerke aufdecken, welche eine pi-potentiale Vorläuferpopulation in den HLCs präsentieren. Zusätzlich deckte das Transkriptions-Profil auf, dass die iPSC-generierten HLCs unreif und ähnlicher den fötalen Leberzellen sind. Dennoch weisen die HLCs typische funktionelle Charakteristika von Leberzellen auf, z.B. Glykogen-Einlagerung, Aufnahme und Abgabe von Substanzen wie ICG und CDFDA, Sekretierung von Gallensäure und Harnstoff. Zusätzlich konnten typische Leber-Strukturen wie Gallenkanälchen mit Mikrovilli, Fettspeicherung und sogenannte tight junctions, Verbindungsgänge zwischen den Zellen nachgewiesen werden. Um die potentielle Reifung dieser HLCs voranzutreiben, wurde eine Langzeit-Kultivierung von HUVEC-iPSC-generierten HLCs durchgeführt. Dies sollte zugleich zeigen, ob die HLCs länger kultiviert und gleichzeitig reifen können. Ein zweiter Teil dieser Studie befasst sich mit der Generierung von endodermalen Vorläuferzellen (EPs). Es wurden HFF1-iPSCs zu EPs differenziert um die endodermale Entwicklung vor der Entstehung der Gallenwege und des Hepatoblasten zu untersuchen. Die EPs zeigen Merkmale dafür, dass sie sowohl in Hepatozyten, Cholangozyten und auch Pankreaszellen differenziert werden können. Mit Hilfe dieser multipotenten EPs könnte es möglich sein die endodermale Entwicklung des Darmes, der Lunge, Leber, Gallengänge und Gallenblase sowie der Bauchspeicheldrüse näher zu untersuchen. / This project generated and characterized integration-free, episomal-derived induced pluripotent stem cell lines (E-iPSCs) from human somatic cell lines of different origins. Two different somatic cell lines were used, the human fetal fibroblast cell line HFF1 and human umbilical vein endothelial cell line HUVEC. Both were reprogrammed into integration-free iPSCs and were comparable amongst themselves and to human embryonic stem cells, the gold standard of pluripotent stem cells. Furthermore, the iPSCs with different genetic background were differentiated to hepatocyte-like cells (HLCs). With the use of iPSC-derived hepatocytes different stages during hepatogenesis and the potential of maturation could be analyzed as well as compared to fetal liver and primary human hepatocytes (PHH). This study could uncover gene regulatory networks which presence bipotential progenitor populations in HLCs. Additionally, comparable transcriptome profile analyses revealed that the iPSC-derived HLCs are immature and more similar to fetal liver. However, the HLCs hold typical functionality characteristics of hepatocyte, e.g. glycogen storage, uptake and release of ICG and CDFDA, bile acid and urea secretion. Furthermore, typical structures of hepatocytes such as bile canaliculi with microvilli, lipid storage and tight junctions are visible. In order to analyze the maturation potential of HLCs a long-term culture experiment was performed using HUVEC-iPSC-derived HLCs which implies the possibility for long-term culture of HLCs while increasing maturation. Additionally, HFF1-derived iPSCs were differentiated to endodermal progenitors (EPs) to analyze the endodermal development before biliary tree and hepatoblast which can give rise to hepatocytes, cholangiocytes and pancreatic cells. The multipotent EPs hold a great potential to analyze the endodermal development of intestine, lung, liver, bile duct and gallbladder, as well as pancreas.
5

Generation of human induced pluripotent stem cells using non-synthetic mRNA

Rohani, Leili, Fabian, Claire, Holland, Heidrun, Naaldijk, Yahaira, Dressel, Ralf, Löffler-Wirth, Henry, Binder, Hans, Arnold, A., Stolzing, Alexandra January 2016 (has links)
Here we describe some of the crucial steps to generate induced pluripotent stemcells (iPSCs) usingmRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribedmRNA. V. virus\'' 2′-O-Methyltransferase enzymecreates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein were expressed at high levels for over 48 h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach.
6

Genetic Dissection of in vivo direct cellular reprogramming

Özcan, İsmail 01 December 2023 (has links)
Die Entschlüsselung der Mechanismen zur Regulierung der Zellidentität im Kontext der zellulären Reprogrammierung ist von zentraler Bedeutung für die Entwicklung von Strategien, die die Qualität und Sicherheit reprogrammierter Zellen für medizinische Anwendungen gewährleisten. Die Bedeutung der verschiedenen Regulationswege und die Art und Weise, wie die ursprüngliche Zellidentität verloren geht, während die neue Zellidentität durch Reprogrammierung etabliert wird, sind noch nicht vollständig verstanden. Um diese Fragen zu klären, haben wir ein neuartiges System entwickelt, in dem Coelomozyten (CCs), die in C. elegans endocytische und hepatische Funktionen haben, durch Überexpression des GATA-Transkriptionsfaktors (TF) ELT-7 bzw. des ZNF-Transkriptionsfaktors (TF) CHE-1, sowohl in darm-, als auch in neuronenartige Zellen umprogrammiert werden können. Wir haben einen RNAi-Screen mit 732 Chromatinregulatoren durchgeführt, um neue Enhancer/Suppressor-Pathways zu identifizieren, die an der direkten Reprogrammierung von CCs beteiligt sind. Dabei konnten wir zeigen, dass die Deletion von Effektorproteinargonauten und von Komponenten des nuklearen RNAi-Pathways die Reprogrammierung von CCs in Neuronen oder Darmzellen unterdrückt. Argonaut NRDE-3, das aus dem Zytoplasma in den Zellkern wandert, zeigte bei seiner Deletion die stärkste Unterdrückung der Reprogrammierung. Die Ergebnisse deuten darauf hin, dass die nukleäre RNAi-Maschinerie für die direkte zelluläre in vivo Reprogrammierung erforderlich sein könnte. Darüber hinaus haben wir ATAC-seq in FACs-sortierten CCs durchgeführt, um die Chromatinlandschaft während der CC-Reprogrammierung zu untersuchen. Darüber hinaus haben wir ein menschliches Transdifferenzierungsmodell etabliert, um die Rolle der nuklearen RNAi-Maschinerie und der zahlreichen konservierten Reprogrammierungsfaktoren, die in C. elegans während der direkten Reprogrammierung in vivo identifiziert wurden, zu erforschen. / Dissecting cell fate regulatory mechanisms in the context of cellular reprogramming is central to developing strategies that ensure the quality and safety of reprogrammed cells for medical applications. The importance of different regulatory pathways and how the original cell fate is shut down while establishing the new cell fate during reprogramming are not fully understood. To address these questions, we developed a novel system where coelomocytes (CCs), which have scavenging and hepatic function in C. elegans, can reprogram into both intestinal- and neuronal-like cells upon overexpression of GATA-type transcription factor (TF) ELT-7 and ZNF-type TF CHE-1, respectively. We performed an RNAi screen consisting of 732 chromatin regulators/remodelers to identify novel enhancer/suppressor pathways involved in the direct reprogramming of CCs. We showed that depletion of effector protein Argonauts and the nuclear RNAi pathway components suppresses CC reprogramming into either neurons or intestinal cells. Specifically, the core member Argonaut NRDE-3, which translocates from the cytoplasm to the nucleus, showed the most robust suppression in reprogramming upon its depletion. These findings suggest that nuclear RNAi machinery might be required for in vivo direct cellular reprogramming. Moreover, we also performed the ATAC-seq in FACs-sorted CCs to uncover accessibility in chromatin states during CC reprogramming. Furthermore, we established a human transdifferentiation model to reveal the role of nuclear RNAi machinery and the numerous conserved reprogramming factors identified in C. elegans during in vivo direct reprogramming.
7

Characterization of the histone chaperone FACT as a safeguard to cellular identity in C. elegans

Marchal, Iris 07 February 2024 (has links)
Direkte zelluläre Reprogrammierung wird durch den Einsatz von Transkriptionsfaktoren (TFs) erreicht, die das Zellschicksal induzieren und die Umwandlung in einen gewünschten Zelltyp direkt einleiten. Die Fähigkeit der TFs, die Identität von Zelltypen umzuprogrammieren, wird jedoch durch den zellulären Kontext bestimmt und ist durch hemmende Mechanismen eingeschränkt. Diese hemmenden Mechanismen schützen und erhalten das Zellschicksal und wirken daher als Barrieren für die Reprogrammierung. Ein Faktor, der als Barriere der Reprogrammierung fungiert, ist das Histon-Chaperon FACT. Es ist jedoch nicht bekannt, wie FACT das Zellschicksal sichert. Dieses Projekt entschlüsselt die zugrundeliegenden Reprogrammierungsmechanismen bei der Deletion von FACT in C. elegans. Das Aurora-Kinase B kodierende Gen air-2 wurde als Promotor der Reprogrammierung identifiziert. Aurora-Kinase B fördert die Umwandlungdes Zellschicksals, indem sie das Chromatin durch Phosphorylierung von H3S10-Resten umgestaltet. Darüber hinaus identifiziere ich die Histon-Acetyltransferase CBP-1 als Promotor der Reprogrammierung durch die Acetylierung von H3K18 und H3K27. Die Deletion des Cytochrom c-Oxidase - 1 kodierenden Gens cco-1, einer Untereinheit des mitochondrialen Atmungskettenkomplexes, ermöglicht eine von CBP-1 abhängige Reprogrammierung von Darmzellen zu Neuronen. Diese Beobachtung wirft ein neues Licht auf die Art und Weise, wie zelluläre Störungen, die in verschiedenen Kompartimenten durch die Deletion zellulärer Schutzmechanismen entstehen, zu ähnlichen Effekten bei der Reorganisation des Chromatins führen können, welche die Reprogrammierung vorantreiben. Darüber hinaus beschreibe ich eine mögliche Rolle der mitochondrialen Funktion bei der durch FACT-Deletion vermittelten Reprogrammierung durch die Induktion des mitochondrialen Chaperons HSP60. Schließlich kläre ich auf, wie FACT zelluläre Schicksale schützt, indem es die Integrität des Chromatins während der Transkription bewahrt. / Direct cellular reprogramming is achieved by using cell fate-inducing transcription factors (TFs) that directly induce conversion to a desired cell type. However, the ability of TFs to reprogram cells is defined by cellular context and is usually restricted by inhibitory mechanisms. Studying barriers of cellular reprogramming in vivo is a crucial step to attaining its therapeutic potential and provides important insights into the basic biology of cell fate regulation. One factor that acts as a barrier of reprogramming is the histone chaperone FACT. However, how FACT safeguards cellular fate is not yet known. Here, we unravel the underlying reprogramming mechanisms upon FACT depletion in C. elegans. To this end, an enhancer/suppressor screen with epigenetic regulators was performed. This screen identified the kinase Aurora B encoding gene air-2 as a promotor of reprogramming, promoting cell fate conversion by remodelling chromatin through the phosphorylation of H3S10. Additionally, I identify the histone acetyltransferase CBP-1 as a promotor of cell fate conversion through the acetylation of H3K18 and H3K27. Moreover, I characterize another reprogramming event where CBP-1 promotes reprogramming. Depleting the cytochrome c oxidase – 1 encoding gene cco-1, a subunit of the mitochondrial respiratory chain complex, allows for gut-to neuron reprogramming that is dependent on CBP-1. FACT and cco-1-depletion-mediated reprogramming show an overlap in reprogramming pathways. This observation sheds new light on how cellular perturbations originating in different compartments through depletion of cellular safeguards can produce similar effects on chromatin reorganization that drive reprogramming. I describe a potential role for mitochondrial function in FACT-depletion-mediated reprogramming through the induction of the mitochondrial chaperone HSP60. Lastly, I elucidate how FACT protects cellular fates through its role as a safeguard of chromatin integrity during transcription.
8

Structural plasticity and post-translational modifications of C/EBP beta direct distinct myeloid cell fates

Stoilova, Bilyana 23 May 2013 (has links)
Der CCAAT enhancer binding protein beta (C/EBPβ) Transkriptionsfaktor reguliert die Differenzierung, Proliferation und Funktion vieler Zelltypen, einschließlich verschiedener Zellen des Immunsystems. Eine detaillierte molekulare Analyse des Mechanismus, wie C/EBPβ alternative Zellschicksale steuert, wurde jedoch bisher noch nicht unternommen. Es wurde gezeigt, dass die ektopische Expression von C/EBPβ in determinierten B- Vorläuferzellen diese zu inflammatorischen Makrophagen reprogrammieren kann. Wir haben dieses Reprogrammierungsystem verwendet, um die Strukturelemente in C/EBPβ, die für die Regulation der (Trans)Differenzierung durch C/EBPβ wichtig sind, zu untersuchen. Um die maßgeblichen C/EBPβ Proteinmodule für die Reprogrammierung zu bestimmen, wurden entweder C/EBPβ Wildtyp Isoformen oder Mutanten in primären murinen B-Vorläuferzellen ektopisch exprimiert. Die Analysen ergaben, dass die translational regulierten langen Isoformen LAP* and LAP, jedoch nicht die kurze Isoform LIP lymphoide Zellen zu myeloischen Zellen reprogrammieren können. Des weiteren haben wir gezeigt, dass die konservierten Regionen 2, 3 und 4 der C/EBPβ Transaktivierungsdomäne essentiell und ausreichend für die Konvertierung von B Zellen zu myeloischen Zellen sind. Die reprogrammierten myeloischen Zellen setzten sich aus einer heterogenen Population verschiedener myeloischer Zelltypen zusammen. Detaillierte Analysen von CD11b+ reprogrammierten Zellen zeigten, dass diskrete konservierte Regionen von C/EBPβ verschiedene pro- und anti-inflammatorische Gene und divergente Entwicklungsprogramme aktivierten. Des Weiteren führten nicht nur strukturelle C/EBPβ Mutanten sondern auch Puktmutationen an Stellen, die posttranslationalen Modifikationen (PTM) unterliegen, zu verschiedenen Reprogrammierungsergebnissen. Diese Daten zeigen, dass die C/EBPβ abhängige myeloische Diversifikation durch die Integration von strukturellen C/EBPβ Proteinmodulen und deren signalabhängigen PTMs erreicht wird. / The CCAAT enhancer binding protein beta (C/EBPβ) transcription factor regulates differentiation, proliferation, and functionality of many cell types, including various cells of the immune system. A detailed molecular understanding of how C/EBPβ directs alternative cell fates remains largely elusive. Ectopic expression of C/EBPβ has been previously shown to reprogram committed B cell progenitors into inflammatory macrophages. We took advantage of this reprogramming system in order to examine how C/EBPβ regulates (trans)differentiation. To determine which C/EBPβ protein modules are important for reprogramming, C/EBPβ wild type isoforms and mutants were ectopically expressed in primary mouse B cell progenitors. The data showed that the translationally regulated long isoforms LAP* and LAP, but not the N-terminally truncated isoform LIP can reprogram lymphoid cells into myeloid cells. Furthermore, we found that conserved regions 2,3 and 4 in the C/EBPβ protein transactivation domain are necessary and sufficient for B-to-myeloid cell conversion. Interestingly, the reprogrammed myeloid cells were found to represent a heterogeneous mixture of different myeloid cell types. Detailed analyses of the reprogrammed CD11b+ cells revealed that discrete conserved regions in C/EBPβ activated distinct pro- and anti-inflammatory genes and triggered divergent differentiation programs. Moreover, not only structural C/EBPβ mutants, but also post-translational modification (PTM) site mutations led to different reprogramming outcomes. These data suggest that C/EBPβ orchestrates myeloid diversification by integrating PTMs with structural plasticity as signal dependent adaptable modular properties to determine cell fate.
9

Epigenetic reprogramming in mouse germ cells

Hajkova, Petra 05 March 2004 (has links)
Bei Säugerkeimzellen, Zygoten und Embryos in frühen Stadien kommt der epigenetischen Neuprogammierung eine außergewöhnlich wichtige Rolle in der Regulation der Genomfunktionen in entscheidenden Entwicklungsstadien zu. Die epigenetische Neuprogrammierung in Keimzellen löscht zuerst die Imprinting-Markierungen und Epi-Mutationen und stellt dann geschlechtsspezifische Markierungen (genomische Prägung) wieder her. Die vorliegende Arbeit bezieht sich auf das Löschen epigenetischer Modifikationen in primordialen Mauskeimzellen (primordial germ cells (PGCs)) zwischen dem 10.5 bis 13.5 Tag nach der Befruchtung. Entgegen früheren Annahmen zeigen unsere Ergebnisse, daß primordiale Mauskeimzellen (PGCs) beim Eintritt in die embryonalen Keimdrüsen noch immer DNS Methylierungsmarker besitzen, die ähnlich dem Marker in somatischen Zellen sind. Kurz nach dem Eintritt in die Keimdrüsen werden die DNS Methylierungsmarker, die in Verbindung mit geprägten und nicht geprägten Genen stehen, gelöscht. Für die Mehrzahl der Gene beginnt die Löschung der Marker in männlichen und weiblichen Embryos gleichzeitig und ist innerhalb eines Entwicklungstages abgeschlossen. Diese Kinetik deutet auf einen aktiven Demethylierungsprozess hin, initiiert durch ein somatisches Signal, ausgehend von der embryonalen Keimdrüse. Der Zeitpunkt der Neuprogrammierung in den primordialen Keimzellen ist entscheidend, da er sicherstellt, daß Keimzellen beiden Geschlechts einen epigenetisch äquivalenten Status erhalten, bevor sie geschlechtsspezifisch ausdifferenzieren und anschließend neu elterlich geprägt werden. Vollständiges Verständnis des Prozesses der Neuprogrammierung der Keimzellen ist nicht nur im Hinblick auf genomisches Imprinting wichtig, sondern auch für die Erforschung von Mechanismen für die Wiederherstellung von omnipotenten Zellen bei Klonierung und Stammzellenerhaltung. / Epigenetic reprogramming in mammalian germ cells, zygote and early embryos, plays a crucial role in regulating genome functions at critical stages of development. Germ line epigenetic reprogramming assures erasure of all the imprinting marks and epi-mutations and establishment of new sex-specific gametic imprints. The presented work focuses on the erasure of epigenetic modifications that occur in mouse primordial germ cells (PGCs) between day 10.5 to 13.5 post coitum (dpc). Contrary to previous assumptions, our results show that as they enter the genital ridge the PGCs still possess DNA methylation marks comparable to those found in somatic cells. Shortly after the entry of PGCs into the gonadal anlagen the DNA methylation marks associated with imprinted and non-imprinted genes are erased. For most genes the erasure commences simultaneously in PGCs of both male and female embryos and is completed within only one day of development. The kinetics of this process indicates that is an active demethylation process initiated by a somatic signal emanating from the stroma of the genital ridge. The timing of reprogramming in PGCs is crucial since it ensures that germ cells of both sexes acquire an equivalent epigenetic state prior to the differentiation of the definitive male and female germ cells in which, new parental imprints are established subsequently. Complete understanding of the germline reprogramming processes is important not only in the light of genomic imprinting but also for resolving other mechanisms connected with restoring cellular totipotency, such as cloning and stem cell derivation.
10

Etablierung einer Methode zur Herstellung von adulten pluripotenten Stammzellen / Establishment of a method for the generation of adult pluripotent stem cells

Wolf, Frieder 18 October 2011 (has links)
No description available.

Page generated in 0.4683 seconds