Spelling suggestions: "subject:"comain wall"" "subject:"cdomain wall""
1 |
Study of static spin distributions and dynamics of magnetic domain walls in soft magnetic nanostructuresYang, Jusang 26 July 2013 (has links)
The static and dynamic properties of spin distributions within domain walls(DWs) confined by Permalloy nanowire conduits are investigated by numerical simulations and high-speed magneto-optic polarimetry. Phase boundaries and critical points associated with DW spin distributions of various topologies are accurately determined using high-performance computing resources. Field-driven mobility curves that characterize DW propagation velocities in 20 nm thick nanowires are calculated with increasing the width of nanowires. Beyond the simple one-dimensional solution, the simulations reveal the four distinct dynamic modes. Oscillations of the field-driven DW velocity in Permalloy nanowires are observed above the Walker breakdown condition using high-speed magneto-optic polarimetry. A one-dimensional analytical model and numerical simulations of DW motion and spin dynamics are used to interpret the experimental data. Velocity oscillations are shown to be much more sensitive to properties of the DW guide structure (which also affect DW mobility) than the DW spin precessional frequency, which is a local property of the material. Transverse bias field effects on field-driven DW velocity are studied experimentally and numerically. DW velocities and spin configurations are determined as functions of longitudinal drive field, transverse bias field, and nanowire width. For a nanowire that supports vortex wall structures, factor of ten enhancements of the DW velocity are observed above the critical longitudinal drive-field (that marks the onset of oscillatory DW motion) when a transverse bias field is applied. The bias-field enhancement of DW velocity is explained by numerical simulations of the spin distribution and dynamics within a propagating DW that reveal dynamic stabilization of coupled vortex structures and suppression of oscillatory motion in the nanowire conduit resulting in uniform DW motion at high speed. Current-driven and current-assisted field-driven domain wall dynamics in ferromagnetic nanowires have thermal effects resulting from Joule heating, which make difficult to separate the spin-torque effects on DW displacements. To understand the thermal effects on DW dynamics, the temperature dependence of field-driven DW velocity is explored using high-bandwidth scanning Kerr polarimetry. Walker critical fields are decreased with increasing temperature and temperature-induced dynamic mode changes are observed. The results show that Joule heating effects are playing an important role in current-driven/current-assisted field-driven DW dynamics. / text
|
2 |
Current-driven Domain Wall Dynamics And Its Electric Signature In Ferromagnetic NanowiresLiu, Yang 2011 August 1900 (has links)
We study current-induced domain wall dynamics in a thin ferromagnetic nanowire. We derive the effective equations of domain wall motion, which depend on the wire geometry and material parameters. We describe the procedure to determine these parameters by all-electric measurements of the time-dependent voltage induced by the domain wall motion. We provide an analytical expression for the time variation of this voltage. Furthermore, we show that the measurement of the proposed effects is within reach with current experimental techniques. We also show that a certain resonant time-dependent current moving a domain wall can significantly reduce the Joule heating in the wire, and thus it can lead to a novel proposal for the most energy efficient memory devices. We discuss how Gilbert damping, non-adiabatic spin transfer torque, and the presence of Dzyaloshinskii-Moriya interaction can effect this power optimization. Furthermore, we propose a new nanodot magnetic device. We derive a specific time-dependent current that is needed to switch the magnetization of the nanodot the most efficiently.
|
3 |
Cylindrical Magnetic Nanowires Towards Three Dimensional Data StorageMohammed, Hanan 12 1900 (has links)
The past few decades have witnessed a race towards developing smaller, faster,
cheaper and ultra high capacity data storage technologies. In particular, this race
has been accelerated due to the emergence of the internet, consumer electronics,
big data, cloud based storage and computing technologies. The enormous increase
in data is paving the path to a data capacity gap wherein more data than can be
stored is generated and existing storage technologies would be unable to bridge this
data gap. A novel approach could be to shift away from current two dimensional
architectures and onto three dimensional architectures wherein data can be stored
vertically aligned on a substrate, thereby decreasing the device footprint. This thesis
explores a data storage concept based on vertically aligned cylindrical magnetic
nanowires which are promising candidates due to their low fabrication cost, lack of
moving parts as well as predicted high operational speed. In the proposed concept,
data is stored in magnetic nanowires in the form of magnetic domains or bits which
can be moved along the nanowire to write/read heads situated at the bottom/top of
the nanowire using spin polarized current.
Cylindrical nanowires generally exhibit a single magnetic domain state i.e. a
single bit, thus for these cylindrical nanowire to exhibit high density data storage, it
is crucial to pack multiple domains within a nanowire. This dissertation
demonstrates that by introducing compositional variation i.e. multiple segments
along the nanowire, using materials with differing values of magnetization such as
cobalt and nickel, it is possible to incorporate multiple domains in a nanowire. Since
the fabrication of cylindrical nanowires is a batch process, examining the properties
of a single nanowire is a challenging task. This dissertation deals with the
fabrication, characterization and manipulation of magnetic domains in individual
nanowires. The various properties of are investigated using electrical
measurements, magnetic microscopy techniques and micromagnetic simulations.
In addition to packing multiple domains in a cylindrical nanowire,
this dissertation reports the current assisted motion of domain walls along
multisegmented Co/Ni nanowires, which is a fundamental step towards achieving a
high density cylindrical nanowire-based data storage device.
|
4 |
Cylindrical Nanowires for Water Splitting and Spintronic DevicesMoreno Garcia, Julian 10 June 2021 (has links)
Energy enables basic and innovative services to reach a seemingly ever-growing population and when its generation costs are reduced or when its usage is optimized it has the greatest impact on the reduction of poverty. Furthermore, there is a pressing need to decouple energy generation from non-renewable and carbon-heavy sources which has led mayor economies to increase research efforts in these areas. This thesis discusses research on water oxidation using nanostructured iron oxide electrodes and current-induced magnetic domain wall motion in nickel/cobalt bi-segmented nanowires. These two fields may seem disparate at first glance, but are linked by such common theme: materials for energy, and more precisely, materials for energy conversion and economy.
The work presented in this document aims also to reflect this theme by using widely available materials like iron and aluminum, and optimizing the methods to produce the final samples using the least resources possible. All samples were prepared by electroplating metals (iron, cobalt and nickel) into anodized alumina templates fabricated inhouse. For water oxidation, iron nanorods were integrated into an electrode and annealed in air, while nickel/cobalt nanowires were isolated and contacted individually to test for spintronics-related effects. Spintronic-based devices aim to reduce energy usage in nowadays microelectronic devices.
The nanostructured iron oxide electrode showed its usefulness for water oxidation in a laboratory environment, making it an appropriate complement to other electrodes specially designed for water reduction in a photoelectrochemical cell. This two-electrode design, allows for hydrogen and oxygen to be produced at each electrode and therefore eases their separate collection for, e.g., fuel or fertilizers. On the other hand, this work presents one of the first experimental demonstration of current-induced domain wall motion in soft/hard cylindrical magnetic nanowires at zero applied external magnetic field. These kinds of experiments are expected to be the first of many which will allow researchers in the field to test for spintronic-relevant properties and interactions in cylindrical magnetic nanowires.
|
5 |
Light scattering studies of metallic magneti microstructuresAu, Yat-Yin 13 March 2006 (has links)
No description available.
|
6 |
Totally Asymmetric Simple Exclusion Processes with Finite ResourcesCook, Larry Jonathan 22 December 2009 (has links)
In many situations in the world, the amount of resources available for use is limited. This statement is especially true in the cells of living organisms. During the translation process in protein synthesis, ribosomes move along the mRNA strand constructing proteins based on the sequence of codons that form a gene. The totally asymmetric simple exclusion process (TASEP) models well the translation process. However, these genes are constantly competing for ribosomes and other resources in the cell. To see how finite resources and competition affects such a system, we must construct a simple model to account for the limited resources.
We consider coupling multiple TASEPs to a finite reservoir of particles where the entry rate of particles into the TASEPs depends on the number of particles left in the reservoir. Starting with a single TASEP connected to the reservoir, we study the system using both Monte Carlo simulations and theoretical approaches. We explore how the average overall density, density profile, and current change as a function of the number of particles initially in the reservoir for various parameters. New features arise not seen in the ordinary TASEP model, even for a single TASEP connected to the pool of particles. These features include a localized shock in the density profile. To explain what is seen in the simulations, we use an appropriately generalized version of a domain wall theory.
The dynamics of the TASEPs with finite resources are also studied through the power spectra associated with the total particle occupancy of each TASEP and the reservoir. Again, we find new phenomena not seen in the power spectrum of the ordinary TASEP. For a single constrained TASEP, we find a suppression at low frequencies when compared to the power spectrum of the ordinary TASEP. The severity of this suppression is found to depend on how the entry rate changes with respect to the number of particles in the pool. For two TASEPs of different lengths, we find an enhancement of the power spectrum of the smaller TASEP when compared to the ordinary TASEP's power spectrum. We explain these findings using a linearized Langevin equation.
Finally, we model competition between ten genes found in Escherichia coli using a modified version of the TASEP. This modified version includes extended objects and inhomogeneous internal hopping rates. We use the insight gained from the previous studies of finite resources and competition as well as other studies to gain some insight into how competition affects protein production. / Ph. D.
|
7 |
Photoinduzierter Ladungstransport in komplexen Oxiden / Photoinduced charge transport in complex oxidesThiessen, Andreas 16 October 2013 (has links) (PDF)
Komplexe Oxide weisen interessante, funktionelle Eigenschaften wie Ferroelektrizität, magnetische Ordnung, hohe Spinpolarisation der Ladungsträger, Multiferroizität und Hochtemperatursupraleitung auf. Diese große Vielfalt sowie die Realisierbarkeit des epitaktischen Wachstums von Heterostrukturen aus verschiedenen oxidischen Komplexverbindungen eröffnen zahlreiche technologische Anwendungsmöglichkeiten für die oxidbasierte Mikroelektronik.
Der Schwerpunkt der vorliegenden Arbeit liegt auf der Untersuchung der Charakteristik des Ladungstransportes und insbesondere des Einflusses photogenerierter Ladungsträger auf diesen. Hierzu wurden die zwei vielversprechenden und momentan rege erforschten oxidischen Systeme La0,7Ce0,3MnO3 (LCeMO) und LiNbO3 (LNO) untersucht. Der erste Teil der vorliegenden Arbeit widmet sich der Untersuchung des photoinduzierten Ladungstransports in auf SrTiO3-Substrat gewachsenen LCeMO-Dünnfilmen. LCeMO ist als elektronendotierter Gegenpart zu den wohlbekannten und lochdotierten Manganaten wie La0,7Ca0,3MnO3 von großem Interesse für Anwendungen in der Spintronik so z.B. im spinpolarisierten p-n-übergang.
Der Einfluss der Sauerstoffstöchiometrie, der chemischen Phasensegregation der Cer-Dotanden und der photogenerierten Ladungsträger auf die Manganvalenz und damit die Elektronenkonzentration in den LCeMO-Dünnfilmen wurde mittels Röntgenphotoelektronenspektroskopie (XPS) untersucht. Hierbei wurde eine Erhöhung der Elektronenkonzentration durch Reduktion des Sauerstoffgehalts oder durch Beleuchtung mit UV-Licht festgestellt. Messungen der Temperaturabhängigkeit des Widerstands haben einen photoinduzierten Isolator-Metall-übergang in den reduzierten LCeMO-Dünnfilmen gezeigt. Durch Auswertung der magnetfeldbedingten Widerstandsänderungen im beleuchteten und unbeleuchteten Zustand konnte dieser Isolator-Metall-übergang eindeutig auf eine Parallelleitung durch das SrTiO3-Substrat zurückgeführt werden.
Der zweite Teil dieser Arbeit befasst sich mit dem Ladungstransport in Einkristallen des uniaxialen Ferroelektrikums LNO. Durch Vergleich der Volumenleitfähigkeit in eindomänigem LNO mit der Leitfähigkeit durch mehrdomänige Kristalle mit zahlreichen geladenen Domänenwänden konnte sowohl im abgedunkelten als auch im beleuchteten Zustand eine im Vergleich zur Volumenleitfähigkeit um mehrere Größenordnungen höhere Domänenwandleitfähigkeit festgestellt werden. Dabei ist die Domänenwandleitfähigkeit unter Beleuchtung mit Photonenenergien größer als der Bandlücke deutlich höher als im abgedunkelten Zustand. / Complex oxides exhibit a variety of functional properties, such as ferroelectricity, magnetic ordering, high spin polarization of the charge carriers, multiferroicity and high-temperature superconductivity. This wide variety of functional properties of complex oxides combined with their structural compatibility facilitates epitaxial growth of oxide heterostructures with tailored functional properties for applications in oxide-based microelectronic devices.
The focus of the present thesis lies on the characterization of the photoinduced charge transport in two intriguing complex oxides of current scientific interest, namely the electron doped mixed valence manganite La0,7Ce0,3MnO3 (LCeMO) and the ferroelectric LiNbO3 (LNO). The first part adresses the photoinduced charge transport in thin films of LCeMO grown on SrTiO3 substrates. LCeMO, being the electron doped counterpart to well known hole doped manganites like La0,7Ca0,3MnO3, is of current interest for spintronic applications like spin-polarized p-n-junctions.
The influence of the oxygen stoichiometry, the chemical phase separation of cerium and of the photogenerated charge carriers on the manganese valence and hence the electron concentration in the LCeMO films were investigated with X-ray-photoelectron spectroscopy. This measurements revealed an increase in electron doping by reduction of the oxygen content or by illumination with UV-light. Measurements of the temperature dependence of the resistance of the reduced LCeMO films showed a photoinduced insulator-metal transition. Analysis of the magnetoresistive properties of the samples in the illuminated and dark state clearly revealed that this insulator-metal transition is caused by a parallel conduction through the SrTiO3 substrate.
The second part of this thesis is dedicated to the charge transport in single crystals of the uniaxial ferroelectric LNO. A comparison of the bulk conductivity of single domain crystals with the conductivity of multidomain crystals with numerous charged domain walls revealed an several orders of magnitude higher domain wall conductivity as compared to the bulk conductivity. Such domain wall conductivity could be observed in the illuminated as well as in the dark state, although the domain wall conductivity was much higher for super-bandgap illumination.
|
8 |
Photoinduzierter Ladungstransport in komplexen OxidenThiessen, Andreas 27 August 2013 (has links)
Komplexe Oxide weisen interessante, funktionelle Eigenschaften wie Ferroelektrizität, magnetische Ordnung, hohe Spinpolarisation der Ladungsträger, Multiferroizität und Hochtemperatursupraleitung auf. Diese große Vielfalt sowie die Realisierbarkeit des epitaktischen Wachstums von Heterostrukturen aus verschiedenen oxidischen Komplexverbindungen eröffnen zahlreiche technologische Anwendungsmöglichkeiten für die oxidbasierte Mikroelektronik.
Der Schwerpunkt der vorliegenden Arbeit liegt auf der Untersuchung der Charakteristik des Ladungstransportes und insbesondere des Einflusses photogenerierter Ladungsträger auf diesen. Hierzu wurden die zwei vielversprechenden und momentan rege erforschten oxidischen Systeme La0,7Ce0,3MnO3 (LCeMO) und LiNbO3 (LNO) untersucht. Der erste Teil der vorliegenden Arbeit widmet sich der Untersuchung des photoinduzierten Ladungstransports in auf SrTiO3-Substrat gewachsenen LCeMO-Dünnfilmen. LCeMO ist als elektronendotierter Gegenpart zu den wohlbekannten und lochdotierten Manganaten wie La0,7Ca0,3MnO3 von großem Interesse für Anwendungen in der Spintronik so z.B. im spinpolarisierten p-n-übergang.
Der Einfluss der Sauerstoffstöchiometrie, der chemischen Phasensegregation der Cer-Dotanden und der photogenerierten Ladungsträger auf die Manganvalenz und damit die Elektronenkonzentration in den LCeMO-Dünnfilmen wurde mittels Röntgenphotoelektronenspektroskopie (XPS) untersucht. Hierbei wurde eine Erhöhung der Elektronenkonzentration durch Reduktion des Sauerstoffgehalts oder durch Beleuchtung mit UV-Licht festgestellt. Messungen der Temperaturabhängigkeit des Widerstands haben einen photoinduzierten Isolator-Metall-übergang in den reduzierten LCeMO-Dünnfilmen gezeigt. Durch Auswertung der magnetfeldbedingten Widerstandsänderungen im beleuchteten und unbeleuchteten Zustand konnte dieser Isolator-Metall-übergang eindeutig auf eine Parallelleitung durch das SrTiO3-Substrat zurückgeführt werden.
Der zweite Teil dieser Arbeit befasst sich mit dem Ladungstransport in Einkristallen des uniaxialen Ferroelektrikums LNO. Durch Vergleich der Volumenleitfähigkeit in eindomänigem LNO mit der Leitfähigkeit durch mehrdomänige Kristalle mit zahlreichen geladenen Domänenwänden konnte sowohl im abgedunkelten als auch im beleuchteten Zustand eine im Vergleich zur Volumenleitfähigkeit um mehrere Größenordnungen höhere Domänenwandleitfähigkeit festgestellt werden. Dabei ist die Domänenwandleitfähigkeit unter Beleuchtung mit Photonenenergien größer als der Bandlücke deutlich höher als im abgedunkelten Zustand. / Complex oxides exhibit a variety of functional properties, such as ferroelectricity, magnetic ordering, high spin polarization of the charge carriers, multiferroicity and high-temperature superconductivity. This wide variety of functional properties of complex oxides combined with their structural compatibility facilitates epitaxial growth of oxide heterostructures with tailored functional properties for applications in oxide-based microelectronic devices.
The focus of the present thesis lies on the characterization of the photoinduced charge transport in two intriguing complex oxides of current scientific interest, namely the electron doped mixed valence manganite La0,7Ce0,3MnO3 (LCeMO) and the ferroelectric LiNbO3 (LNO). The first part adresses the photoinduced charge transport in thin films of LCeMO grown on SrTiO3 substrates. LCeMO, being the electron doped counterpart to well known hole doped manganites like La0,7Ca0,3MnO3, is of current interest for spintronic applications like spin-polarized p-n-junctions.
The influence of the oxygen stoichiometry, the chemical phase separation of cerium and of the photogenerated charge carriers on the manganese valence and hence the electron concentration in the LCeMO films were investigated with X-ray-photoelectron spectroscopy. This measurements revealed an increase in electron doping by reduction of the oxygen content or by illumination with UV-light. Measurements of the temperature dependence of the resistance of the reduced LCeMO films showed a photoinduced insulator-metal transition. Analysis of the magnetoresistive properties of the samples in the illuminated and dark state clearly revealed that this insulator-metal transition is caused by a parallel conduction through the SrTiO3 substrate.
The second part of this thesis is dedicated to the charge transport in single crystals of the uniaxial ferroelectric LNO. A comparison of the bulk conductivity of single domain crystals with the conductivity of multidomain crystals with numerous charged domain walls revealed an several orders of magnitude higher domain wall conductivity as compared to the bulk conductivity. Such domain wall conductivity could be observed in the illuminated as well as in the dark state, although the domain wall conductivity was much higher for super-bandgap illumination.
|
9 |
Study of the fast domain wall dynamics in thin magnetic wiresRichter, Kornel 28 August 2013 (has links) (PDF)
The domain wall dynamics is used in many spintronic devices based on the uniaxial ferromagnetic wires to transport and store information. Therefore, the domain wall velocity is one of the main parameters that determine the operation speed of these devices. Recently, a big attention is being paid to amorphous glass-coated microwires due to the very high domain wall velocities that reach up to 20 km/s. In this work, the fast domain wall propagation in amorphous glass-coated microwires was found in the presence of two main factors: (i) relatively low magnetic anisotropy, (ii) complex geometry of magnetic anisotropies given by internal distribution of mechanical stresses. The domain wall dynamics was examined in amorphous glass-coated microwires of reduced diameter down to 1 μm. It was shown, that the domain wall dynamics in these wires is the same as in wires of bigger diameter. It proves that the high domain wall velocities in microwires are not the effect of microwire diameter value. The direct observation of the surface domain wall structure by use of MOKE microscope confirmed that the domain wall is inclined relatively to the main axis. A new method for magneto-optical observation of the samples with cylindrical geometry was proposed. The inclined structure of the domain wall was found to be partially responsible for the high apparent domain wall velocity measured by the Sixtus-Tonks method in microwires.
|
10 |
Spin-dependent electron transport in nanomagnetic thin film devicesZhou, Yun January 2011 (has links)
Spin-dependent electron transport in submicron/nano sized magnetic thin film devices fabricated using the optical lithography, e-beam lithography and focused ion beam (FIB) was investigated with the primary aim to find the ballistic magnetoresistance (BMR) in thin film nanoconstrictions. All experimental results were analysed in combination with micromagnetic simulations. The magnetisation reversal processes were investigated in a submicron half-pinned NiFe stripe with a microconstriction. An asymmetric MR curve was observed, and micromagnetic simulations verified it was due to the exchange-bias on the left side, which changed the magnetic switching mechanism. The effects of different pinning sites on the magnetisation switching and domain wall displacement were studied in NiFe film and spin-valve based nanodevices. A sign of domain wall MR was seen on the transversal MR curve of the NiFe nanodevice due to the domain wall induced electron scattering. The size effect on the magnetisation switching and interlayer magnetostatic coupling was demonstrated and characterised in synthetic antiferromagnet (SAF)-pinned spin-valve nanorings. It has been clarified by micromagnetic simulations that these nanorings exhibit a double or single magnetisation switching process, which is determined by the magnetostatic coupling as a function of the ring diameter. The interlayer magnetostatic coupling was efficiently reduced in large SAF-pinned nanorings, resulting in a small shift of the minor MR curve, which is beneficial to the magnetic memory applications. In-situ MR measurements and the investigation of domain wall properties have been carried out in FIB patterned NiFe film nanoconstrictions. Spin-valve like sharp transitions were observed on the MR curves in the 80 nm/130 nm wide nanoconstriction devices. However, our analysis of the results by micromagnetic simulations and domain observations with scanning electron microscopy with polarisation analysis (SEMPA) concluded that these sharp MR transitions originated from the anisotropic magnetoresistance (AMR) effect, due to the fast magnetisation rotation in the nanoconstriction, and not from BMR. The numerical investigation has proved that a further reduction of the constriction width/length is necessary for large MR values.
|
Page generated in 0.0432 seconds