• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 14
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Lyapunov Exponent Approach for Identifying Chaotic Behavior in a Finite Element Based Drillstring Vibration Model

Mongkolcheep, Kathira 2009 August 1900 (has links)
The purpose of this work is to present a methodology to predict vibrations of drilllstrings for oil recovery service. The work extends a previous model of the drill collar between two stabilizers in the literature to include drill collar flexibility utilizing a modal coordinate condensed, finite element approach. The stiffness due to the gravitational forces along the drillstring axis is included. The model also includes the nonlinear effects of drillstring-wellbore contact, friction and quadratic damping. Bifurcation diagrams are presented to illustrate the effects of speed, friction at wellbore, stabilizer clearance and drill collar length on chaotic vibration response. Their effects shifts resonance peaks away from the linear natural frequency values and influences the onset speed for chaos. A study is conducted on factors for improving the accuracy of Lyapunov Exponents to predict the presence of chaos. This study considers the length of time to steady state, the number and duration of linearization sub-intervals, the presence of rigid body modes and the number of finite elements and modal coordinates. The Poincare map and frequency spectrum are utilized to confirm the prediction of Lyapunov exponent analysis. The results may be helpful for computing Lyapunov exponents of other types of nonlinear vibrating systems with many degrees of freedom. Vibration response predictions may assist drilling rig operators in changing a variety of controlled parameters to improve operation procedures and/or equipment.
2

Modeling and analysis of self-excited drill bit vibrations

Germay, Christophe 11 March 2009 (has links)
The research reported in this thesis builds on a novel model developed at the University of Minnesota to analyze the self-excited vibrations that occur when drilling with polycrystalline diamond cutter bits. The lumped parameter model of the drilling system takes into consideration the axial and the torsional vibrations of the bit. These vibrations are coupled through a bit-rock interaction law. At the bit-rock interface, the cutting process combined with the quasihelical motion of the bit leads to a regenerative effect that introduces a coupling between the axial and torsional modes of vibrations and a state-dependent delay in the governing equations, while the frictional contact process is associated with discontinuities in the boundary conditions when the bit sticks in its axial and angular motion. The response of this complex system is characterized by a fast axial dynamics superposed to the slow torsional dynamics. A two time scales analysis that uses a combination of averaging methods and a singular perturbation approach is proposed to study the dynamical response of the system. An approximate model of the decoupled axial dynamics permits to derive a pseudo analytical expression of the solution of the axial equation. Its averaged behavior influences the slow torsional dynamics by generating an apparent velocity weakening friction law that has been proposed empirically in earlier works. The analytical expression of the solution of the axial dynamics is used to derive an approximate analytical expression of the velocity weakening friction law related to the physical parameters of the system. This expression can be used to provide recommendations on the operating parameters and the drillstring or the bit design in order to reduce the amplitude of the torsional vibrations. Moreover, it is an appropriate candidate model to replace empirical friction laws encountered in torsional models used for control. In this thesis, we also analyze the axial and torsional vibrations by basing the model on a continuum representation of the drillstring rather than on the low dimensional lumped parameter model. The dynamic response of the drilling structure is computed using the finite element method. While the general tendencies of the system response predicted by the discrete model are confirmed by this computational model (for example that the occurrence of stick-slip vibrations as well as the risk of bit bouncing are enhanced with an increase of the weight-on-bit or a decrease of the rotational speed), new features in the self-excited response of the drillstring are detected. In particular, stick-slip vibrations are predicted to occur at natural frequencies of the drillstring different from the fundamental one (as sometimes observed in field operations), depending on the operating parameters. Finally, we describe the experimental strategy chosen for the validation of the model and discuss results of tests conducted with DIVA, an analog experimental set-up of the lumped parameter model. Some results of the experiments conducted in an artificial rock seem to validate the model studied here although the same experiments obtained with natural rocks were unsuccessful. Different problems with the design of the experimental setup were identified. By using the outcome of the analysis of the uncoupled dynamics, we could provide critical recommendation to elaborate and to design a simpler and stiffer analog experiment (TAZ) used to study the self excitation of the axial dynamics that ultimately lead to the excitation of the torsional dynamics.
3

Study of the influence of offshore drulling rigs heave motions in drillstrings dynamic behavior. / Estudo da influência do movimento de heave de sondas de perfuração offshore sobre o comportamento dinâmico de colunas de perfuração.

Santos, Nicolau Oyhenard dos 03 October 2018 (has links)
The price of crude oil is a major concern for oil companies nowadays, maintaining costs in deepwater drilling activities is of utmost importance. The contribution of the heave movement from oating platforms to the vibrations of drillstrings is still a subject not fully appreciated in the literature. This work deals with the dynamic behavior of the drillstring through nite element analysis (FEA) when an oscillating axial displacement at the top is applied. Numerous drillstring models were generated using two-dimensional beam elements that have degrees of freedom for the axial, shear, bending, and torsion types of displacement. The models incorporated an axial displacement at the top of a vertical drillstring set at the bottom. Natural frequencies were obtained for all degrees of freedom considering diferent heave scenarios. The variation in the normal forces distribution due to the inertia efect on the entire structure caused a change in the stillness for shear and bending degrees of freedom. The variation of natural frequencies related to shear were obtained. In addition, the displacement of the neutral point in the drill column was obtained. The results presented here should contribute to future research on complex dynamic behavior of drillstrings. / O preço do petróleo bruto é uma grande preocupação para as empresas de petróleo hoje em dia, a manutenção de custos em atividades de perfuração em águas profundas é de extrema importância. A contribuição do movimento de heave das plataformas flutuantes para as vibrações das colunas de perfuração ainda é um assunto não totalmente apreciado na literatura. Este trabalho aborda o comportamento dinâmico da coluna de perfuração através da análise de elementos nitos (FEA) quando um deslocamento axial oscilante no topo é aplicado. Numerosos modelos de colunas de perfuração foram gerados usando elementos de vigas bidimensionais que possuem graus de liberdade axiais, de cisalhamento, flexão e torção. Os modelos incorporaram uma deslocamento axial no topo de uma coluna de perfuração vertical engastada na parte inferior. Frequências naturais foram obtidas para todos os graus de liberdade considerando diferentes cenários de heave. A variação na distribuição de forças normais devido ao efeito de inércia em toda a estrutura causou uma mudança na rigidez para graus de liberdade de cisalhamento e flexão. As variações das frequências naturais relacionadas ao cisalhamento foram obtidas. Além disso, o deslocamento do ponto neutro na coluna de perfuração foi obtido. Os resultados aqui apresentados deverão contribuir para futuras pesquisas em comportamento dinâmico complexo de drillstrings.
4

Vibration Suppression and Flywheel Energy Storage in a Drillstring Bottom-Hole-Assembly

Saeed, Ahmed 2012 May 1900 (has links)
In this study, a novel concept for a downhole flywheel energy storage module to be embedded in a bottom-hole-assembly (BHA) is presented and modeled, as an alternative power source to existing lithium-ion battery packs currently deployed in measurement-while-drilling (MWD) or logging-while-drilling (LWD) operations. Lithium-ion batteries disadvantages include deteriorated performance in high temperature, limited lifetime that necessitates frequent replacement which elevates operational costs, and environmental disposal. Extreme and harsh downhole conditions necessitate that the flywheel module withstands temperatures and pressures exceeding 300 ?F and 20 kpsi, respectively, as well as violent vibrations encountered during drilling. Moreover, the flywheel module should adhere to the geometric constraints of the wellbore and its corresponding BHA. Hence, a flywheel sizing procedure was developed that takes into consideration the required energy to be stored, the surrounding environmental conditions, and the geometric constraints. A five-axis magnetic levitation control system was implemented and tuned to maintain continuous suspension of the flywheel under the harsh lateral, axial and torsional drilling vibrations of the BHA. Thus, an integrated finite element model was developed that included the rotordynamic behavior of the flywheel and the BHA, the component dynamics of the magnetic levitation control system, and the cutting dynamics of the drillbit for both PDC and tricone types. The model also included a newly developed coupling between lateral, axial and torsional vibrations. It was demonstrated through simulations conducted by numerical integration that the flywheel maintains levitation due to all different types of external vibration as well as its own lateral vibration due to mass unbalance. Moreover, a passive proof-mass-damper (PPMD) was developed that suppresses axial bit-bounce vibrations as well as torsional vibrations, and was extended to also mitigate lateral vibrations. Optimized values of the mass, stiffness and damping values of the PPMD were obtained by the hybrid analytical-numerical Chebyshev spectral method that was superior in computational efficiency to iterative numerical integration. This also enabled the fine-plotting of an operating stability chart indicating stability regions where bit-bounce and stick-slip are avoided. The proof-mass-damping concept was extended to the flywheel to be an active proof-mass-damper (APMD) where simulations indicated functionality for a light-weight BHA.
5

Hybrid Modelling and Optimisation of Oil Well Drillstrings

Alkaragoolee, Mohammed Y.A. January 2018 (has links)
The failure of oil well drillstrings due to torsional and longitudinal stresses caused by stick-slip phenomena during the drilling operation causes great expense to industry. Due to the complicated and harsh drilling environment, modelling of the drillstring becomes an essential requirement in studies. Currently, this is achieved by modelling the drillstring as a torsional lumped model (which ignores the length of the drillstring) for real-time measurement and control. In this thesis, a distributed-lumped model including the effects of drillstring length was developed to represent the drillstring, and was used to simulate stick-slip vibration. The model was developed with increasing levels of detail and the resultant models were validated against typical measured signals from the published literature. The stick-slip model describes the friction model that exists between the cutting tool and the rock. Based on theoretical analysis and mathematical formulation an efficient and adaptable model was created which was then used in the application of a method of species conserving genetic algorithm (SCGA) to optimise the drilling parameters. In conclusion, it was shown that the distributed-lumped model showed improved detail in predicting the transient response and demonstrated the importance of including the drillstring length. Predicting the response of different parameters along the drillstring is now possible and this showed the significant effect of modelling the drillcollar. The model was shown to better represent real system and was therefore far more suited to use with real time measurements. / Iraqi Government, Ministry of Higher Education and Scientific Research.
6

Modélisation du comportement dynamique d'un train de tiges de forage pétrolier : application aux vibrations latérales / Drill String Dynamics Behavior Modeling : Study of Lateral Vibrations

Ezzeddine, Dhaker 19 April 2013 (has links)
Les vibrations des systèmes de forage pétrolier sont à l'origine de nombreux dysfonctionnements (ruptures des tiges par une fatigue accélérée, réduction des performances, endommagement des outils de mesures, endommagement des parois du puits, etc.). Face à la complexité des puits forés aujourd'hui, la maîtrise des vibrations des systèmes de forage est plus que jamais un enjeu majeur dans la réussite économique d'un projet pétrolier. Durant l'opération de forage, les tiges en rotation entrent en interaction avec les parois du puits (tubage et/ou formation) et encaissent dans certains cas des vibrations sévères. On distingue généralement trois modes de vibrations suivant le plan de leur occurrence : axiales, latérales et de torsion. Nous ne nous intéressons dans ce mémoire qu'aux vibrations latérales des tiges de forage. Si les vibrations latérales ont fait l'objet de nombreuses études dans le passé, il reste néanmoins des axes d'amélioration possible, tant sur la compréhension des phénomènes (contact garniture-puits par exemple) que sur la recherche de méthodes numériques permettant de réduire les temps de calcul. Dans le cadre de cette thèse, un modèle a été développé pour étudier les vibrations latérales des garnitures de forage dans des forages à trajectoires complexes. Ce modèle permet de prédire les vibrations latérales des tiges pour des paramètres opératoires donnés (vitesse de rotation, poids sur l'outil de forage). Un modèle numérique en éléments finis a été développé pour résoudre les équations du mouvement et analyser ainsi la sensibilité des vibrations aux paramètres opératoires du forage en particulier la vitesse de rotation et l'effort axial dans les tiges. Le modèle permet en outre d'analyser la réponse dynamique d'une garniture en cours du forage (conception). En outre, cette étude a permis de mieux élucider le phénomène sévère de précession des tiges (whirling), très nuisible à l'intégrité mécanique des systèmes de forage. Un nouveau banc d'essais a été mis au point par le Centre de Géosciences de Mines ParisTech pour reproduire les vibrations latérales, mieux comprendre le phénomène du whirling et valider les résultats numériques du modèle. Par ailleurs, des mesures dynamiques en surfaces et en fond de puits au cours de forages réels ont été analysées afin de mettre en évidence les vibrations latérales les plus sévères et en particulier le whirling. Ces données de terrain ont permis de comparer les fréquences propres du système mesurées et celles fournies par le modèle numérique. / Drillstring vibrations are commonly observed during oil & gas well drilling operations. Vibrations are a major cause of drilling tools dysfunction (drillstring breaking because of fatigue, reduced drilling efficiency, measurement-while-drilling tools failure, damaging of drill bits, etc.). Because of the increasing complexity of oil & gas wells drilled nowadays, operators need to mitigate efficiently the drillstring vibrations in order to successfully achieve the drilling process. During the drilling operation, rotating drillstrings are in interaction with the well borehole (casing and/or rock) which may lead to severe vibrations. Different vibrations modes occur simultaneously while drilling, we identify mainly three modes: axial, torsional and lateral. This work deals only with lateral vibrations. Literature survey papers show numerous experimental and numerical studies carried out on drillstring dynamics. The developed models don't take into account sufficiently the complex drillstring-borehole interactions or the efficient numerical methods needed to reduce the computation time. A new drillstring dynamics model has been developed within this thesis in order to compute the lateral vibrations of drillstrings in a complex well trajectory. Given the operating parameters (rotary speed, weight on bit) the model predicts the dynamics response of the drillstring in terms of lateral vibrations. A finite element model has been implemented to solve for the equations of motion of the dynamics model and study the dependence of the lateral vibrations on some operating parameters of the system, mainly the rotary speed and the axial load on the drillstrings. The finite element model can be used to compute and enhance the dynamic response of a given drillstring configuration for design issues. Besides, the model can be used to understand some dynamic phenomena encountered while drilling (post-analysis). Moreover, this study was useful to better understand the “whirling” phenomenon which is very harmful for the drilling system components. A new lateral vibrations simulator was built at Mines ParisTech in order to understand the whirling phenomenon and validate the numerical results provided by the dynamics model. Surface and downhole fieldmeasurements have been analyzed in order to understand the occurrence of whirling. The eigenfrequencies evaluated from the field data have been found very close to those provided by the dynamics model.
7

Análise dinâmica de colunas de perfuração de poços de petróleo usando controle linear de velocidade não-colocalizado / Dynamics of oilwell drillstrings using non-colocated linear velocity control

Manzatto, Leopoldo Marques 03 May 2011 (has links)
Este trabalho apresenta uma análise paramétrica da reposta dinâmica de colunas de perfuração de poços de petróleo com controle proporcional-integral de velocidade não colocalizado. A operação de perfuração de poços de petróleo e gás em águas profundas consiste na abertura de poços em solo rochoso através de uma broca cuja rotação é controlada por uma mesa rotativa na superfície. O torque imposto pela mesa é transmitido à broca por meio de uma coluna de perfuração. Particularmente no caso de perfuração em águas profundas, as colunas de perfuração podem ser muito extensas e, portanto, bastante flexíveis. As vibrações ocasionadas pela grande flexibilidade das colunas de perfuração são as principais responsáveis por falhas no processo de perfuração. Em particular, o fenômeno não-linear conhecido como stick-slip e relacionado às vibrações torcionais da coluna de perfuração, faz com que um sistema de controle projetado para manter a velocidade da mesa constante dê origem a grandes oscilações na velocidade da broca. Na prática, este fenômeno é amplificado pela inerente não-linearidade do contato entre broca e formação rochosa e pela forte não colocalização entre mesa rotativa e broca. Este trabalho tem por principal objetivo realizar uma análise paramétrica da dinâmica do processo de perfuração, usando um modelo de dois graus de liberdade para representar o conjunto mesa rotativa, coluna de perfuração e broca, para identificar condições nas quais uma lei de controle simples do tipo linear proporcional-integral pode fornecer um desempenho de perfuração estável e satisfatório. / This paper presents a parametric analysis of the dynamics of oilwell drillstrings with non-collocated proportional-integral velocity control. The drilling operation for oil and gas in deep waters consists of opening wells in rocky ground formation by a drill, whose angular speed is controlled by a rotary table at the surface. The torque applied by the table is transmitted to the drill-bit through the drillstring. Particularly in the deepwater drilling case, the drillstring can be very long and therefore very flexible. The vibrations caused by the great flexibility of drilling columns are mainly responsible for the failures in the drilling process. In particular, the nonlinear phenomenon known as stick-slip and related to the torsional vibration of the drillstring, makes that a control system designed to maintain a constant angular velocity at the table yield large variations at the drill-bit angular velocity. In practice, this phenomenon is amplified by the inherent nonlinearity of the contact between drill bit and rock formation and by the strong non-colocalization between rotary table and drill-bit. The main objective of this work is to perform a parametric analysis of the dynamics of the drilling process, using a two degrees of freedom model in order to represent the rotary table assembly, the drilling column and drill-bit, to identify conditions in which a simple control law, such as a linear proportional-integral velocity control, can provide a stable and satisfactory drilling performance.
8

Modeling and uncertainty quantification in the nonlinear stochastic dynamics of horizontal drillstrings / Modélisation et quantification des incertitudes en dynamique stochastique non linéaire des tubes de forage horizontaux

Barbosa Da Cunha Junior, Americo 11 March 2015 (has links)
Prospection de pétrole utilise un équipement appelé tube de forage pour forer le sol jusqu'au le niveau du réservoir. Cet équipement est une longue colonne rotative, composée par une série de tiges de forage interconnectées et les équipements auxiliaires. La dynamique de cette colonne est très complexe parce que dans des conditions opérationnelles normales, elle est soumise à des vibrations longitudinales, latérales et de torsion, qui présentent un couplage non linéaire. En outre, cette structure est soumise à effets de frottement et à des chocs dûs aux contacts mécaniques entre les paires tête de forage/sol et tube de forage/sol. Ce travail présente un modèle mécanique-mathématique pour analyser un tube de forage en configuration horizontale. Ce modèle utilise la théorie des poutres qui utilise l'inertie de rotation, la déformation de cisaillement et le couplage non linéaire entre les trois mécanismes de vibration. Les équations du modèle sont discrétisées par la méthode des éléments finis. Les incertitudes des paramètres du modèle d'interaction tête de forage/sol sont prises en compte par l'approche probabiliste paramétrique, et les distributions de probabilité des paramètres aléatoires sont construits par le principe du maximum d'entropie. Des simulations numériques sont réalisées afin de caractériser le comportement dynamique non linéaire de la structure, et en particulier, de l'outil de forage. Des phénomènes dynamiques non linéaires par nature, comme le slick-slip et le bit-bounce, sont observés dans les simulations, ainsi que les chocs. Une analyse spectrale montre étonnamment que les phénomènes slick-slip et bit-bounce résultent du mécanisme de vibration latérale, et ce phénomène de choc vient de la vibration de torsion. Cherchant à améliorer l'efficacité de l'opération de forage, un problème d'optimisation qui cherche à maximiser la vitesse de pénétration de la colonne dans le sol, sur ses limites structurelles, est proposé et résolu / Oil prospecting uses an equipment called drillstring to drill the soil until the reservoir level. This equipment is a long column under rotation, composed by a sequence of connected drill-pipes and auxiliary equipment. The dynamics of this column is very complex because, under normal operational conditions, it is subjected to longitudinal, lateral, and torsional vibrations, which presents a nonlinear coupling. Also, this structure is subjected to friction and shocks effects due to the mechanical contacts between the pairs drill-bit/soil and drill-pipes/borehole. This work presents a mechanical-mathematical model to analyze a drillstring in horizontal configuration. This model uses a beam theory which accounts rotatory inertia, shear deformation, and the nonlinear coupling between three mechanisms of vibration. The model equations are discretized using the finite element method. The uncertainties in bit-rock interaction model parameters are taken into account through a parametric probabilistic approach, and the random parameters probability distributions are constructed by means of maximum entropy principle. Numerical simulations are conducted in order to characterize the nonlinear dynamic behavior of the structure, specially, the drill-bit. Dynamical phenomena inherently nonlinear, such as slick-slip and bit-bounce, are observed in the simulations, as well as shocks. A spectral analysis shows, surprisingly, that slick-slip and bit-bounce phenomena result from the lateral vibration mechanism, and that shock phenomena comes from the torsional vibration. Seeking to increase the efficiency of the drilling process, an optimization problem that aims to maximize the rate of penetration of the column into the soil, respecting its structural limits, is proposed and solved
9

[en] NUMERICAL AND EXPERIMENTAL ANALYSIS OF NONLINEAR TORSIONAL DYNAMICS OF A DRILLING SYSTEM / [pt] ANÁLISE NUMÉRICA E EXPERIMENTAL DA DINÂMICA NÃO LINEAR TORSIONAL DE UM SISTEMA DE PERFURAÇÃO

BRUNO CESAR CAYRES ANDRADE 26 June 2018 (has links)
[pt] Uma prospecção bem sucedida de petróleo e gás requer muitos esforços para se sobrepor os desafios encontrados, tais como vibrações axiais, laterais e torcionais. Estes fenômenos podem causar a falha prematura de componentes do sistema de perfuração, disfunção nos equipamentos de medição e aumento no tempo e custo no processo de perfuração. Em particular, vibrações torcionais estão presentes em grande parte dos processos de perfuração e podem alcançar um estado crítico: stick-slip. Um melhor entendimento sobre este fenômeno proporciona ferramentas para evitar o aumento do tempo e do custo da prospecção, assegurando o investimento e sucesso do processo de perfuração. Neste trabalho, é descrito um procedimento experimental com um atrito não linear objetivando induzir stick-slip e é feito uma modelagem analítica simples do problema. O modelo de atrito é baseado em um atrito seco imposto por um dispositivo de freio desenvolvido. O comportamento não linear da bancada experimental é analisada e o modelo numérico é validado comparando diagramas de bifurcações numérica e experimentais. / [en] A successful oil and gas prospecting requires many efforts to overcome the encountered challenges, some of these challenges include drill string axial, lateral and torsional vibrations. These phenomena may cause premature component failures of the drilling system, dysfunction of measurement equipments, and increase time and costs of the prospecting process. Torsional vibrations are present in most drilling processes and may reach a severe state: stick-slip. An improved understanding about the stick-slip phenomenon provides tools to avoid the increase of prospecting time and costs, assuring the investment and success of the drilling process. Firstly, a numerical analysis of the drill string is performed with different friction models. These models are proposed in order to get familiar with the drill string dynamics. Also, it is described the experimental procedure with a nonlinear friction aiming to induce stick-slip and is performed a simple analytical modeling of the problem. The friction model is based on dry friction imposed by a break device. The nonlinear behavior of the experimental apparatus is analyzed and the numerical model is validated comparing experimental and numerical bifurcation diagrams.
10

[en] MINIMIZING DRILL STRING TORSIONAL VIBRATION USING SURFACE ACTIVE CONTROL / [pt] MINIMIZAÇÃO DA VIBRAÇÃO TORCIONAL EM UMA COLUNA DE PERFURAÇÃO UTILIZANDO CONTROLE COM ACIONAMENTO NA SUPERFÍCIE

LEONARDO DIAS PEREIRA 12 June 2017 (has links)
[pt] Parte do processo de exploração e desenvolvimento de um campo de petróleo consiste nas operações de perfuração de poços de petróleo e gás. Particularmente para poços de águas profundas e ultra-profundas, a operação requer o controle de uma estrutura muito flexível que é sujeita a condições de contorno complexas, tais como as interações não-lineares entre broca e formação rochosa ou entre a broca e a parede de poço. Quanto a esta complexidade, o fenômeno stick-slip é um componente primordial relacionado à vibração torsional. Este pode excitar vibrações tanto axiais quanto laterais. Isso pode causar falha prematura de componentes de corda de perfuração. Assim, a redução e eliminação de oscilações do tipo stick-phase são itens muito valiosos em termos de economia financeira e de tempo de exploração. Com este propósito, este estudo tem como principal objetivo confrontar o problema de vibração torsional simulando uma estratégia de controle robusto em tempo real. A abordagem é obtida seguindo alguns passos, tais como: análise em malha aberta do sistema de perfuração considerando um atuador top drive e o sistema de coluna de perfuração; concepção de um novo controlador que utiliza diferentes velocidades angulares de referência num sistema de controle de malha fechada; controle da vibração torsional considerando a não-linearidade devida à interação de atrito na parede do poço e no fundo do poço; avaliar por meio de simulações sistemas de controle ininterruptos durante a perfuração; validação dos modelos por meio de simulações numéricas. Esta dissertação apresenta a base teórica por trás do sistema de perfuração, bem como exemplos de resultados numéricos que proporcionam uma operação de perfuração controlada estável e satisfatória. / [en] Part of the process of exploration and development of an oil field consists of the drilling operations for oil and gas wells. Particularly for deep water and ultra deep water wells, the operation requires the control of a very exible structure which is subjected to complex boundary conditions such as the nonlinear interactions between drill bit and rock formation and between the drill-string and borehole wall. Concerning this complexity the stick-slip phenomenon is a major component, related to the torsional vibration and it can excite both axial and lateral vibrations. That may cause premature failure of drill-string components. So, the reduction and avoidance of stickslip oscillations are very valuable items in terms of savings and exploration time. With these intentions, this study has the main goal of confronting the torsional vibration problem using a real-time robust control strategy. The approach is obtained following some steps such as: Open-loop analysis of the drilling system considering a top-drive actuator and the drill-string system; Design of a novel controller using different angular velocity setpoints in a closed-loop system; Control of the torsional vibration considering the nonlinearity due to friction interaction in the wall and in the donwhole system; valuate a non-stop control system while drilling; Verification by numerical simulations. In this presentation the theoretical basis behind the drilling system will be given, as well examples of numerical results providing a stable and satisfactory controlled drilling operation.

Page generated in 1.3673 seconds