• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 9
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 16
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Hydrodynamics of Ferrofluid Aggregates

Williams, Alicia M. 25 November 2008 (has links)
Ferrofluids are comprised of subdomain particles of magnetite or iron oxide material that can become magnetized in the presence of a magnetic field. These unique liquids are being incorporated into many new applications due to the ability to control them at a distance using magnetic fields. However, although our understanding of the dynamics of ferrofluids has evolved, many aspects of ferrohydrodynamics remain largely unexplored, especially experimentally. This study is the first to characterize the stability and internal dynamics of accumulating or dispersing ferrofluid aggregates spanning the stable, low Reynolds number behavior to unstable, higher Reynolds numbers. The dynamics of ferrofluid aggregates are governed by the interaction between the bulk flow shear stresses acting to wash away the aggregate and magnetic body forces acting to retain them at the magnet location. This interaction results in different aggregate dynamics, including the stretching and coagulation of the aggregate to Kelvin-Helmholtz shedding from the aggregate interface as identified by focused shadowgraphs. Using TRDPIV, the first time-resolved flow field measurements conducted in ferrofluids reveal the presence of a three-stage process by which the ferrofluid interacts with a pulsatile bulk flow. An expanded parametric study of the effect of Reynolds number, magnetic field strength, and flow unsteadiness reveals that the increased field results can result in the lifting and wash away of the aggregate by means of vortex strengthening. In pulsatile flow, different forms of the three-stage interaction occur based on magnetic field, flow rate, and Reynolds number. / Ph. D.
22

Efeito da combinação de sinvastatina com paclitaxel veiculado por nanoemulsão lipídica na aterosclerose induzida em coelhos / Effect of a combination of simvastatin and paclitaxel carried by a lipid nanoemulsion on induced atherosclerosis in rabbits.

Vitório, Tatiana Solano 21 February 2014 (has links)
Em estudos prévios, mostramos que uma nanoemulsão lipídica (LDE) é reconhecida e se liga aos receptores de LDL após sua injeção na corrente sanguínea. Como tais receptores estão superexpressos em células com altas taxas de proliferação, como ocorre no câncer e na aterosclerose, a LDE pode ser utilizada como veículo para direcionar fármacos a essas células, diminuindo sua toxicidade e aumentando sua eficácia terapêutica. Anteriormente, reportamos que o tratamento com um derivado do paclitaxel, o oleato de paclitaxel, associado à LDE (PTX-LDE), reduziu em 60% a área lesionada de aortas de coelhos submetidos à dieta aterogênica, comparados a animais não tratados. No presente trabalho, avaliamos o efeito da associação de sinvastatina, medicamento hipolipemiante, e PTX-LDE, sobre a aterosclerose induzida por dieta em coelhos. Trinta e seis coelhos machos da raça Nova Zelândia foram submetidos à dieta enriquecida com 1% de colesterol durante oito semanas. A partir da quinta semana, os animais foram divididos em quatro grupos, de acordo com o tratamento: controle (solução salina EV), sinvastatina (2mg/kg/dia, VO), paclitaxel (PTX-LDE, 4mg/Kg/semana, EV), ou combinação de sinvastatina (2mg/Kg/dia, VO) com paclitaxel (PTX-LDE, 4mg/Kg/semana, EV). Após oito semanas, os animais foram sacrificados para análise das aortas. Em comparação aos controles, a área lesionada das aortas foi em torno de 60% menor, tanto no grupo paclitaxel, quanto no grupo da combinação, e em torno de 40% menor no grupo sinvastatina (p<0,05). A razão entre as camadas íntima/média foi menor nos grupos tratados, em relação ao grupo controle (controles, 0,35±0,22, sinvastatina, 0,10±0,07, paclitaxel, 0,06±0,16 e combinação, 0,09±0,05, p<0,0001). Os grupos combinação e sinvastatina apresentaram um aumento da porcentagem de colágeno nas lesões (combinação, 20% e sinvastatina, 22%), em comparação aos controles (11%) e ao grupo paclitaxel (12%), (p<0,0001). Houve uma diminuição da porcentagem de macrófagos na lesão em todos os grupos tratados (paclitaxel, 11%, sinvastatina, 8% e combinação, 5%), comparados ao grupo controle (30%), (p<0,0001). O grupo paclitaxel apresentou menor porcentagem de células musculares lisas na lesão (20%) em relação aos controles (33%), (p<0,0001), já na combinação, houve aumento dessa porcentagem (44%), (p<0,0001). A combinação com sinvastatina não aumentou a eficácia do tratamento com PTX-LDE na redução da área de lesões ateroscleróticas, porém, os efeitos adicionais sobre o perfil lipídico e na composição das lesões, observadas com o uso da combinação, são achados importantes, que sugerem benefícios no sentido de aumentar a estabilidade das placas ateroscleróticas, o que nos abre um caminho de pesquisa muito promissor. / In previous studies we have shown that a lipid nanoemulsion (LDE) is recognized and binds to LDL receptors after injection into the bloodstream. As those receptors are upregulated in cells with higher proliferation rates, as occurs in cancer and atherosclerosis, LDE can be used as a vehicle to direct drugs to those cells, diminishing toxicity and increasing therapeutic efficacy. Previously, we reported that treatment with antiproliferative agent paclitaxel derivative, paclitaxel oleate, associated with LDE (PTX-LDE), reduced by 60% the injured area of the aorta of rabbits subjected to atherogenic diet compared to untreated animals. In the current study we aim to test the effect of a combination of lipid-lowering drug simvastatin with PTX-LDE on diet-induced atherosclerosis in rabbits. Thirty-six male New Zealand rabbits were fed a 1% cholesterol diet for 8 weeks. Starting from week 5, animals were divided into four groups, according to the following treatments: controls (I.V. saline solution injections), simvastatin P.O. (2mg/kg/day), paclitaxel (PTX-LDE I.V. injections, 4mg/Kg/week), or paclitaxel-simvastatin combination (PTX-LDE I.V., 4mg/Kg/week + simvastatin P.O., 2mg/Kg/day). After 8 weeks, the animals were sacrificed for aorta evaluation. Compared to controls, the injured area was reduced by 60% in both paclitaxel and combination groups, and by 40% in simvastatin group (p<0,05). The intima/media ratio was reduced in treated groups, compared to control group (controls, 0,35±0,22, simvastatin, 0,10±0,07, paclitaxel, 0,06±0,16 and combination, 0,09±0,05, p<0,0001). Simvastatin and combination groups showed increased collagen content within the lesions (simvastatin, 22% and combination 20%), compared to controls (11%) and to paclitaxel group (12%), (p <0.0001). Macrophage content within the lesions was reduced in all treated groups (paclitaxel, 11%, simvastatin, 8% e combination, 5%), compared to controls (30%), (p <0.0001). The percentage of smooth muscle cells in the lesions was diminished in paclitaxel group (20%) compared to control group (33%), while the combination group showed increased percentage (44%) of smooth muscle cells in the lesions (p<0,0001). The combination of simvastatin did not improve the efficacy of the treatment with PTXLDE in reducing the area of atherosclerotic lesions, but the additional effects on lipid profile and lesion composition observed with the use of the combination are important findings that suggest benefits in order to enhance the stability of atherosclerotic plaques, which may lead us to a very promising research path.
23

Uso combinado de sinvastatina e paclitaxel associado à nanoemulsão lipídica no tratamento do câncer / Combined use of simvastatin and paclitaxel associated to a lipidic nanoemulsion in cancer treatment

Kretzer, Iara Fabricia 16 December 2011 (has links)
Uma nova alternativa para o tratamento do câncer foi proposta em estudos anteriores, consistindo no uso de uma nanoemulsão lipídica como transportadora de agentes quimioterápicos às células neoplásicas. A redução da toxicidade da quimioterapia promovida pelo direcionamento específico de quimioterápicos às células tumorais nos levou a testar o potencial de aplicação do sistema de nanopartículas lipídicas na terapêutica combinada do paclitaxel com a sinvastatina, um agente hipolipemiante que pode ser empregado como coadjuvante no tratamento do câncer. Nos dias 11, 14 e 19 após a inoculação de células de melanoma B16F10, camundongos C57BL/6J receberam pela via intraperitoneal soluções de oleato de paclitaxel associado à nanoemulsão lipídica 17,5&#181;mol/kg (Nano-paclitaxel), formulação comercial do paclitaxel 17,5&#181;mol/kg, nanoemulsão lipídica (Nanoemulsão) e solução salina (Controle). A sinvastatina 50mg/kg/dia foi administrada por gavagem do 11° ao 19° dia após a inoculação do tumor em um dos grupos de animais tratados com o Nano-paclitaxel (Nano-paclitaxel + Sinva), no grupo tratado com a formulação comercial do paclitaxel (Paclitaxel + Sinva) e como monoterapia (Sinva). Camundongos Balb-c saudáveis receberam os mesmos tratamentos para avaliação dos possíveis efeitos tóxicos dos diferentes tratamentos. A terapia combinada Nano-paclitaxel + Sinva apresentou toxicidade negligível em comparação com a terapia combinada Paclitaxel + Sinva que provocou perda de peso e mielossupressão nos animais. Nos animais portadores de tumor, o tratamento Nano-paclitaxel + Sinva inibiu 95% do crescimento tumoral, comparado à inibição de 44% promovida pelo tratamento Paclitaxel + Sinva. Além disso, apenas 37% dos animais portadores de melanoma submetidos ao tratamento com Nano-paclitaxel + Sinva apresentaram metástases, em contraste com 90% dos tratados com Paclitaxel + Sinva. A probabilidade de sobrevida também foi maior nos camundongos tratados com o Nano-paclitaxel + Sinva em comparação aos tratados com Paclitaxel + Sinva. A análise de amostras de tumores por citometria de fluxo mostrou que somente nos grupos de animais tratados com Sinva, Nano-paclitaxel ou com a combinação Nano-paclitaxel + Sinva houve aumento na expressão de p21 em comparação ao grupo Controle. Da mesma forma, apenas nos grupos Sinva e Nano-paclitaxel + Sinva houve redução na expressão de ciclina D1 em comparação ao grupo Controle. O teste de viabilidade celular com rodamina 123 mostrou despolarização da membrana mitocondrial com redução no número de células tumorais viáveis em todos os grupos de tratamentos em comparação aos grupos Nanoemulsão e Controle. A avaliação histológica dos tumores demonstrou que os grupos Nanoemulsão e Controle apresentaram alta densidade de células tumorais, diferentemente dos demais grupos de tratamento e que apenas os tumores do grupo Nano-paclitaxel + Sinva apresentaram aumento na presença de fibras de colágeno tipo I e III. Em comparação ao grupo Controle, os tumores dos grupos Sinva, Paclitaxel + Sinva, Nano-paclitaxel e Nano-paclitaxel + Sinva apresentaram redução na expressão imunohistoquímica de ICAM, MCP-1 e MMP-9 sendo que o grupo Nano-paclitaxel + Sinva apresentou a menor porcentagem de área marcada positivamente para a MMP-9. A terapia combinada com Nano-paclitaxel + Sinva é menos tóxica e mais efetiva na inibição do crescimento tumoral do que a mesma terapia com a formulação comercial do paclitaxel. / In previous studies we have proposed a novel approach for cancer treatment consisting of the use of a lipid nanoemulsion as a vehicle to direct chemotherapeutic agents to neoplastic cells. Reduction of chemotherapy toxicity promoted by specific targeting of antineoplastic agents to tumor cells led us to test the application of the lipidic nanoparticle system in combined treatment with paclitaxel and simvastatin, a cholesterol-lowering drug that can be used as coadjuvant in cancer treatment. On days 11, 14 and 19 after B16F10 melanoma cells inoculation, C57BL/6J mice were intraperitoneally injected with paclitaxel oleate associated to the lipidic nanoemulsion 17.5 &#181;mol/kg (Nano-paclitaxel), commercial formulation of paclitaxel 17.5 &#181;mol/kg, lipidic nanoemulsion (Nanoemulsion) or saline solution (Control). Simvastatin 50 mg/kg/day was administered by gavage from days 11 to 19 after tumor inoculation in one group of animals treated with Nano-paclitaxel (Nano-paclitaxel + Simva), in the group treated with commercial formulation of paclitaxel (Paclitaxel + Simva) and as monotherapy (Simva). Evaluation of possible toxic effects of the treatments was accessed in healthy Balb-c mice. Combined therapy with Nano-paclitaxel + Simva showed negligible toxicity as compared with the combination of Paclitaxel + Simva which resulted in animal weight loss and myelosuppression. In tumor-bearing animals, treatment with Nano-paclitaxel + Simva resulted in a remarkable tumor growth inhibition rate of 95%, compared to a 44% inhibition rate promoted by treatment with Paclitaxel + Simva. Moreover, only 37% of melanoma bearing animals treated with Nano-paclitaxel + Simva developed metastasis, in contrast to 90% of those treated with Paclitaxel + Simva. Survival rates were also higher in mice treated with Nano-paclitaxel + Simva in comparison to Paclitaxel + Simva treated animals. Analysis of tumor samples by flow cytometry showed that only animals treated with Simva, Nano-paclitaxel or Nano-paclitaxel + Simva increased the expression of p21 in comparison to Control group. Also, tumors from animals treated with Simva or Nano-paclitaxel + Simva presented a decrease in the expression of cyclin D1 in comparison to Control group. Cell viability test with rhodamine 123 showed mitochondrial membrane depolarization with reduction of tumor viable cells in all treatment groups in comparison to Nanoemulsion and Control groups. The histological study revealed that in contrast to drugs treated groups, tumors from Nanoemulsion and Control groups presented high tumor cell density and only Nano-paclitaxel + Simva treated animals presented tumors with increased presence of collagen fibers I and III. In comparison to Control group, tumors from groups Simva, Paclitaxel + Simva, Nano-paclitaxel and Nano-paclitaxel + Simva showed a reduction in immunohistochemical expression of ICAM, MCP-1 and MMP-9 and the group Nano-paclitaxel + Simva presented the lowest percentage of area positively stained for MMP-9. Combined therapy with Nano-paclitaxel + Simva was less toxic and more effective in promoting tumor growth inhibiton than the same combined therapy with the commercial formulation of paclitaxel.
24

Uso combinado de sinvastatina e paclitaxel associado à nanoemulsão lipídica no tratamento do câncer / Combined use of simvastatin and paclitaxel associated to a lipidic nanoemulsion in cancer treatment

Iara Fabricia Kretzer 16 December 2011 (has links)
Uma nova alternativa para o tratamento do câncer foi proposta em estudos anteriores, consistindo no uso de uma nanoemulsão lipídica como transportadora de agentes quimioterápicos às células neoplásicas. A redução da toxicidade da quimioterapia promovida pelo direcionamento específico de quimioterápicos às células tumorais nos levou a testar o potencial de aplicação do sistema de nanopartículas lipídicas na terapêutica combinada do paclitaxel com a sinvastatina, um agente hipolipemiante que pode ser empregado como coadjuvante no tratamento do câncer. Nos dias 11, 14 e 19 após a inoculação de células de melanoma B16F10, camundongos C57BL/6J receberam pela via intraperitoneal soluções de oleato de paclitaxel associado à nanoemulsão lipídica 17,5&#181;mol/kg (Nano-paclitaxel), formulação comercial do paclitaxel 17,5&#181;mol/kg, nanoemulsão lipídica (Nanoemulsão) e solução salina (Controle). A sinvastatina 50mg/kg/dia foi administrada por gavagem do 11° ao 19° dia após a inoculação do tumor em um dos grupos de animais tratados com o Nano-paclitaxel (Nano-paclitaxel + Sinva), no grupo tratado com a formulação comercial do paclitaxel (Paclitaxel + Sinva) e como monoterapia (Sinva). Camundongos Balb-c saudáveis receberam os mesmos tratamentos para avaliação dos possíveis efeitos tóxicos dos diferentes tratamentos. A terapia combinada Nano-paclitaxel + Sinva apresentou toxicidade negligível em comparação com a terapia combinada Paclitaxel + Sinva que provocou perda de peso e mielossupressão nos animais. Nos animais portadores de tumor, o tratamento Nano-paclitaxel + Sinva inibiu 95% do crescimento tumoral, comparado à inibição de 44% promovida pelo tratamento Paclitaxel + Sinva. Além disso, apenas 37% dos animais portadores de melanoma submetidos ao tratamento com Nano-paclitaxel + Sinva apresentaram metástases, em contraste com 90% dos tratados com Paclitaxel + Sinva. A probabilidade de sobrevida também foi maior nos camundongos tratados com o Nano-paclitaxel + Sinva em comparação aos tratados com Paclitaxel + Sinva. A análise de amostras de tumores por citometria de fluxo mostrou que somente nos grupos de animais tratados com Sinva, Nano-paclitaxel ou com a combinação Nano-paclitaxel + Sinva houve aumento na expressão de p21 em comparação ao grupo Controle. Da mesma forma, apenas nos grupos Sinva e Nano-paclitaxel + Sinva houve redução na expressão de ciclina D1 em comparação ao grupo Controle. O teste de viabilidade celular com rodamina 123 mostrou despolarização da membrana mitocondrial com redução no número de células tumorais viáveis em todos os grupos de tratamentos em comparação aos grupos Nanoemulsão e Controle. A avaliação histológica dos tumores demonstrou que os grupos Nanoemulsão e Controle apresentaram alta densidade de células tumorais, diferentemente dos demais grupos de tratamento e que apenas os tumores do grupo Nano-paclitaxel + Sinva apresentaram aumento na presença de fibras de colágeno tipo I e III. Em comparação ao grupo Controle, os tumores dos grupos Sinva, Paclitaxel + Sinva, Nano-paclitaxel e Nano-paclitaxel + Sinva apresentaram redução na expressão imunohistoquímica de ICAM, MCP-1 e MMP-9 sendo que o grupo Nano-paclitaxel + Sinva apresentou a menor porcentagem de área marcada positivamente para a MMP-9. A terapia combinada com Nano-paclitaxel + Sinva é menos tóxica e mais efetiva na inibição do crescimento tumoral do que a mesma terapia com a formulação comercial do paclitaxel. / In previous studies we have proposed a novel approach for cancer treatment consisting of the use of a lipid nanoemulsion as a vehicle to direct chemotherapeutic agents to neoplastic cells. Reduction of chemotherapy toxicity promoted by specific targeting of antineoplastic agents to tumor cells led us to test the application of the lipidic nanoparticle system in combined treatment with paclitaxel and simvastatin, a cholesterol-lowering drug that can be used as coadjuvant in cancer treatment. On days 11, 14 and 19 after B16F10 melanoma cells inoculation, C57BL/6J mice were intraperitoneally injected with paclitaxel oleate associated to the lipidic nanoemulsion 17.5 &#181;mol/kg (Nano-paclitaxel), commercial formulation of paclitaxel 17.5 &#181;mol/kg, lipidic nanoemulsion (Nanoemulsion) or saline solution (Control). Simvastatin 50 mg/kg/day was administered by gavage from days 11 to 19 after tumor inoculation in one group of animals treated with Nano-paclitaxel (Nano-paclitaxel + Simva), in the group treated with commercial formulation of paclitaxel (Paclitaxel + Simva) and as monotherapy (Simva). Evaluation of possible toxic effects of the treatments was accessed in healthy Balb-c mice. Combined therapy with Nano-paclitaxel + Simva showed negligible toxicity as compared with the combination of Paclitaxel + Simva which resulted in animal weight loss and myelosuppression. In tumor-bearing animals, treatment with Nano-paclitaxel + Simva resulted in a remarkable tumor growth inhibition rate of 95%, compared to a 44% inhibition rate promoted by treatment with Paclitaxel + Simva. Moreover, only 37% of melanoma bearing animals treated with Nano-paclitaxel + Simva developed metastasis, in contrast to 90% of those treated with Paclitaxel + Simva. Survival rates were also higher in mice treated with Nano-paclitaxel + Simva in comparison to Paclitaxel + Simva treated animals. Analysis of tumor samples by flow cytometry showed that only animals treated with Simva, Nano-paclitaxel or Nano-paclitaxel + Simva increased the expression of p21 in comparison to Control group. Also, tumors from animals treated with Simva or Nano-paclitaxel + Simva presented a decrease in the expression of cyclin D1 in comparison to Control group. Cell viability test with rhodamine 123 showed mitochondrial membrane depolarization with reduction of tumor viable cells in all treatment groups in comparison to Nanoemulsion and Control groups. The histological study revealed that in contrast to drugs treated groups, tumors from Nanoemulsion and Control groups presented high tumor cell density and only Nano-paclitaxel + Simva treated animals presented tumors with increased presence of collagen fibers I and III. In comparison to Control group, tumors from groups Simva, Paclitaxel + Simva, Nano-paclitaxel and Nano-paclitaxel + Simva showed a reduction in immunohistochemical expression of ICAM, MCP-1 and MMP-9 and the group Nano-paclitaxel + Simva presented the lowest percentage of area positively stained for MMP-9. Combined therapy with Nano-paclitaxel + Simva was less toxic and more effective in promoting tumor growth inhibiton than the same combined therapy with the commercial formulation of paclitaxel.
25

An in vitro model of lipid digestion for assessing the oral bioavailability enhancement potential of lipidic formulations

Sek, Leab, 1973- January 2002 (has links)
Abstract not available
26

An investigation of the pharmacokinetics and lymphatic transport of recombinant human leukaemia inhibitory factor

Segrave, Alicia Maree January 2004 (has links)
Abstract not available
27

Development of Novel hydrogels for protein drug delivery

Mawad, Damia, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2005 (has links)
Introduction: Embolic agents are used to block blood flow of hypervascular tumours, ultimately resulting in target tissue necrosis. However, this therapy is limited by the formation of new blood vessels within the tumour, a process known as angiogenesis. Targeting angiogenesis led to the discovery of anti-angiogenic factors, large molecular weight proteins that can block the angiogenic process. The aim of this research is development of poly (vinyl alcohol) (PVA) aqueous solutions that cross-link in situ to form a hydrogel that functions as an embolic agent for delivery of macromolecular drugs. Methods: PVA (14 kDa, 83% hydrolysed), functionalised by 7 acrylamide groups per chain, was used to prepare 10, 15, and 20wt% non-degradable hydrogels, cured by UV or redox initiation. Structural properties were characterised and the release of FITCDextran (20kDa) was quantified. Degradable networks were then prepared by attaching to PVA (83% and 98 % hydrolysed) ester linkages with an acrylate end group. The effect on degradation profiles was assessed by varying parameters such as macromer concentration, cross-linking density, polymer backbone and curing method. To further enhance the technology, radiopaque degradable PVA was synthesised, and degradation profiles were determined. Cell growth inhibition of modified PVA and degradable products were also investigated. Results: Redox initiation resulted in non-degradable PVA networks of well-controlled structural properties. Increasing the solid content from 10 to 20wt% prolonged the release time from few hours to ~ 2 days but had no effect on the percent release, with only a maximum release of 65% achieved. Ester attachment to the PVA allowed flexibility in designing networks of variable swelling behaviors and degradation times allowing ease of tailoring for specific clinical requirements. Synthesis of radiopaque degradable PVA hydrogels was successful without affecting the polymer solubility in water or its ability to polymerize by redox. This suggested that this novel hydrogel is a potential liquid embolic with enhanced X-ray visibility. Degradable products had negligible cytotoxicity. Conclusion: Novel non-degradable and radiopaque degradable PVA hydrogels cured by redox initiation were developed in this research. The developed PVA hydrogels showed characteristics in vitro that are desirable for the in vivo application as release systems for anti-angiogenic factors.
28

Selective Synthetic Modification of Aminoglycosides for Drug Targeting to Tuberculosis

Quader, Sabina, N/A January 2007 (has links)
The work presented in this thesis details the synthetic modification of the clinically important aminoglycoside antibiotics, neomycin B, paromomycin and tobramycin. We sought to modify aminoglycosides by attaching lipophilic groups, including fatty acids and steroids, with a view to improving the bacterial membrane permeability of these species, and ultimately their efficacy in the treatment of tuberculosis. Our initial synthetic strategy involved direct and specific functionalization of the singular primary hydroxyl group of the aminoglycoside antibiotic neomycin B, with lipophilic groups containing carboxylic acid functions via Mitsunobu esterification. Although, direct and selective Mitsunobu acylation of the primary hydroxyl group proved unsuccessful in the case of the pseudo tetrasaccharide neomycin B, the Mitsunobu reaction did however result in selective chemistry elsewhere in the molecule and this has been exploited for modification of the ido (ring IV) and streptamine (ring II) ring systems. Under carefully controlled conditions, the Mitsunobu reaction has been used for the selective dehydration of the ido ring, to give the talo epoxide, and, under more forcing Mitsunobu dehydration conditions, an aziridine function has been introduced into the streptamine moiety. Both the epoxide and the epoxide-aziridine neomycin building blocks were utilized as synthons in subsequent chemical transformations. Seventeen novel neomycin derivatives featuring modification of ring IV and/or ring II were obtained using this approach. Explicit structural elucidation of all the synthetic intermediates and the final products was achieved using high temperature NMR spectroscopy. Direct and specific functionalization of the singular primary hydroxyl group at the C5 position of the ribose ring (ring III) of neomycin B was achieved, via a procedure based in part on selective tripsylation of the C5III primary hydroxyl group of neomycin B reported previously, followed by subsequent displacement of the tripsyl group by azide. Terminal alkyne containing lipophilic esters were then successfully attached to the ribose residue of neomycin B via Cu(I)-mediated azide-alkyne coupling reaction. In addition to the isolation of two fortuitous, new and versatile synthons i.e. monoanhydro neomycin and bis-anhydro neomycin for modification of ring IV and ring II of neomycin, a third synthon based on neomycin framework, allowing stepwise modification of ring III and ring IV was designed and synthesized. This synthon features an epoxide function in the ido ring, and a protected amine function at the C5 position of the ribose ring. Examples of the stepwise use of this synthon for further synthetic modification of the neomycin framework were demonstrated. Fourteen novel neomycin derivatives featuring modification of ring III and /or ring IV were obtained and characterized. Regioselective Mitsunobu esterification of the single primary hydroxyl group of the pseudo trisaccharide tobramycin was utilized successfully to link a variety of hydrophobic esters with tobramycin. Nine lipophilic tobramycin derivatives with significant structural diversity were synthesised and characterized. In a preliminary study, the applicability of the Mitsunobu dehydration reaction for the regioselective formation of an epoxide ring in the ido moiety of the pseudo tetrasaccharide aminoglycoside antibiotic paromomycin system was confirmed. The regioselective ring-opening of the derived epoxide with azide at C3IV of paromomycin was also successfully demonstrated. In total, forty-two new potential aminoglycoside antibiotics have been synthesized and characterized.
29

Preparation Of Polyethylene Glycol Coated Magnetic Nanoparticles For Targeting Of Cancer Cells

Keskin, Tugba 01 February 2012 (has links) (PDF)
Conventional cancer chemotherapies cannot differentiate between healthy and cancer cells, and lead to severe side effects and systemic toxicity. In the last decades, different kinds of controlled drug delivery systems have been developed to overcome these shortcomings of chemotherapeutics. Magnetic nanoparticles (MNP) are potentially important in cancer treatment since they can be targeted to tumor site by an externally applied magnetic field. In this study, it is aimed to synthesize folic acid conjugated / polyethylene glycol (PEG) coated magnetic nanoparticles with appropriate size, surface chemistry, magnetization and biocompatibility to be used in biomedical applications. First MNP were synthesized, then covered with oleic and PEG / and finally conjugated with folic acid. A detailed characterization of synthesized nanoparticles was done by TEM, XRD, FTIR, VSM and XTT analyses. MNP synthesized by the rapid addition of ammonium hydroxide exhibited more spherical nanoparticles with a narrower size distribution. Agglomeration tendency of naked nanoparticles was prevented by oleic acid addition during the synthesis. Both naked and surface treated MNP have been found to exhibit superparamagnetic behavior both at room temperature (23
30

Cancer nanotechnology: engineering multifunctional nanostructures for targeting tumor cells and vasculatures

Kim, Gloria J. 06 April 2007 (has links)
Significant progress has been made in the development of new agents against cancer and new ways of delivering existing and new agents. Yet, the major challenge to target and selectively kill cancer cells while affecting as few healthy cells as possible remains. When linked with tumor targeting moieties such as tumor-specific ligands or monoclonal antibodies, nanoparticles can be used to target cancer-specific receptors, tumor biomarkers as well as tumor vasculatures with high affinity and precision. Recently, the use of nanoparticles for drug delivery and targeting has emerged as one of the most exciting and clinically important areas in cancer nanotechnology. In this work, we tested the hypothesis that our novel ternary biomolecular nanostructures of folic acid (FA), biodegradable polymer, and paclitaxel will improve the delivery and tumor-specific distribution of the anticancer drug. The design was based on three principles: 1) Passive targeting via enhanced permeation and retention (EPR) effect; 2) active targeting via a tumor-specific ligand; and 3) prodrug that would release the drug upon delivery. First, self-assembled polymer-paclitaxel-FA nanostructures were synthesized. Their physicochemical properties were examined and biological efficacy was tested. The conjugates had significantly improved solubility in water, enabling cremophor-free formulation. Second, in vitro cellular toxicity and targeting ability of the nanostructures were investigated. In cancer cell lines with high folate receptor (FR) expression, the ternary conjugates were efficiently taken up whereas no detectable association was found in cells with minimal or no FR expression. Third, in vivo investigation in human xenograft mice models was carried out. Ternary nanostructures drastically inhibited tumor growth without inducing systemic toxicity or side effects. The ternary nanostructures displayed remarkable anti-angiogenic effect on tumor vasculature. Heparin-paclitaxel-FA was also very effective in drug resistant tumors, potentially overcoming multidrug resistance. Studies in other cancer models are in progress to determine the spectrum of applicability of these ternary nanostructures. The design principles applied in these nanoparticles can be extended to delivery and targeting of diagnostic and imaging agents. The ability to engineer multifunctional nanostructures will have a significant impact on cancer diagnostics, molecular profiling, and the integration of cancer therapy and imaging.

Page generated in 0.0874 seconds