• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 38
  • 8
  • 7
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 139
  • 49
  • 23
  • 23
  • 22
  • 22
  • 20
  • 19
  • 18
  • 17
  • 17
  • 16
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Kinematic dynamo onset and magnetic field saturation in rotating spherical Couette and periodic box simulations / Kinematic dynamo onset and magnetic field saturation in rotating spherical Couette and periodic box simulations

Finke, Konstantin 19 June 2013 (has links)
No description available.
72

Planetary Dynamo Models: Generation Mechanisms and the Influence of Boundary Conditions

Dharmaraj, Girija 08 January 2014 (has links)
The Earth's magnetic field is generated in its fluid outer core through dynamo action. In this process, convection and differential rotation of an electrically conducting fluid maintain the magnetic field against its ohmic decay. Using numerical models, we can investigate planetary dynamo processes and the importance of various core properties on the dynamo. In this thesis, I use numerical dynamo models in Earth-like geometry in order to understand the influence of inner core electrical conductivity and the choice of thermal and velocity boundary conditions on the resulting magnetic field. I demonstrate how an electrically conducting inner core can reduce the frequency of reversals and produce axial-dipolar dominated fields in our models. I also demonstrate that a strong planetary magnetic field intensity does not imply that the dynamo operates in the strong field regime as is usually presumed. Through a scaling law analysis, I find that irrespective of the choice of thermal or velocity boundary conditions, the available power determines the magnetic and velocity field characteristics like the field strength, polarity and morphology. Also, whether a dynamo model is in a dipolar, transitional or multipolar regime is dependent on the force balance in the model. I demonstrate that the Lorentz force is balanced by the Coriolis force in the dipolar dynamo regime models resulting in magnetostrophically balanced dynamos whereas the Lorentz force is balanced by the Inertial force (and not the Coriolis force) in the multipolar dynamo regime models resulting in a non-magnetostrophically balanced dynamo. The generation mechanism differs between the regimes and depends on the velocity boundary conditions. The zonal flows of the stress-free models are stronger than in the no-slip models, and bistability is more prominent when stress-free boundary conditions are used. A single scaling law may be feasible for all the models, but there does appear to be some variation for models with different thermal and velocity boundary conditions. The results presented in this thesis are not only applicable to the geodynamo, but will also aid in understanding the dynamos of other planets and exoplanets.
73

Planetary Dynamo Models: Generation Mechanisms and the Influence of Boundary Conditions

Dharmaraj, Girija 08 January 2014 (has links)
The Earth's magnetic field is generated in its fluid outer core through dynamo action. In this process, convection and differential rotation of an electrically conducting fluid maintain the magnetic field against its ohmic decay. Using numerical models, we can investigate planetary dynamo processes and the importance of various core properties on the dynamo. In this thesis, I use numerical dynamo models in Earth-like geometry in order to understand the influence of inner core electrical conductivity and the choice of thermal and velocity boundary conditions on the resulting magnetic field. I demonstrate how an electrically conducting inner core can reduce the frequency of reversals and produce axial-dipolar dominated fields in our models. I also demonstrate that a strong planetary magnetic field intensity does not imply that the dynamo operates in the strong field regime as is usually presumed. Through a scaling law analysis, I find that irrespective of the choice of thermal or velocity boundary conditions, the available power determines the magnetic and velocity field characteristics like the field strength, polarity and morphology. Also, whether a dynamo model is in a dipolar, transitional or multipolar regime is dependent on the force balance in the model. I demonstrate that the Lorentz force is balanced by the Coriolis force in the dipolar dynamo regime models resulting in magnetostrophically balanced dynamos whereas the Lorentz force is balanced by the Inertial force (and not the Coriolis force) in the multipolar dynamo regime models resulting in a non-magnetostrophically balanced dynamo. The generation mechanism differs between the regimes and depends on the velocity boundary conditions. The zonal flows of the stress-free models are stronger than in the no-slip models, and bistability is more prominent when stress-free boundary conditions are used. A single scaling law may be feasible for all the models, but there does appear to be some variation for models with different thermal and velocity boundary conditions. The results presented in this thesis are not only applicable to the geodynamo, but will also aid in understanding the dynamos of other planets and exoplanets.
74

Etudes expérimentales de l'instabilité dynamo : mécanismes de génération et saturation

Miralles, Sophie 11 October 2013 (has links) (PDF)
Ce travail de thèse s'articule autour de plusieurs questions relatives à l'instabilité dynamo dans des écoulements turbulents en métaux liquides. Cette instabilité de conversion d'énergie cinétique en énergie magnétique dans les fluides électriquement conducteurs est à l'origine, par exemple, des champs magnétiques terrestre et solaire. En particulier, nous abordons l'estimation du seuil de l'instabilité, l'influence de l'écoulement et des conditions aux limites ainsi que les mécanismes de saturation du champ magnétique. Ces travaux expérimentaux s'appuient sur deux écoulements turbulents de type von Kármán : en sodium liquide à Cadarache (collaboration VKS) et en gallium liquide à l'ENS de Lyon.Dans un premier temps, l'étude est consacrée à l'analyse de critères permettant d'estimer la distance au seuil de l'instabilité dynamo, à travers la mesure de la réponse magnétique du système à une excitation pour la dynamo auto-entretenue VKS. Ces critères ont été validés dans les configurations dynamos de l'expérience puis appliquées aux configurations non-dynamo.Ensuite, nous illustrons l'influence de l'écoulement sur le champ dynamo à travers l'étude de bifurcations globales. Une bistabilité hydrodynamique, pilotant deux branches dynamos d'amplitude différentes, est décrite ainsi que les liens entre les états magnétiques et hydrodynamiques.Nous portons notre attention sur l'étude des mécanismes de saturation à travers la dynamo semi- synthétique de Bullard-von Karman mettant en jeu un mécanisme d'induction turbulente et un mécanisme de bouclage artificiel permettant l'observation d'une dynamo à faible nombre de Reynolds magnétique. L'instabilité démarre à travers un régime intermittent et sature par la rétroaction des forces de Lorentz sur l'écoulement. Nous donnons les lois d'échelle et le bilan de puissance de ce régime. Un régime d'instabilité sous-critique est aussi introduit et caractérisé.Nous détaillons dans une dernière partie, les techniques de mesure spécifiques aux métaux liquides utilisées et développées au cours de la thèse.
75

The origin and dynamic interaction of solar magnetic fields /

Wilmot-Smith, Antonia. January 2008 (has links)
Thesis (Ph.D.) - University of St Andrews, January 2008.
76

Managing and calculating U-values with Dynamo and Excel / Hantering och beräkning av U-värden med Dynamo och Excel

Håkansson, Patrik, Kreivi, Johan January 2018 (has links)
I de fallen där det är möjligt använder gärna byggnadsingenjören sig av standardlösningar med materialval och dimensioner som garanterar specifika U-värden. Standardlösningarna måste dock ibland frångås, vid exempelvis specifika krav på tjocklekar eller material som inte finns som standardlösning hos leverantörerna. Byggnadsingenjörens uppgift blir då tidskrävande gällande beräkningar av U-värden, där många iterativa beräkningar krävs, och att överföra konstruktionen till en 3D-modell. En rationalisering av detta arbetsflöde kan åstadkommas med hjälp av programmering. I denna studie skapas ett datorprogram i Visual Basic för Excel, som gör U-värdeberäkningar på olika väggkonstruktioner med trästomme. Även ett script i insticksprogrammet Dynamo skapas för att överföra den beräknade väggkonstruktionen till BIM-programmet Revit. Resultatet blev ett program som beräknar U-värdet, som även innehåller kontroller som hindrar användaren att ange felaktigt indata. Beräkningen med detta program ger en definitiv effektivisering i tid gentemot handberäkningar. Dock kan det ta tid att skriva ett sådant program för ovana, men med tidigare kännedom om programmering kan detta avhjälpas. Att ta sig an och lära sig Dynamo, hur det fungerar och var man hittar rätt funktioner var detta arbetes främsta svårighet. Dynamo bjuder på branta inlärningströsklar och ingen tidigare forskning som berörde det som gjordes i detta arbete. Ett fungerande script lyckades tillslut skapas, men mycket av det svåra arbetet skulle ha underlättats om tidigare kännedom om programmering funnits. Det kan således vara fördelaktigt för byggnadsingenjören som vill arbeta med Dynamo att lära sig programmering i deras utbildning.
77

Efeito skin no dínamo de Ponomarenko

Benetti, Monã Hegel January 2017 (has links)
Orientador: Prof. Dr. Francisco Eugenio Mendonça da Silveira / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2017. / Através do estudo da teoria cinética dos dínamos, onde se destaca o dínamo ou processo de Ponomarenko, nos deparamos com uma análise, até agora desenvolvida na literatura, restrita à aproximação em que a superfície que encerra o escoamento responsável pelo efeito dínamo é considerada dielétrica. Este trabalho oferece um tratamento analítico do processo de Ponomarenko onde essa mesma superfície, que confina o movimento do fluido, passa a ser condutora, o que permite o surgimento do efeito skin. Será apresentada, portanto, uma solução geral, da qual é possível deduzir, em certas condições, a relação de dispersão, já conhecida na literatura, para o qual o efeito dínamo é considerado importante e, em outras, a relação de dispersão ainda não conhecida, em que o efeito skin se torna importante. Por fim, apresentamos novamente a solução geral que contém ambos os efeitos, considerando duas aproximações caracterizadas como: dínamo de baixa rotação e dínamo de alta rotação. Que serão úteis para indicarem a tendência do sistema em relação ao efeito dínamo. / Through the study of the kinematic dynamo theory, where the Ponomarenko dynamo stands out, we come across an analysis, until now developed in the literature, restricted to the approximation in which the surface, that contains the flow responsible for the dynamo effect, is considered dielectric. This work offers an analytical treatment of the Ponomarenko process, where the surface that confines the movement of the fluid, becomes conductive, which allows the appearance of the skin effect. A general solution will, therefore, be presented, from which it is possible to derive, under certain conditions, the dispersion relation already known in the literature, for which the dynamo effect is considered important and, others, the new dispersion relation, in which the skin effect becomes important. Finally, we present, again, the general skin effect solution that contains both effects, considering two approaches, characterized as: slowly rotation dynamo and fastly rotation dynamo. They will be useful to indicate the tendency of the system exhibit to the dynamo effect.
78

Spel, transmedialitet och bibliotek : Fallet Dynamo Game / Video-games, transmedia and libraries : The case Dynamo Game

Ljungkvist, Stina January 2018 (has links)
The aim of this bachelor’s thesis is to study Gothenburg’s main public library’s youth department, Dynamo with a certain focus on one of the two departments called Dynamo Game. This with regard to conducting a case study with an aim to partly identify work methods concerning the public library and videogames but also on the other hand study the potential connection between videogames as a medium and reading-literacy for this specific case. The study has been conducted as a case study taking shape as semistructured interviews with users and personnel, examining documents and finalizing these results in a SWOT- analysis. The results of this study showcases how Dynamo Game works with video games in different ways regarding transliteracy, meeting spaces and for enjoyment. Video Games for Dynamo Game is an important part of its youth-related mission, as the youth area of Gothenburg's public city library. To be a successful youth library one must also embrace the youth culture and the surrounding medias that these youths makes use of daily. This study presents Dynamo Game’s strengths, weaknesses, possibilities and threats/difficulties concerning work with video games in general and in a library context.
79

Non-axisymmetric Magnetic Flux Transport in the Sun

Martín Belda, David 19 April 2017 (has links)
No description available.
80

Magnetohydrodynamic turbulence modelling: application to the dynamo effect / Modélisation de la turbulence magnétohydrodynamique: application à l'effet dynamo

Lessinnes, Thomas 21 May 2010 (has links)
La magnétohydrodynamique (MHD) est la science et le formalisme qui décrivent les mouvements d'un fluide conducteur d'électricité. Il est possible que de tels mouvements donnent lieu à l'effet dynamo qui consiste en la génération d'un champ magnétique stable et de grande échelle. Ce phénomène est vraisemblablement à l'origine des champs magnétiques des planètes, des étoiles et des galaxies. <p><p>Il est surprenant qu'alors que les mouvements fluides à l'intérieur de ces objets célestes sont turbulents, les champs magnétiques généré soient de grande échelle spatiale et stables sur de longues périodes de temps. De plus, ils peuvent présenter une dynamique temporelle régulière comme c'est le cas pour le champ magnétique solaire dont la polarité s'inverse tous les onze ans. <p><p>Décrire et prédire les mouvements d'un fluide turbulent reste l'un des problèmes les plus difficiles de la mécanique classique. <p>%La description aussi bien analytique que numérique d'un fluide hautement turbulent est d'une effroyable complexité, si pas tout simplement impraticable. Dans cette situation, <p>Il est donc utile de construire des modèles aussi proches que possible du système de départ mais de moindre complexité de sorte que des études théoriques et numériques deviennent envisageables.<p><p>Deux approches ont été considérées ici. D'une part, nous avons développé des modèles présentant un très petit nombre de degrés de liberté (de l'ordre de la dizaine). Une étude analytique est alors possible. Ces modèles ont une dépendance en les paramètres physiques - nombres de Reynolds cinétique et magnétique et injection d'hélicité - qualitativement similaire aux dynamos célestes et expérimentales.<p><p>D'autre part, les modèles en couches permettent de caractériser les transferts d'énergie entre les structures de différentes tailles présentes au sein du champ de vitesse. Nous avons développé un nouveau formalisme qui permet d'étudier aussi les échanges avec le champ magnétique. <p><p>De plus, nous proposons une étude de la MHD dans le cadre de la décomposition hélicoïdale des champs solénoïdaux - une idée similaire à la décomposition de la lumière en composantes polarisées et que nous sommes les premiers à appliquer à la MHD. Nous avons montré comment exploiter cette approche pour déduire systématiquement des modèles simplifiés de la MHD. En particulier, nos méthodes multiplient le nombre de situations descriptibles par les modèles en couche comme par exemple le problème anisotrope de la turbulence en rotation. Elles permettent aussi de construire des modèles à basse dimension en calquant les résultats de simulations numériques directes. Ces modèles peuvent alors être étudiés à moindre coûts.<p><p><p>_______________<p><p><p><p><p>Magnetohydrodynamics (MHD) is both the science and the formalism that describe the motion of an electro-conducting fluid. Such motion may yield the dynamo effect consisting in the spontaneous generation of a large scale stationary magnetic field. This phenomenon is most likely the reason behind the existence of planetary, stellar and galactic magnetic fields. <p>\ / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.045 seconds