• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 9
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 30
  • 16
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Neuromodulace v léčbě vybraných dystonických syndromů / Neuromodulation in treatment of selected dystonic syndromes

Havránková, Petra January 2011 (has links)
Dystonia is a neurological syndrome characterized by the involuntary contraction of opposing muscles, causing twisting movements or abnormal postures (modified by Fahn, 1987). Writer's cramp is the most common form of task-specific focal dystonia. In the first study, patients with writer's cramp were evaluated for differences in cortical activation during movements likely to induce cramps (complex movements) and movements which rarely lead to dystonia (simple movements). Although complex patient movements during fMRI were never associated with dystonic cramps, they exhibited abnormally decreased cortical activity. This was not observed in simple movements and was unrelated to the character of handwriting or the presence/absence of visual feedback. Our results support the theory of dualistic sensorimotor system behavior in writer's cramp. As the somatosensory system is believed to be affected in focal dystonia, we focused on modulation of the primary somatosensory cortex (SI) induced by repetitive transcranial magnetic stimulation (rTMS) in the second study, in order to improve writer's cramp. In conclusion, 1 Hz rTMS of the SI cortex can improve manifestations of writer's cramp while increasing cortical activity in both hemispheres. Handwriting as well as subjective assessment improved in most...
12

Neuromodulace v léčbě vybraných dystonických syndromů / Neuromodulation in treatment of selected dystonic syndromes

Havránková, Petra January 2011 (has links)
Dystonia is a neurological syndrome characterized by the involuntary contraction of opposing muscles, causing twisting movements or abnormal postures (modified by Fahn, 1987). Writer's cramp is the most common form of task-specific focal dystonia. In the first study, patients with writer's cramp were evaluated for differences in cortical activation during movements likely to induce cramps (complex movements) and movements which rarely lead to dystonia (simple movements). Although complex patient movements during fMRI were never associated with dystonic cramps, they exhibited abnormally decreased cortical activity. This was not observed in simple movements and was unrelated to the character of handwriting or the presence/absence of visual feedback. Our results support the theory of dualistic sensorimotor system behavior in writer's cramp. As the somatosensory system is believed to be affected in focal dystonia, we focused on modulation of the primary somatosensory cortex (SI) induced by repetitive transcranial magnetic stimulation (rTMS) in the second study, in order to improve writer's cramp. In conclusion, 1 Hz rTMS of the SI cortex can improve manifestations of writer's cramp while increasing cortical activity in both hemispheres. Handwriting as well as subjective assessment improved in most...
13

Les dystonies focales : leurs dysfonctionnements sensori-moteurs et leurs conséquences sur l'organisation du mouvement / Focal dystonia : sensory-motor dysfunctions and consequences on the organization of movement

Bleton, Jean-Pierre 11 December 2015 (has links)
L’identification des muscles responsables des dystonies focales est un prérequis à l’instauration des traitements par toxine botulique et exercices correcteurs. A partir de deux dystonies apparemment dissemblables: la crampe de l’écrivain et la dystonie cervicale, nous avons montré que la réponse aux traitements est tributaire de la distribution des muscles impliqués. L’enregistrement des mouvements du segment tête-cou dans la dystonie cervicale , au moyen de capteurs inertiels 3-D, a montré qu’au mouvement volontaire de la tête, dans un plan, s’associent des mouvements non physiologiques dans les deux autres plans. Pour déterminer les actions musculaires en cause, nous avons réalisé une modélisation numérique du segment tête-cou permettant d’associer le muscle responsable aux déformations. Par ailleurs, sachant l’importance des phénomènes sensitifs dans le contrôle du mouvement, nous avons, au cours de tâches d’ajustement de la force musculaire, montré que ce contrôle de la force est perturbé dans chacune des deux dystonies focales étudiées.Nos résultats devraient avoir une implication dans les traitements symptomatiques de ces dystonies. / The identification of the muscles responsible for focal dystonia is a prerequisite to the introduction of botulinum toxin treatment and tailored exercises. From two apparently dissimilar dystonia: writer's cramp and cervical dystonia, we showed that the response to the treatments depends on the distribution of the muscles involved. Recording the movement of the head-neck segment in cervical dystonia, using 3-D inertial sensors, showed that voluntary head movement in a plane is associated with non-physiological movement in the two other planes. To determine the muscular actions involved, we performed a digital modeling of the head-neck segment which allows us to link the responsible muscle with abnormal postures.Therefore, knowing the importance of sensory phenomena in the control of movement, we have, during tasks of muscular force adjustment, demonstrated that force control is altered in both studied dystonia.Our results should have implications in the symptomatic treatment of these dystonias.
14

Dialogue cérébello-pariétal pendant l’adaptation motrice : le cas de la Dystonie / Cerebello-parietal dialog during motor adaptation in Dystonia

Richard, Aliénor 28 September 2016 (has links)
L'adaptation motrice permet d'ajuster la sortie motrice en réponse à des perturbations de l'environnement. Au début de l'adaptation, un processus stratégique conscient appelé recalibration a lieu. Ce processus implique le cervelet et le cortex pariétal postérieur. Il permet de réduire les erreurs motrices en se basant sur le retour sensoriel. Les patients dystoniques ont des altérations du traitement de l'information somatosensorielle. Nous avons fait l'hypothèse que cela devait entrainer des anomalies d'adaptation au cours de la phase de recalibration. En utilisant l'imagerie par résonnance magnétique (IRMf) et la magnétoencéphalographie (MEG), nous avons enregistré l'activité cérébrale chez des patients ayant une crampe de l'écrivain et chez des volontaires sains, alors qu'ils réalisaient une tâche de pointage avec ou sans perturbation visuelle associée. L'étude en IRMf a révélé l'implication d'un réseau cérébello-pariétal postérieur dans la détection des erreurs motrices. Ce réseau était hypoactif chez les patients qui compensaient en recrutant un réseau alternatif plus cognitif mettant en jeu la mémoire visuo-spatiale et la représentation cognitive de la main. La MEG nous a permis d'analyser la dynamique temporelle des activations et de montrer en particulier que la préparation du mouvement est déjà anormale chez les patients; de réaliser une analyse fréquentielle de la communication cérébello-corticale. Cette analyse a révélé un défaut de cohérence dans la bande gamma, entre le cervelet et le cortex moteur et prémoteur ainsi qu'avec le cortex pariétal postérieur. L'ensemble de nos résultats suggère un désordre constitutionnel de ce réseau dans la dystonie. / Dystonia is a movement disorder characterized by prolonged muscle contractions causing involuntary repetitive twisting movements and abnormal postures. Motor adaptation shapes the motor output according to the changes in the environment. At its early stage, motor adaptation involves a strategic conscious process called “recalibration” that minimizes the perturbation and reduces the motor error based on online integration of sensory feedback. Sensorimotor processing is impaired in dystonia and we hypothesized that this may lead to deficits of the “recalibration” phase during motor adaptation. We used magnetoencephalography (MEG) and functional magnetic resonance imagery (fMRI) to record brain activation in patients with writer’s cramp and healthy volunteers using a classical rotation learning task. The fMRI study revealed that the cerebello-parietal network was directly implicated in motor error detection. In writer’s cramp, this network was underactivacted and patients relied more on cognitive networks based on visuospatial memory and cognitive representations of the hand. With MEG, (1) we reconstructed the temporal dynamic of activations in the cerebello-parietal network and demonstrated abnormal movement preparation in writer’s cramp patients; (2) we realized a spectral analysis of the cerebello-parietal communication. This analysis revealed decreased gamma coherence between the cerebellum, and the premotor and motor cortices and with posterior parietal cortex. All of our data suggest an underlying disorder of this network in dystonia.
15

Hétérogénéité génétique et allélique des dystonies, recherche de gènes candidats et validation fonctionnelle / Genetic and allelic heterogeneity of dystonia, gene hunting and functional validation

Miltgen, Morgane 13 December 2016 (has links)
La dystonie est une pathologie du contrôle du mouvement caractérisée par des contractions musculaires involontaires. Les causes génétiques de cette pathologie sont multiples. J’ai créé des bases de données locus spécifiques colligeant l’ensemble des diversités alléliques disponible pour 16 gènes de dystonie. L’objectif de ce travail est d’aider au diagnostic de cette pathologie et, à plus long terme et lorsque les données le permettent, d’établir des corrélations génotypes-phénotypes. Cela a été le cas pour le gène THAP1 (définissant la forme DYT6) pour lequel nous avons décrits plusieurs corrélations. J'ai recherché la mutation causale dans plusieurs familles par séquençage d'exome. Cela a permis d’identifier une famille porteuse d’une mutation prédite pathogène dans le gène ANO3 (DYT23). Une autre famille est porteuse d’une mutation dans un site d’épissage du gène ATP1A3 (DYT12) entrainant la rétention totale de l'intron 17. Pour une autres famille, un gène candidat a été identifié : ADD2 qui code l'adducine beta. Plusieurs résultats expérimentaux ont été obtenus. Tout d’abord j'ai observé des différences au niveau du cytosquelette d’actine. En effet la surexpression de la protéine sauvage provoque un comportement anormal de l’actine au niveau des fibres de stress. Par ailleurs des études de d’apprentissage par association dans un modèle C. elegans KO ADD2 ont montré un défaut de mémorisation à long-terme. Mes travaux de thèse ont permis d'approfondir les connaissances quant à la contribution de chaque gène déjà connu dans les dystonies, ainsi que d'élargir l'hétérogénéité génétique caractéristique de cette pathologie par l'identification d'un nouveau gène candidat. / Dystonia is a movement control disorder characterized by involuntary muscle contractions. The genetic causes of this disease are multiple. I have created databases " loci-specific " collecting all allelic diversity available in the literature for 16 dystonia genes. The goal of this work is to to assist in the diagnosis of this disease and in the longer term, when there are sufficient data, to establish genotype-phenotype correlations. This was the case for the THAP1 gene (responsible for DYT6 dystonia) for which we have described several correlations.I searched for the disease gene in several families using exome sequencing. I identified a pathogenic mutation in the predicted gene ANO3 (DYT23) carried by one family. Another family carries a mutation in a splice site of ATP1A3 (DYT12) resulting in the total retention of intron 17. In another family a candidate gene was identified: ADD2 gene, coding beta adducin. Several functional results were obtained. First, overexpression of wild type and mutated ADD2 enabled to view differences in the actin cytoskeleton. Indeed the overexpression of the wild type protein causes abnormal behavior of actin at the level of stress fibers and at the plasma membrane. Besides, learning by association studies in a Caenorhabditis elegans model KO for ADD2 gene have shown a long-term default memory compared to the wild type. This confirms the involvement of the protein in neuronal plasticity. My thesis work led to further knowledge about the contribution of each gene already known in dystonia , as well as broaden the genetic heterogeneity characteristic of this disease by identifying a new candidate gene.
16

Bedeutung von muskarinergen Acetylcholin-Rezeptoren in der Pathophysiologie der DYT1-Dystonie: Untersuchungen zur Expression im DYT1 knock-in Mausmodell

Klein, Laura 20 February 2019 (has links)
Dissertation zu Expressionsmustern von muskarinergen Acetylcholin-Rezeptoren des Subtypen 1,2,3 und 4 im Gehirn von DYT1 knock-in Mäusen.
17

Untersuchungen zur Expression und pharmakologischen Modulation des metabotropen Glutamatrezeptors 5 in Dystoniemodellen: dtsz Hamstermutante und DYT1 knock-in Maus

Perl, Stefanie 23 November 2020 (has links)
Dystonien sind neurologisch bedingte Bewegungsstörungen, bei denen es zu unwillkürlichen Muskelkontraktionen kommt, die zu abnormen Körperhaltungen und Bewegungsabläufen führen. Auf Grund unzureichender Kenntnisse zur Pathophysiologie sind die therapeutischen Möglichkeiten stark limitiert, was die Erforschung neuer Zielstrukturen und Pharmaka in Tiermodellen unerlässlich macht. Da anhand bisheriger Studienergebnisse eine gestörte corticostriatale Plastizität und veränderte Netzwerkaktivitäten im Bereich der Basalganglien als wahrscheinlichste Hauptursachen für die Entstehung von Dystonien diskutiert werden, werden strukturelle und funktionelle Veränderungen sowie mögliche Ansatzstellen neuer Therapeutika vor allem in diesem Gehirnareal untersucht. Als eine mögliche neue Zielstruktur für Pharmaka zur Behandlung von Dystonien sollte der metabotrope Glutamatrezeptor 5 (mGluR5) in zwei verschiedenen Tiermodellen der Dystonie untersucht werden. Der mGluR5 ist besonders im Bereich des Striatums, der Eingangsstruktur der Basalganglien, stark exprimiert und zudem maßgeblich an der Regulierung der synaptischen Plastizität beteiligt.Weiterhin konnten in der Behandlung einer symptomatisch verwandten Bewegungsstörung, der Levodopa-induzierten Dyskinesie, mit antagonisierenden Substanzen am mGluR5 bereits erste Erfolge erzielt werden. Zunächst erfolgten pharmakologische Untersuchungen mit dem negativen allosterischen Modulator Fenobam (20-50 mg/kg intraperitoneal, i.p.) und dem positiven allosterischen Modulator CDPPB (10-20 mg/kg i.p.) am mGluR5 im dtsz Hamstermodell, einem phänotypischen Modell der paroxysmalen Dystonie. Dabei wurden die akuten Effekte der Substanzen auf die Dystonieschwere der Tiere sowie auftretende Nebenwirkungen aufgezeichnet (n=8-10 pro Testdosis). Der Vergleich des Dystoniescores erfolgte jeweils zu einer Vehikelvor- und -nachkontrolle im selben Tier und wurde mittels Varianzanalyse (ANOVA) mit wiederholten Messungen für nicht parametrische Daten analysiert. Zusätzlich wurde an Gehirnen von dtsz Hamstern (n=7) im Vergleich zu nicht-dystonen Kontrolltieren (n=7) die Expression des mGluR5 im Striatum und Cortex untersucht.Dazu wurde zunächst eine immunhistochemische (IHC) Fluoreszenzfärbung in zwei Altersstufen der Tiere durchgeführt. Die Quantifizierung der Proteinexpression erfolgte weiterhin mittels Western Blot (WB), während die mGluR5-mRNA-Expression durch quantitative Echtzeit-PCR (RT qPCR) ermittelt wurde. Im zweiten Teil der Arbeit wurden oben genannte Untersuchungen zur Protein- und mRNA-Expression des mGluR5 im DYT1 knock-in (KI) Mausmodell durchgeführt, einem Tiermodell der häufigsten erblichen, persistenten Dystonieform des Menschen. Die Analysen der Gehirne erfolgten an männlichen 6-Monate alten DYT1 KI-Mäusen (n=6) im Vergleich zu Wildtyp-Wurfgeschwistern (n=6). Die Ergebnisse von IHC und WB wurden jeweils mittels Zwei-Wege-ANOVA und anschließendem Holm-Sidak-Test statistisch ausgewertet, während die Rohdaten der RT qPCR mittels Mann Whitney U-Test analysiert wurden. Die Signifikanz wurde für alle statistischen Tests auf p<0,05 festgelegt. Weiterhin wurden auch in diesem Modell pharmakologische Untersuchungen mit CDPPB (10-30 mg/kg i.p.) durchgeführt, um mögliche Effekte auf das Verhalten und die Bewegungsaktivität der Mäuse zu analysieren. Hierzu erfolgten Substanzapplikationen im Rahmen einer Cross-over-Studie (drei Dosierungen und Vehikel) an DYT1 KI-Tieren (n=6) und Wildtyp-Wurfgeschwistern (n=6) im Alter von 4-6 Wochen und 6 Monaten. Die Auswertung der Parameter für die Bewegungsaktivität erfolgte mittels Zwei-Wege-ANOVA. Beide Modulatoren des mGluR5 erzielten in allen getesteten Dosierungen keine Effekte auf die Dystonieschwere in den dtsz Hamstern. Allerdings löste CDPPB zusätzlich zur Dystoniesymptomatik Anzeichen einer generalisierten, axialen Dyskinesie bei der dtsz Mutante, aber nicht in nicht-dystonen Kontrollhamstern aus. Der daraufhin vermutete Unterschied in der Expression des mGluR5 bestätigte sich mittels IHC, in der sich eine 35 % höhere Rezeptorexpression im Striatum und Cortex von dtsz Hamstern im Alter der stärksten Dystonieausprägung im Vergleich zu gleichaltrigen Kontrolltieren (p<0,01) zeigte. Die Differenzen zwischen den Genotypen bestätigten sich nicht mittels WB und RT qPCR. Im DYT1 KI-Modell hingegen war die striatale mGluR5-mRNA erheblich geringer exprimiert als in den Wildtyp-Mäusen (p<0,05). Dies zeigte sich auch mittels IHC im ventralen Striatum (p<0,05; ANOVA), während im WB keine Genotyp-Unterschiede in der mGluR5-Protein-Expression zu erkennen waren. Die Applikation des CDPPB verursachte in den DYT1 KI-Mäusen weder abnorme Bewegungen noch Veränderungen im Lokomotionsverhalten. Auf Grund der teilweise inhomogenen Ergebnisse der Rezeptorstudien in beiden Tiermodellen und dem ausbleibenden erwarteten positiven Effekt des negativen allosterischen Modulators Fenobam auf die Dystonieschwere im dtsz Hamster, scheint der mGluR5 keine Schlüsselrolle in der Pathophysiologie der Dystonie zu spielen und auch nicht als Ansatzpunkt für antidystone Pharmaka geeignet zu sein. Dennoch weisen die Expressionsunterschiede in beiden Modellen auf eine Dysregulation des mGluR5 hin und bestätigen eine gestörte corticostriatale Plastizität im Dystoniegeschehen. Die Überexpression des mGluR5, wie sie sich im dtsz Modell zeigte, ist offensichtlich jedoch keine generelle Veränderung bei verschiedenen Dystonieformen, weil sie im DYT1 KI-Modell nicht nachweisbar war.:Abkürzungsverzeichnis 1. Einleitung 2. Literaturübersicht 2.1 Definition und Einteilung von Dystonien 2.1.1 Die primäre DYT1-Torsionsdystonie 2.2 Pathophysiologie primärer Dystonien 2.2.1 Pathophysiologische Bedeutung der Basalganglien 2.2.2 Synaptische Plastizität 2.3 Therapieoptionen von Dystonien 2.4 Tiermodelle für primäre Dystonien 2.4.1 Übersicht etablierter Tiermodelle 2.4.2 Das dtsz Hamstermodell 2.4.3 Das DYT1 knock-in Mausmodell 2.5 Der metabotrope Glutamatrezeptor 5 (mGluR5) 2.5.2 Therapeutisches Potenzial des mGluR5 2.6 Fragestellung der vorliegenden Arbeit 3. Publikation I 4. Publikation II 5. Diskussion 5.1 Aspekte zur Methodik 5.1.1 Untersuchungen im dtsz Hamster 5.1.2 Untersuchungen im DYT1 KI-Modell 5.2 Ergebnisse 6. Zusammenfassung 7. Summary 8. Literaturverzeichnis 9. Danksagung
18

Rôle du système cholinergique striatal dans la physiopathologie des dystonies : un modèle expérimental chez le primate non-humain / Role of striatal cholinergic system in pathophysiology of dystonia : an experimental model in non-human primate

Ribot, Bastien 20 September 2018 (has links)
Introduction : La dystonie est définie comme un syndrome de cocontractions musculaires soutenues aboutissant à des mouvements répétitifs et des postures anormales. Cependant la physiopathologie des dystonies reste mal comprise. Les études menées chez l’homme soulignent le rôle crucial des ganglions de la base dans la physiopathologie des dystonies. Des données récentes obtenues chez le rongeur suggèrent l’implication d’un désordre de la transmission cholinergique striatale mais es modèles qu’ils soient génétiques ou pharmacologiques n’aboutissent pas toujours à un phénotype de dystonie. C’est pourquoi il était important de proposer une étude chez le primate non humain, visant à vérifier notre hypothèse de travail, à savoir : est-ce qu’une augmentation de la transmission cholinergique dans le putamen est capable d’induire un phénotype clinique de dystonie similaire à celui rencontré chez l’homme.Méthodes : Nous avons réalisé des infusions chroniques d’un agoniste muscarinique non sélectif (Oxotremorine) au sein du territoire sensori-moteur du striatum chez le primate non-humain. Les symptômes cliniques induits par ce produit ont été évalués à l’aide de l’échelle de Burke-Fahn-Marsden (BFM) adaptée à l’animal. Nous avons également utilisé une approche électromyographique pour caractériser l’activité musculaire en lien avec la clinique ainsi que des enregistrements de l’activité Multi-Unitaire et Unitaire au sein des ganglions de la base afin d’établir des corrélations électro-cliniques.Résultats : Les infusions d’Oxotremorine nous ont permis d’observer : (i) des postures et des mouvements anormaux similaires aux mouvements dystoniques rencontrés en pathologie humaine ; (ii) une fréquence de décharge neuronale anormalement basse dans le GPi (13,5Hz) et un pattern de décharge de type « bursty » principalement lorsque les symptômes sont sévères ; (iii) une activité oscillatoire (28-30Hz) au sein du putamen, du GPe et du GPi; (iv) l’absence de cohérence de l’activité oscillatoire entre ces structures ; (v) que le GPi est la seule structure à présenter une cohérence de l’activité oscillatoire.Conclusion : Nos travaux démontrent pour la première fois qu’un modèle de dystonie chronique peut être obtenu chez le primate non humain par augmentation du tonus cholinergique dans le putamen. Ce travail valide l’hypothèse de l’implication des interneurones cholinergiques dans la physiopathologie des dystonies. Ils confortent l’idée qu’une augmentation du tonus cholinergique peu à elle seule induire un phénotype de dystonie. / Introduction: Dystonia is defined as a syndrome of sustained muscular cocontractions leading to repetitive movements and abnormal postures. However, the pathophysiology of dystonia remains poorly understood. Studies in humans emphasize the crucial role of basal ganglia in the pathophysiology of dystonia. Recent data in rodents suggest the involvement of a disorder in the striatal cholinergic transmission. But these genetic or pharmacological rodent models do not always express the phenotype of dystonia. Therefore, it was important to propose a primate study to test whether an increase of cholinergic transmission within the putamen is able to induce a clinical phenotype of dystonia similar to that seen in humans.Methods: To verify our hypothesis, we chronically infused non-selective muscarinic agonist (Oxotremorine) in the sensory-motor striatum in non-human primates. Dystonic clinical symptoms induced by this drug were assessed using the Burke-Fahn-Marsden (BFM) scale adapted to animals. We used electromyographic approach to characterize muscular activity linked to clinical symptoms, and we recorded Multi-Unit and Single-Unit neuronal activity in basal ganglia to establish electro-clinical correlations.Results: The infusions of Oxotremorine allowed us to observe: (i) abnormal postures and movements similar to the dystonic movements encountered in human pathology; (ii) an abnormally low neuronal firing frequency in the GPi (13.5Hz) and a bursty firing pattern mainly when the symptoms where severe; (iii) oscillatory activity (28-30Hz) within the putamen, GPe and GPi; (iv) the lack of coherence of the oscillatory activity between these structures; (v) that the GPi is the only structure to present a coherence of the oscillatory activity.Conclusion: We have demonstrated for the first time that a model of chronic dystonia can be obtained in non-human primates by increasing cholinergic tone in the putamen. This work validates the hypothesis of an involvement of cholinergic interneurons and striatal acetylcholine levels in the pathophysiology of dystonia.
19

Modulation tâche-dépendante des mécanismes inhibiteurs et désinhibiteurs du cortex moteur primaire chez l’homme / Task-dependent change in inhibitory and disinhibitory mechanisms within the primary motor cortex in humans

Caux-Dedeystère, Alexandre 29 September 2016 (has links)
Les mouvements sont le résultat de contractions musculaires dont l’organisation spatio-temporelle est régie par des structures cérébrales et médullaires. Etudier les circuits qui les sous-tendent est une étape indispensable pour renforcer nos connaissances des mécanismes à l’origine de la commande des mouvements volontaires et pour mieux comprendre la pathophysiologie des mouvements anormaux. Les muscles squelettiques sont innervés par les motoneurones alpha de la moelle épinière qui à leur out sont influencés par des neurones des aires corticales motrices. Cette voie descendante constitue la voie corticomotoneuronale (CM) et est responsable de l’exécution des mouvements volontaires. Le cortex moteur primaire est considéré comme une structure clé, au cœur du système, permettant l’intégration complexe de nombreuses influences multi-régions pour conduire aux comportements moteurs adéquats. Les interactions qui existent entre les différents groupes de neurones au sein de M1 influent en dernier lieu sur la sortie motrice. De la balance complexe entre ces influences inhibitrices et excitatrices, locales ou à distance va dépendre l’état d’excitabilité des cellules CM contrôlant les différents muscles. L'objectif de ce travail de thèse était d'étudier comment évoluent certains de ces mécanismes excitateurs ou inhibiteurs du cortex moteur primaire lorsque la commande motrice volontaire d’un muscle de l’index est modifiée. Nous avons étudié le rôle de ces mécanismes dans les changements d’excitabilité de la voie CM qui accompagnent la contraction tonique volontaire du muscle premier interosseus dorsalis (FDI) en comparant une tâche simple mais peu naturelle : l’abduction de l'index, une tâche naturelle plus complexe: la pince pouce-index et la condition de repos musculaire. Nous avons également étudié l’effet de la commande motrice sur l’interaction entre deux de ces mécanismes inhibiteurs l’un à longue latence, la LICI, l’autre à courte latence, la SICI. Enfin nous avons souhaité évaluer le décours temporel de ces mécanismes dans un cadre pathologique tâche-dépendant: la crampe de l’écrivain. Pour cela, nous avons utilisé la technique d’electromyographie de surface pour enregistrer les potentiels moteurs évoqués par la Stimulation Magnétique Transcrânienne. Nous avons mis en évidence une modulation tâche-dépendante de la LICI. Par rapport à la tâche d’abduction simple, la LICI s’estompait plus tôt lors de la tâche de pince pouce-index, traduisant une désinhibition plus précoce lors d’un mouvement plus complexe. Nous avons observé, et ce pour la première fois dans la littérature, une phase de facilitation nette qui suivait cette désinhibition, et qui était absente lorsque le muscle était au repos. Ces résultats sont également visibles dans un muscle voisin du FDI, non engagé dans la tâche; cela suggère que les mécanismes à l’origine de la facilitation sont impliqués dans l’activité volontaire sans spécificité topographique. L’interaction entre la LICI et la SICI n’a pas été modifiée par la tâche effectuée, laissant penser qu’elle n’est pas impliquée dans les changements d’excitabilité tâche-dépendants. Enfin, il apparaît que la désinhibition est retardée chez les sujets dystoniques quand le muscle est engagé dans un mouvement complexe de pince pouce-index mais pas dans une tâche simple d’abduction de l’index en comparaison à des sujets contrôles. Ces résultats illustrent le fait que lors d’un mouvement plus complexe, l’efficacité des circuits inhibiteurs du cortex moteur primaire est modifiée, ce qui permet de réguler l’activité des cellules CM, afin d’adapter la commande motrice au mouvement souhaité. Le fait que cette désinhibition soit retardée dans une tâche complexe (proche de la tâche affectée) mais pas dans une tâche simple chez les patients atteints d’une crampe de l’écrivain suggère que les mécanismes à l’origine de la désinhibition pourraient participer aux troubles moteurs qui caractérisent la maladie. / Movements are evoked by muscles contractions whose spatial organization is mediated by both spinal and cortical components. It is important to investigate the underlying circuitry of movements to extend our knowledge on how voluntary movement are controlled and to better understand the pathophysiology of movements disorders. The spinal alpha motoneurons innervating distal muscles are controlled at least in parts by corticomotoneuronal neurons located in the motor cortical areas. Among them, the primary motor cortex is considered as a key structure, performing a complex integration of multi-regional influences leading to appropriate motor behaviors. Axons from corticomotoneuronal (CM) cells of the primary motor cortex reach the spinal cord via descending motor pathway. CM neurons are influenced by local or distant, inhibitory and excitatory components which determine the balance of excitability. The aim of this thesis was to explore changes of some of the excitatory and inhibitory mechanisms of motor cortex as a function of the task being performed. We assessed the time course of Long-interval Intracortical Inhibition (LICI), Late Cortical Disinhibition (LCD) and Long interval Intracortical Facilitation (LICF), which are mechanisms that potentially act to modulate the output of CM controlling the first dorsal interosseus (FDI) muscle. We compared three conditions : index finger abduction (a simple but not natural task), precision grip between index and thumb ( amore natural and complex task), and rest. We also evaluated the effect of task on interaction between LICI and Short Interval Intracortical Inhibition (SICI). Finally, we assessed the time course of LICI in patients suffering from writer’s cramp. For this purpose, we used surface electromyography to record motor potentials evoked by Transcranial Magnetic Stimulation.We showed a task-dependent change in late inhibitory and disinhibitory components. Compared with abduction task, the LICI induced during precision grip was shorter, suggesting an early disinhibition in more complex task. The disinhibition was followed by a period of facilitation only during the active tasks, i.e. facilitation was not observed when all muscles were at restat rest. However, long interval intracortical facilitation can be observed in a muscle at rest not engaged in an active task if a neighboring muscle is activated. It is therefore likely that mechanisms underlying facilitation are associated with voluntary contraction albeit with lack of topographic specificity. Interaction between LICI and SICI was not modified between tasks, suggesting that it was not involved in task-dependent changes of cortical excitability. Lastly, disinhibition was shown to be delayed in dystonic patients when the FDI was actively engaged in a precision grip but not in index abduction, compared with control subjects. An explanation might be that mechanisms underlying disinhibition are impaired in thumb-index precision grip (a task similar to that inducing unwanted contractions in writer’s cramp). Task-specidic disruption of LICI and late cortical disinhibition may therefore be at least in part responsible for pathophysiology of dystonia. It is likely that during complex task, the efficacy of LICI, and more generally of motor cortex inhibitory mechanisms, is modified to allow adaptation of CM neurons activity to the functional requirements of the motor task being performed.
20

Evaluation des réseaux neuronaux vecteurs de comportements par imagerie anatomique et fonctionnelle in vivo chez l'homme / In vivo evaluation of human neural circuits underlying behavior by anatomic and functional neuroimage studies

Gonzalez Martinez, Maria Victoria 28 March 2014 (has links)
L'évolution des connaissances dans le domaine de la neurochirurgie fonctionnelle, la neuroradiologie et les études de traçage neuronal par virus neurotropes ont permis d'étudier les circuits sous-tendant l'expression clinique de plusieurs syndromes neurologiques. La stimulation cérébrale profonde (SCP) du globus pallidus interne (GPi) est une thérapie validée dans les syndromes dystono-dyskinétiques (SDD) isolés. L'extension des indications vers des SDD secondaires ou hérédo-dégénératifs nous confronte à la nécessité d'améliorer notre compréhension des mécanismes de réorganisation fonctionnelle du circuit moteur et de l'intégrité résiduelle des connexions anatomiques. L'efficacité de la SCP dans les SDD complexes est déterminée par la préservation relative de la voie pyramidale, les interactions du circuit cortico-striato-pallido-thalamique et cérébello-thalamo-cortical et la réorganisation du réseau moteur au niveau cortical. Ce travail de thèse a essayé d’évaluer différentes composantes du réseau moteur in vivo chez l’homme à travers de l’étude de trois pathologies du mouvement associées à un SDD complexe. L’application de la SCP à la maladie de Huntington (MH) est un modèle d'étude du réseau moteur dans le contexte d’un SDD associé à une dégénérescence des neurones striato-pallidaux. Nous avons fait une étude prospective pour évaluer l'efficacité à long terme de la SCP du GPi sur les symptômes moteurs de la MH. Sept patients ayant une chorée sévère réfractaire au traitement pharmacologique ont été inclus dans l'étude. Nous avons observé une réduction significative de la chorée chez tous les patients avec un effet maintenu dans le temps (suivi médian de 3 ans). La bradykinésie et la dystonie ont montré une tendance (non significative) à une aggravation progressive. L'analyse anatomo-fonctionnelle du réseau moteur résiduel sous-tendant un SDD secondaire (dû à une lésion cérébrale acquise) a été abordée par deux techniques de neuroimagerie avancée. La réorganisation du circuit moteur dans le cadre d’une hémidystonie a été évaluée par IRM fonctionnelle. Les objectifs principaux ont été: 1) l’évaluation des régions activées par l'exécution d’une tâche motrice chez un groupe de patients hémidystoniques par rapport à un groupe de sujets témoins; 2) l’identification des profils d'activation selon le phénotype clinique (hypo/hyperkinétique) ou radiologique (lésion localisée en amont ou en aval du GPi) (des critères qui orientent l’éligibilité pour la SCP pallidale). Les études individuelles des patients ont montré des profils d'activation hétérogènes avec une activation bilatérale possible malgré le caractère unilatéral des lésions. En comparaison avec les sujets témoins, les patients ont présenté une réduction de l'activation au niveau thalamique, pallidal et temporal médial du côté ipsilatéral à la lésion. Les patients atteints d'une hémidystonie hypokinétique ont montré un profil d'activation bi-hémisphérique, désorganisé, ce qui pourrait expliquer le manque de réponse à la SCP observée dans cette présentation clinique. L'imagerie du tenseur de diffusion (DTI) a été appliquée à l'étude de la distribution topographique et la gravité des lésions de la substance blanche d'un groupe de patients atteints d'un SDD secondaire à une encéphalopathie anoxique néonatale par rapport à un groupe témoin. L'étude TBSS (tract based spatial statistics) a identifié la présence d'anomalies diffuses de la microstructure de la substance blanche (diminution de la fraction d’anisotropie (FA)) chez les patients. La technique de tractographie probabiliste a été utilisée pour reconstruire les faisceaux corticospinaux (CS) et thalamocorticaux (TC) (les voies efférentes du circuit moteur) et pour obtenir des paramètres quantitatifs DTI moyens pour chaque faisceau. La FA moyenne des faisceaux TC est diminuée chez les patients. Nous avons étudié la corrélation entre les paramètres cliniques et neurophysiologiques et les paramètres DTI du groupe de patients. / Advances in the field of functional neurosurgery, neuroradiology and virus neuronal tracing studies have enabled to deepen our knowledge of the circuits underlying the clinical expression of several neurologic syndromes. Globus pallidus internus (GPi) deep brain stimulation (DBS) is a validated technique for the treatment of isolated (primary) dystonia-dyskinesia syndromes (DDS). Broadening indications for DBS therapy to complex DDS (secondary and heredodegenerative disorders) require further understanding of motor circuit functional reorganization mechanisms and residual anatomic connections integrity. The efficacy of neuromodulation in these complex dystonia syndromes is determined by the relative preservation of pyramidal pathway, the interactions between cortico-striato-pallido-thalamic and cerebello-thalamo-cortical circuits and motor network reorganization at the cortical level. This thesis has tried to evaluate the different components of human motor network in vivo through the study of three different movement disorders associated with complex dystonia. The application of DBS to Huntington’s disease (HD) is a model for the study of the motor network in the context of this heredodegenerative DDS associated with striatal neuron degeneration in the cortico-striato-pallido-thalamic loop. We have conducted a prospective study to evaluate long-term motor outcome of GPi DBS in HD. Seven patients with severe chorea refractory to medical treatment were included in the study. Significant and sustained reduction of chorea was observed for all patients until last follow-up visit (median follow-up was 3 years). Bradykinesia and dystonia showed a non-significant trend towards progressive worsening. Anatomic and functional assessment of the motor circuit following brain injury (secondary DDS) has been approached by two different advanced neuroimaging techniques. We have studied motor circuit reorganization underlying hemidystonia in functional magnetic resonance imaging (fMRI). The main objectives of this study were: 1) to evaluate activation regions associated with motor task execution in a group of hemidystonic patients compared with another group of healthy control subjects; 2) to identify activation patterns related to clinical (hypo or hyperkinetic) or radiological (prepallidal or postpallidal) phenotypes (following clinical criteria relevant for DBS therapy eligibility). Activation patterns associated with motor-task execution were heterogeneous in single-subject studies. Despite the unilateral distribution of lesions leading to dystonia, bilateral activation was found in several subjects. Compared with healthy control group, hemidystonic patients showed reduced brain activation in ipsilesional thalamus, globus pallidus and medial temporal areas. Hypokinetic hemidystonic subgroup showed widespread bilateral overactivity involving both hemispheres. Poor clinical outcome associated with this clinical presentation could be explained by DBS therapy inability to modulate a highly disorganized network. Diffusion tensor imaging (DTI) has been applied to the study of the topographic distribution and severity of white matter lesions in a group of patients with a DDS secondary to neonatal anoxic encephalopathy in comparison with a healthy control group. TBSS (tract based spatial statistics) found widespread areas of abnormal white matter microstructure (decreased fractional anisotropy (FA)) in the corpus callosum, corona radiata and posterior limb of the internal capsule in the group of patients. After running probabilistic tractography to reconstruct corticospinal and thalamocortical tracts (motor circuit output pathways), mean quantitative tract-derived DTI parameters were calculated for each single tract. This study found decreased mean FA in thalamocortical tracts in the group of patients as compared to healthy controls. Clinical scores and neurophysiological measures were also analyzed and correlated with DTI parameters.

Page generated in 0.0316 seconds