• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 37
  • 17
  • 11
  • 9
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 240
  • 66
  • 64
  • 64
  • 59
  • 39
  • 29
  • 23
  • 21
  • 21
  • 19
  • 19
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Thermoplastic Multilayer Slide-Foil / Thermoplastische Multilayer-Gleitfolie

Weisbach, Tobias, Sumpf, Jens, Bumm, Christian 19 December 2017 (has links) (PDF)
The training of movement procedures to increase the skills of athletes is a fundamental part of competitive sports. A realistic training, supported by technical equipment provides athletes a better success of training and is requested by trainers and training centers all over the world. Especially in winter sports, like luge or bob, a realistic training simulation is not always possible and demands adaptations of specific training procedures. As a part of this article, a new multilayer slide-foil will be presented, which allows athletes an even more realistic training. For this purpose the structure and production process of the foil composite will be shown, as well as results of the tribological behaviour of the foil. / Das Training von Bewegungsabläufen, zur Steigerung von Fähigkeiten, ist ein fundamentaler Bestandteil im Leistungssport. Ein realistisches Training, unterstützt durch technische Systeme, ermöglicht es Athleten optimale Trainingserfolge zu erzielen und wird dementsprechend von Trainern und Leistungszentren überall auf der Welt gewünscht. Insbesondere in Wintersportarten, wie z. B. Rennrodeln oder Bobfahren, kann dies allerdings nur bedingt realisiert werden und erfordert oftmals Abstriche bei der Trainingsgestaltung. Im Rahmen dieses Beitrags wird daher eine mehrschichtige Verbundfolie vorgestellt, welche den Athleten ein realistischeres Training ermöglichen soll. Hierzu werden zum einen der Aufbau und die Herstellung des Folienverbundes erläutert sowie tribologische Untersuchungsergebnisse präsentiert.
152

ELECTRODOS AVANZADOS PARA PILAS DE COMBUSTIBLE DE ÓXIDO SÓLIDO (SOFCs)

Vert Belenguer, Vicente Bernardo 10 February 2012 (has links)
Las celdas de combustible de óxido sólido (cuyo acrónimo en inglés es SOFC) son dispositivos energéticos capaces de convertir la energía química de un combustible directamente en energía eléctrica. Esto las dota de unas eficiencias eléctricas muy elevadas, que pueden llegar a ser del 80% si se aprovecha su calor residual de alta calidad mediante turbinas. Además, son capaces de funcionar con una gran variedad de combustibles: hidrógeno, gas natural, gas de síntesis, etanol, metanol, etc. Sin embargo, para su inserción en la cadena de producción energética, su temperatura de funcionamiento debería disminuir al rango de 500-700 ºC sin que se redujeran las densidades de potencias eléctricas generadas. Las SOFC convencionales se basan en la conducción de iones oxígeno de su electrolito, que separa la reacción de combustión del combustible en sus semi-reacciones electroquímicas, generando de este modo la energía eléctrica directamente. Al disminuir la temperatura de operación en este tipo de SOFC, con electrolitos (o membranas) delgados e hidrógeno como combustible, la principal limitación de funcionamiento se centra en la activación y reducción del oxígeno que tiene lugar en el electrodo denominado cátodo. Por otro lado, el empleo de otros combustibles basados en carbono no es compatible con los materiales de ánodos actualmente utilizados. Por tanto, es necesario el desarrollo de nuevos cátodos con mejoradas propiedades electrocatalíticas para la reducción de oxígeno a menores temperaturas, cuyas propiedades termo-mecánicas sean compatibles con las del resto de componentes de la celda, y la obtención de ánodos capaces de funcionar con combustibles basados en carbono. La combinación conjunta de varios lantánidos y bario en la estructura perovskita (LalPrpSmsBab)0.58Sr0.4Fe0.8Co0.2O3 ha permitido obtener compuestos con resistencias de polarización de electrodo significantemente menores que las mostradas por el cátodo del estado de la técnica La0.6Sr0.4Fe0.8Co0.2O3 en el rango de temperaturas 450-650 ºC. / Vert Belenguer, VB. (2011). ELECTRODOS AVANZADOS PARA PILAS DE COMBUSTIBLE DE ÓXIDO SÓLIDO (SOFCs) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14669 / Palancia
153

Static and dynamic magnetoelastic properties of spin ice

Stöter, Thomas 10 December 2019 (has links)
The concept of magnetic frustration is a fundamental topic in modern solid-state physics having direct consequences in systems with rich magnetic phases hosting emergent excitations, such as the magnetic monopoles in the spin-ice compounds. One important ingredient of frustration is the lattice that constrains the magnetic spins on it to a site anisotropy and inter-site coupling. Therefore, strong magnetoelastic interactions between the magnetic system and the lattice are expected and investigated in this thesis in detail. At first, I investigate the dependence of the relative length change of single crystals of the classical spin ices \dto{} and \hto{} on the magnetic field and temperature by capacitive dilatometry. In terms of the magnetostriction and thermal expansion \dto{} and \hto{} show qualitatively similar behavior, that seems to be independent of the Kramer or non-Kramers character of the rare-earth ion. The magnitude of the magnetostrictive effect deep in the spin-ice phase at \SI{0.3}{\kelvin} is $\deltaL{} = \SI{2e-5}{}$ and $\SI{2e-4}{}$ for \dto{} and \hto{}, respectively. In numerical simulations using a manifold model, the experimental results could be qualitatively reproduced by a combination of exchange and crystal-field striction. A second highlight of the dilatometric measurements of the spin-ice compounds is the observation of the lattice dynamics. The relaxation processes are rather slow, the longest relaxation times were observed at lowest temperatures and in the field range with magnetostrictive hysteresis, \ie{}, below \SI{0.9}{\tesla} for \dto{} and below \SI{1.5}{\tesla} for \hto{}. I find that the region of longest relaxation coincides well with the kagome-ice phase of the magnetic phase diagrams; the laxation time is of the order of \SI{5000}{\second} ($> \SI{80}{\minute}$). With increasing temperatures the time scale of the relaxation reduces to minutes at around \SI{0.7}{\kelvin} corresponding to the spin-freezing temperature obtained from ac-susceptibility measurements. In the second study I investigate the variation of the magnetic properties in dependence of the lattice constant. A systematic reduction of the lattice constant of \dgsoxx{} can be achieved by substituting the non-magnetic germanium ion in the cubic pyrochlore oxide with silicon. Characteristic properties of a spin-ice phase could be observed in measurements of magnetization, ac susceptibility, and heat capacity. From the temperature shift of the peaks, observed in the temperature-dependent heat capacity, an increase of the strength of the magnetic exchange interaction by a changed ratio of the competing exchange and dipolar interaction is deduced. The new spin-ice compounds are, thus, closer to the phase boundary between spin-ice phase and antiferromagnetically ordered all-in-all-out phase consistent with a reduction of the energy of monopole excitations.
154

Granskning och uppföljning av miljöbedömningar i infrastrukturprojekt : Fyra fallstudier

Risberg, Sofia January 2020 (has links)
Miljöbedömning med dess tillhörande dokument, miljökonsekvensbeskrivning (MKB), genomförs för att minska negativ miljöpåverkan från projekt och används som beslutsunderlag. Trafikverket som statlig myndighet gör MKB:er för många av sina projekt. Om utfallet blir så som det står i MKB:erna eller inte, vad det beror på, samt hur avvikelser påverkar miljön har undersökts i det här examensarbetet. Undersökningen har skett genom fallstudier av fyra olika Trafikverksprojekt. Dessa har varit vägprojekten Västra länken; bro över Umeälven, Östra länken; E4 syd – Östteg och Puckdalen; riskobjekt. Det fjärde fallet är ett järnvägsprojekt, Åmsele station; ny mötesdriftplats. För att kunna besvara frågeställningarna har intervjuer, dokumentgranskning, platsbesök och litteraturstudier genomförts. För varje fall har ett antal påverkanskategorier med betydelse för projektet valts ut för fördjupad granskning. Resultatet visar att avvikelser har förekommit mellan det som stått i MKB:erna och faktiskt resultat i alla fyra fallen, men inte i något fall har avvikelserna varit fler än överensstämmelserna. De flesta kontrollpunkter från MKB:erna har därmed stämt med faktiskt resultat, sammanlagt har 76 % stämt. I ett av fallen, Östra länken, har större andel avvikelser upptäckts än i övriga. Här blev resultatet 63 % överensstämmelse, i jämförelse med Västra länkens 77 %, Puckdalen 88 % och Åmsele stations 73 %. Avvikelserna som har upptäckts har gett både positiv, negativ och insignifikant miljöpåverkan, men majoriteten har varit negativ. Orsakerna till avvikelserna har varierat stort för de olika granskade kontrollpunkterna, men för vissa är otillräcklig uppföljning en möjlig orsak. Som resultat av detta arbete föreslås mer uppföljningsarbete med hjälp av Trafikverkets redan befintliga metoder, för att minska avvikelser mellan MKB och verklighet i framtiden. / Environmental impact assessment, with the document environmental impact statement (EIS), are produced to limit the negative environmental impact of projects, and as a base for decision-making. Trafikverket (Swedish Transport Administration) is a public authority that produce EIS for many of their projects. This study has examined if the statements made in the EIS are actually done in practise or not, why eventual deviations may occur and what effects these deviations gives to the environment. The method used have been case studies of four projects performed by Trafikverket. Those are three road projects, The Western link; bridge over Umeälven, The Eastern Link; E4 south – Östteg and Puckdalen; risk object. The fourth project is a railroad project named Åmsele station, new passing place and service site. To answer the research questions also interviews, document studies, field trips and literature studies have been performed. For each of the cases a number of important categories for the project have been selected for further investigations. The result show that in all cases there have been deviations. In summary of the four cases 76 % of the checkpoints have been congruent. In all cases the congruence has been greater than the deviations. In one case, The Eastern Link, more deviations than in the other projects have been noted. In this case the result showed 63 % congruence, compared to 77 % at The Western Link, 88 % at Puckdalen and 73 % at Åmsele station. The deviations found have both given positive, negative, or insignificant environmental impacts, but the majority have been negative. The causes of the deviations have varied between the different checkpoints examined. One reason that is possible for some of the deviations are lack in follow-up. As a result of this study more extensive follow-up in the future, with use of already existing tools in the organisation of Swedish Transport Administration, are suggested to reduce the deviations between EIS and reality.
155

Regionale Unterschiede im Auftreten von Eisablagerungen

Arnold, Klaus, Raabe, Armin, Tetzlaff, Gerd 25 October 2016 (has links)
Bei der Errichtung von Windenergieanlagen in Mittelgebirgsregionen ist darauf zu achten, daß an windexponierten Standorten die Gefahr einer Vereisung der Rotorblätter besteht. Es wurden klimatologische Daten im Bereich der Mittelgebirge ausgewertet und daraus eine Karte erarbeitet, in der die jährliche mittlere Häufigkeit der Tage mit Eisablagerungen dargestellt ist. / With the installation of wind turbines in low mountain areas the hazard of ice accretions on rotor blades at windy places must be considered. Interpreting climatological datas of the low mountain areas of S. E. Germany a map has been produced which shows the annual frequencies of days ice accretions on structures occurs.
156

Validation des éditions francophones du volet évaluation du programme EIS (Évaluation, Intervention, Suivi) en milieux de garde et de réadaptation

Braconnier, Marie-Joëlle January 2020 (has links) (PDF)
No description available.
157

Estudio de la corrosión termogalvánica y comportamiento pasivo del Alloy 31 en máquinas de absorción de LiBr mediante técnicas electroquímicas

Fernández Domene, Ramón Manuel 03 September 2014 (has links)
En esta Tesis Doctoral se estudiará la corrosión termogalvánica generada entre dos electrodos del mismo material (Alloy 31 o cobre) sumergidos en disoluciones concentradas de bromuro de litio (LiBr) imponiendo diferentes gradientes de temperatura y de concentración entre ellos. Esto se conseguirá empleando una celda electroquímica diseñada específicamente para el estudio de la corrosión termogalvánica, que consta de dos semiceldas aisladas térmicamente entre sí y separadas por una membrana porosa de vidrio (frita). La corrosión termogalvánica generada entre los dos electrodos de trabajo se estudiará bajo condiciones de circuito abierto, usando un potenciostato como amperímetro de resistencia cero (ZRA). Con el propósito de investigar la influencia que tiene la corrosión termogalvánica sobre las propiedades superficiales de los electrodos, se empleará la técnica de Espectroscopía de Impedancia Electroquímica (EIS) antes y después del acoplamiento termogalvánico. Los resultados obtenidos servirán para evaluar la influencia que tienen los gradientes de temperatura y de concentración que se establecen en el interior de las máquinas de absorción de LiBr sobre el comportamiento de los materiales metálicos estudiados frente a la corrosión. Por otro lado, el Alloy 31 (un acero inoxidable austenítico altamente aleado) debe su elevada resistencia a la corrosión a la película protectora de óxido que se forma sobre su superficie. Por ello, debido a las agresivas condiciones de temperatura y concentración que se dan en el interior de las máquinas de absorción de LiBr, es de vital importancia conocer el comportamiento pasivo de este acero inoxidable en las condiciones de trabajo, tanto desde el punto de vista de la formación y crecimiento de la película pasiva, como desde el punto de vista de su rotura local y el inicio de la corrosión por picadura. La modelización del fenómeno de pasividad y de su rotura e inicio de la corrosión por picadura se llevará a cabo en el marco del Point Defect Model, un modelo ampliamente utilizado en la actualidad para explicar la formación, crecimiento y eventual rotura de las películas pasivas. Este estudio se realizará mediante ensayos potenciostáticos de pasivación, ensayos de impedancias electroquímicas (EIS) y ensayos de capacitancias o análisis de Mott-Schottky. / Fernández Domene, RM. (2014). Estudio de la corrosión termogalvánica y comportamiento pasivo del Alloy 31 en máquinas de absorción de LiBr mediante técnicas electroquímicas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/39352 / TESIS / Premios Extraordinarios de tesis doctorales
158

Scalable Electrochemical Surface Enhanced Raman Spectroscopy (EC-SERS) for bio-chemical analysis

Xiao, Chuan 06 October 2021 (has links)
Conducting vertical nanopillar arrays can serve as three-dimensional nanostructured electrodes with improved performance for electrical recording and electrochemical sensing in bio-electronics applications. However, vertical nanopillar-array electrodes made of inorganic conducting materials by conventional nanofabrication approach still faces challenges in high manufacturing costs, poor scalability, and limited choice of carrier substrates. Here, we report a new type of conducting nanopillar arrays composed of multi-walled carbon nanotubes (MWCNTs) doped polymeric nanocomposites, which are manufactured over the wafer-scale on both rigid and flexible substrates by direct nanoimprinting of perfluoropolyether nanowell-array templates into uncured MWCNT/polymer mixtures. By controlling the MWCNT ratios and the annealing temperatures during the fabrication process, MWCNT/polymer nanopillar arrays can possess outstanding electrical properties with high DC conductivity (~4 S/m) and low AC electrochemical impedance (~104 Ω at 1000 Hz). Moreover, by electrochemical impedance spectroscopy (EIS) measurements and equivalent circuit modeling-analysis, we can decompose the overall impedance of MWCNT/polymer nanopillar arrays in the electrolyte into multiple bulk and interfacial circuit components, and thus can illustrate their different dependence on the MWCNT ratios and the annealing temperatures. In particular, we find that a proper annealing process can significantly reduce the anomalous ion diffusion impedance and improve the impedance properties of MWCNT/polymer nanopillars in the electrolyte. / Master of Science / Conducting vertical nanopillar arrays can serve as three-dimensional nanostructured electrodes with improved performance for electrical recording and electrochemical sensing in nano-bioelectronics applications. However, vertical nanopillar-array electrodes made of inorganic conducting materials by conventional nanofabrication approach still faces challenges in high manufacturing costs, poor scalability, and limited choice of carrier substrates. Compared to conventional nanofabrication approaches, nanoimprint lithography exhibits unique advantages for low-cost scalable manufacturing of nanostructures on both rigid and flexible substrates. Very few studies, however, have been conducted to achieve the scalable nanoimprinting fabrication of conducting nanopillar arrays made of MWCNT/polymer nanocomposites. Here, I'm reporting a new type of conducting nanopillar arrays composed of multi-walled carbon nanotubes (MWCNTs) doped polymeric nanocomposites, which can be manufactured over the wafer-scale on both rigid and flexible substrates by direct nanoimprinting of the perfluoropolyether nanowell-array template into uncured MWCNT/polymer mixtures. We find that the nanoimprinted conducting nanopillar arrays can possess appealing electrical properties with a high DC conductivity (~4 S/m) and a low AC electrochemical impedance (~104 Ω at 1000 Hz) in the physiologically relevant electrolyte solutions (1X PBS). Furthermore, I've conducted a systematic equivalent circuit modeling analysis of measured EIS results to understand the effects of the MWCNT ratios and the annealing temperatures on the impedance of different bulk and interfacial circuit components for MWCNT/polymer nanopillar arrays in the electrolyte.
159

Fabrication and characterization of highly-ordered TiO2-CoO, CNTs@TiO2-CoO and TiO2-SnO2 nanotubes as novel anode materials in lithium ion batteries

Madian, Mahmoud 30 January 2018 (has links) (PDF)
Developed rechargeable batteries are urgently required to make more efficient use of renewable energy sources to support our modern way of life. Among all battery types, lithium batteries have attracted the most attention because of the high energy density (both gravimetric and volumetric), long cycle life, reasonable production cost and the ease of manufacturing flexible designs. Indeed, electrode material characteristics need to be improved urgently to fulfil the requirements for high performance lithium ion batteries. TiO2-based anodes are highly promising materials for LIBs to replace carbon due to fast lithium insertion/extraction kinetics, environmentally-friendly behavior, low cost and low volume change (less than 4%) therewith, high structural stability as well as improved safety issues are obtained. Nevertheless, the low ionic and electric conductivity (≈ 10−12 S m−1) of TiO2 represent the main challenge. In short, the present work aims at developing, optimization and construction of novel anode materials for lithium ion batteries using materials that are stable, abundant and environmentally friendly. Herein, both of two-phase Ti80Co20 and single phase Ti-Sn alloys (with different Sn contents of 1 to 10 at.%) were used to fabricate highly ordered, vertically oriented and dimension-controlled 1D nanotubes of mixed transition metal oxides (TiO2-CoO and TiO2-SnO2) via a straight-forward anodic oxidation step in organic electrolytes containing NH4F. Surface morphology and current density for the initial nanotube formation are found to be dependent on the crystal structure of the alloy phases. Various characterization tools such as SEM, EDXS, TEM, XPS and Raman spectroscopy were used to characterize the grown nanotube films. The results reveal the successful formation of mixed TiO2-CoO and TiO2-SnO2 nanotubes under the selected voltage ranges. The as-formed nanotubes are amorphous and their dimensions are precisely controlled by tuning the formation voltage. The electrochemical performance of the grown nanotubes was evaluated against a Li/Li+ electrode at different current densities. The results revealed that TiO2-CoO nanotubes prepared at 60 V exhibited the highest areal capacity of ~ 600 µAh cm–2 (i.e. 315 mAh g–1) at a current density of 10 µA cm–2. At higher current densities TiO2-CoO nanotubes showed nearly doubled lithium ion intercalation and a coulombic efficiency of 96 % after 100 cycles compared to lower effective TiO2 nanotubes prepared under identical conditions. To further improve the electrochemical performance of the TiO2-CoO nanotubes, a novel ternary carbon nanotubes (CNTs)@TiO2-CoO nanotubes composite was fabricated by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2-CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2-CoO NTs without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity promoting a strongly favored lithium insertion into the TiO2-CoO NT framework, and hence results in high capacity and extremely reproducible high rate capability. On the other hand, the results demonstrate that TiO2-SnO2 nanotubes prepared at 40 V on a Ti-Sn alloy with 1 at.% Sn display an average 1.4 fold increase in areal capacity with excellent cycling stability over more than 400 cycles compared to the pure TiO2 nanotubes fabricated and tested under identical conditions. The thesis is organized as follows: Chapter 1: General introduction, in which the common situation of energy demand, along with the importance of lithium ion batteries in renewable energy systems and portable devices are discussed. A brief introduction to TiO2-based anode in lithium ion batteries and the genera strategies for developing TiO2 anodes are also presented. The scope of this thesis as well as the main tasks are summarized. Chapter 2: The basic concepts of lithium ion batteries with an overview about their main components are discussed, including a brief information about the anode materials and the crystal structure of TiO2 anode. A detailed review for TiO2 nanomaterials for LIBs including the fabrication methods and the electrochemical performance of various TiO2 nanostructures (nanoparticles, nanorods, nanoneedles, nanowires and nanotubes) as well as porousTiO2 nanostructures is presented. The fabrication of TiO2 nanotubes by anodic oxidation, along with the growth mechanism are highlighted. The factors affecting the electrochemical performance of anodically fabricated pure TiO2, TiO2/carbon composites and TiO2-mixed with another metal oxide are reviewed. Chapter 3: In this chapter, the synthesis of TiO2-CoO, (CNTs)@TiO2-CoO and TiO2-SnO2 nanotubes, along with the characterization techniques and the electrochemical basics and concepts are discussed. Chapter 4: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-CoO nanotubes and ternary (CNTs)@TiO2/CoO nanotube composites are presented. Chapter 5: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of ternary (CNTs)@TiO2-CoO nanotube composites are explained. Chapter 6: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-SnO2 nanotubes are presented. Chapter 7: Summarizes the results presented in this work finishing with realistic conclusions, and highlights interesting work for the future. / Um die zur Aufrechterhaltung unserer modernen Lebensweise unabdingbaren erneuerbaren Energiequellen effizient nutzen zu können, werden hochentwickelte wiederaufladbare Batterien dringend benötigt. Lithium-Ionenbatterien gelten aufgrund ihrer hohen Energiedichte (sowohl gravimetrisch als auch volumetrisch), ihrer langen Lebensdauer, moderater Produktionskosten und aufgrund der Möglichkeit, vielfältige Konzepte einfach herstellen zu können, als vielversprechend. Dennoch müssen die Elektrodenmaterialien dringend verbessert werden, um den Ansprüchen an zukünftige hochentwickelte Lithium-Ionenbatterien gerecht zu werden. TiO2-basierte Anoden gelten aufgrund ihrer schnellen Lade- und Entladekinetik, ihres umweltfreundlichen Verhaltens und niedriger Kosten als aussichtsreiche Alternativen zu Kohlenstoffen. Durch die geringe Volumenänderung beim Lithiumeinbau (unter 4%) werden außerdem eine hohe strukturelle Stabilität und erhöhte Sicherheit gewährleistet. Die hauptsächlichen Herausforderungen stellen die niedrige ionische und elektrische Leitfähigkeit (≈ 10−12 S m−1) von TiO2 dar. Zusammengefasst liegt das Ziel der vorliegenden Arbeit in der Entwicklung, Optimierung und Herstellung neuartiger Anodenmaterialien für Lithium-Ionenbatterien unter Verwendung stabiler, verfügbarer und umweltfreundlicher Materialien. In dieser Arbeit wurden sowohl zweiphasiges Ti80Co20 und einphasige Ti-Sn-Legierungen (mit verschiedenen Sn-Gehalten zwischen 1 und 10 at-%) zur Herstellung hochgeordneter, vertikal orientierter eindimensionaler Nanoröhren aus gemischten Übergangsmetalloxiden (TiO2–CoO und TiO2–SnO2) mittels anodischer Oxidation in NH4F-haltigen organischen Elektrolyten genutzt. Dabei wurden Abhängigkeiten der Oberflächenmorphologie und der Stromdichte für die Bildung der Nanoröhren von der Kristallstruktur der zugrundeliegenden Legierung beobachtet. Vielfältige Methoden wie REM, EDXS, TEM, XPS und Ramanspektroskopie wurden genutzt, um die Nanoröhren zu charakterisieren. Die Ergebnisse zeigen, dass gemischte TiO2-CoO und TiO2-SnO2 Nanoröhren in den gewählten Spannungsfenstern erfolgreich gebildet werden konnten. Die so hergestellten Nanoröhren sind amorph und in ihren Dimensionen präzise durch die Wahl der Spannung einstellbar. Eine elektrochemische Beurteilung der Nanoröhren erfolgte durch Tests gegen eine Li/Li+-Elektrode bei veschiedenen Stromdichten. Die Resultate zeigen, dass TiO2-CoO-Nanoröhren, welche bei 60 V hergestellt wurden, die höchsten Flächenkapazitäten von ~ 600 µAh cm–2 (d.h. 315 mAh g–1) bei einer Stromdichte von 10 µA cm–2 aufweisen. Bei höheren Stromdichten zeigen TiO2-CoO-Nanoröhren nahezu verdoppelte Lithiuminterkalation und eine Coulomb-Effizienz von 96 % nach 100 Zyklen, verglichen mit weniger effektiven TiO2–Nanoröhren, welche unter identischen Bedingungen hergestellt wurden. Um die elektrochemischen Eigenschaften der TiO2-CoO-Nanoröhren weiter zu verbessern, wurde ein neuer Komposit aus Kohlenstoff-Nanoröhren und TiO2-CoO-Nanoröhren ((CNT)s@TiO2/CoO) durch eine zweistufige Synthese hergestellt. Die Herstellung beinhaltet zunächst die anodische Bildung geordneter TiO2/CoO-Nanoröhren, ausgehend von einer Ti-Co-Legierung, gefolgt von einem horizontalen Kohlenstoff-Nanoröhren-Wachstum auf dem Oxid mittels einer simplen Sprühpyrolyse. Die einzigartige 1D-Struktur einer solchen hybriden Nanostruktur mit eingebundenen CNTs zeigt deutlich erhöhte Flächenkapazitäten und Belastbarkeiten im Vergleich zu Nanoröhren aus TiO2 und TiO2/CoO-Nanoröhren ohne CNTs, die unter identischen Bedingungen getestet wurden. Die Ergebnisse zeigen, dass die CNTs ein hochleitfähiges Netzwerk bilden, welches die Diffusion von Lithium-Ionen und deren Einbau in die TiO2/CoO-Nanoröhren begünstigt und somit hohe Kapazitäten und reproduzierbare hohe Belastbarkeiten bewirkt. Außerdem zeigen die Resultate, dass TiO2-SnO2 Nanoröhren, welche bei 40 V auf einer Ti-Sn-Legierung mit 1 at.% Sn hergestellt wurden, im Mittel eine 1,4-fache Erhöhung der Flächenkapazität und eine exzellente Zyklenstabilität über mehr als 400 Zyklen, verglichen mit unter identischen Konditionen hergestellten und getesteten TiO2-Nanoröhren, zeigen. Die Arbeit ist wie folgt organisiert: Kapitel 1: Allgemeine Einführung, in der die Energienachfrage und die Bedeutung von Lithium-Ionenbatterien in erneuerbaren Energiesystemen und tragbaren Geräten diskutiert wird. Eine kurze Einleitung zu TiO2-basierten Anoden in Lithium-Ionenbatterien und allgemeine Strategien zur Entwicklung von TiO2-Anoden werden ebenfalls gezeigt. Das Ziel der Arbeit und hauptsächliche Aufgaben werden zusammengefasst. Kapitel 2: Das grundlegende Konzept der Lithium-Ionenbatterie mit einem Überblick über ihre Hauptkomponenten wird diskutiert. Dies beinhaltet auch eine kurze Darstellung der Anodenmaterialien und der Kristallstruktur von TiO2-Anoden. Eine detaillierte Übersicht über TiO2-Nanomaterialien für LIB, welche Herstellungsmethoden und die elektrochemische Performance verschiedener TiO2-Nanostrukturen (Nanopartikel, Nanostäbe, Nanonadeln, Nanodrähte und Nanoröhren) und poröser TiO2-Nanostrukturen beinhaltet, wird gezeigt. Die Bildung von TiO2-Nanoröhren durch anodische Oxidation und der Wachstumsmechanismus werden hervorgehoben. Faktoren, welche die elektrochemische Performance anodisch hergestellter TiO2-Materialien, TiO2/Kohlenstoff-Komposite und TiO2 als Gemisch mit anderen Metalloxiden beeinflussen, werden diskutiert. Kapitel 3: In diesem Kapitel werden die Synthese von TiO2-CoO, (CNTs)@TiO2/CoO und TiO2-SnO2-Nanoröhren, die Charakterisierungsmethoden, elektrochemische Grundlagen und Konzepte diskutiert. Kapitel 4: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der TiO2-CoO- Nanoröhren und der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden gezeigt. Kapitel 5: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden diskutiert. Kapitel 6: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance von TiO2-SnO2-Nanoröhren werden gezeigt. Kapitel 7: Eine Zusammenfassung der Resultate, die in dieser Arbeit gezeigt wurden und Schlussfolgerungen, sowie interessante Ansatzpunkte für zukünftige Arbeiten werden präsentiert.
160

Fabrication and characterization of highly-ordered TiO2-CoO, CNTs@TiO2-CoO and TiO2-SnO2 nanotubes as novel anode materials in lithium ion batteries

Madian, Mahmoud 18 December 2017 (has links)
Developed rechargeable batteries are urgently required to make more efficient use of renewable energy sources to support our modern way of life. Among all battery types, lithium batteries have attracted the most attention because of the high energy density (both gravimetric and volumetric), long cycle life, reasonable production cost and the ease of manufacturing flexible designs. Indeed, electrode material characteristics need to be improved urgently to fulfil the requirements for high performance lithium ion batteries. TiO2-based anodes are highly promising materials for LIBs to replace carbon due to fast lithium insertion/extraction kinetics, environmentally-friendly behavior, low cost and low volume change (less than 4%) therewith, high structural stability as well as improved safety issues are obtained. Nevertheless, the low ionic and electric conductivity (≈ 10−12 S m−1) of TiO2 represent the main challenge. In short, the present work aims at developing, optimization and construction of novel anode materials for lithium ion batteries using materials that are stable, abundant and environmentally friendly. Herein, both of two-phase Ti80Co20 and single phase Ti-Sn alloys (with different Sn contents of 1 to 10 at.%) were used to fabricate highly ordered, vertically oriented and dimension-controlled 1D nanotubes of mixed transition metal oxides (TiO2-CoO and TiO2-SnO2) via a straight-forward anodic oxidation step in organic electrolytes containing NH4F. Surface morphology and current density for the initial nanotube formation are found to be dependent on the crystal structure of the alloy phases. Various characterization tools such as SEM, EDXS, TEM, XPS and Raman spectroscopy were used to characterize the grown nanotube films. The results reveal the successful formation of mixed TiO2-CoO and TiO2-SnO2 nanotubes under the selected voltage ranges. The as-formed nanotubes are amorphous and their dimensions are precisely controlled by tuning the formation voltage. The electrochemical performance of the grown nanotubes was evaluated against a Li/Li+ electrode at different current densities. The results revealed that TiO2-CoO nanotubes prepared at 60 V exhibited the highest areal capacity of ~ 600 µAh cm–2 (i.e. 315 mAh g–1) at a current density of 10 µA cm–2. At higher current densities TiO2-CoO nanotubes showed nearly doubled lithium ion intercalation and a coulombic efficiency of 96 % after 100 cycles compared to lower effective TiO2 nanotubes prepared under identical conditions. To further improve the electrochemical performance of the TiO2-CoO nanotubes, a novel ternary carbon nanotubes (CNTs)@TiO2-CoO nanotubes composite was fabricated by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2-CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2-CoO NTs without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity promoting a strongly favored lithium insertion into the TiO2-CoO NT framework, and hence results in high capacity and extremely reproducible high rate capability. On the other hand, the results demonstrate that TiO2-SnO2 nanotubes prepared at 40 V on a Ti-Sn alloy with 1 at.% Sn display an average 1.4 fold increase in areal capacity with excellent cycling stability over more than 400 cycles compared to the pure TiO2 nanotubes fabricated and tested under identical conditions. The thesis is organized as follows: Chapter 1: General introduction, in which the common situation of energy demand, along with the importance of lithium ion batteries in renewable energy systems and portable devices are discussed. A brief introduction to TiO2-based anode in lithium ion batteries and the genera strategies for developing TiO2 anodes are also presented. The scope of this thesis as well as the main tasks are summarized. Chapter 2: The basic concepts of lithium ion batteries with an overview about their main components are discussed, including a brief information about the anode materials and the crystal structure of TiO2 anode. A detailed review for TiO2 nanomaterials for LIBs including the fabrication methods and the electrochemical performance of various TiO2 nanostructures (nanoparticles, nanorods, nanoneedles, nanowires and nanotubes) as well as porousTiO2 nanostructures is presented. The fabrication of TiO2 nanotubes by anodic oxidation, along with the growth mechanism are highlighted. The factors affecting the electrochemical performance of anodically fabricated pure TiO2, TiO2/carbon composites and TiO2-mixed with another metal oxide are reviewed. Chapter 3: In this chapter, the synthesis of TiO2-CoO, (CNTs)@TiO2-CoO and TiO2-SnO2 nanotubes, along with the characterization techniques and the electrochemical basics and concepts are discussed. Chapter 4: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-CoO nanotubes and ternary (CNTs)@TiO2/CoO nanotube composites are presented. Chapter 5: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of ternary (CNTs)@TiO2-CoO nanotube composites are explained. Chapter 6: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-SnO2 nanotubes are presented. Chapter 7: Summarizes the results presented in this work finishing with realistic conclusions, and highlights interesting work for the future.:1. Introduction and scope of the thesis 15 1.1 Batteries for renewable energy systems and portable devices 15 1.2 TiO2-based anodes in lithium ion batteries 17 1.3 Strategies for developing TiO2 anodes 17 1.4 Scope of work 19 1.5 Tasks 20 2. Basics and literature review 23 2.1 Lithium ion battery system 23 2.2 Anode materials 26 2.3 Crystal structure of TiO2 28 2.4 TiO2 nanomaterials for LIBs 30 2.4.1 TiO2 nanoparticles 30 2.4.2 TiO2 nanoneedles 36 2.4.3 Porous TiO2 nanostructures 39 2.5 TiO2 nanotubes prepared by electrochemical anodization 44 2.6 The mechanism of nanotube formation by anodic oxidation 47 2.7 Anodically fabricated TiO2 nanotubes as anodes in LIBs 49 2.7.1 Anodization electrolyte 50 2.7.2 Amorphous and crystalline TiO2 anodes 50 2.7.3 Influence of the nnealing atmospheres of TiO2 52 2.7.4 Free-standing TiO2 nanotube membranes 54 2.7.5 TiO2 nanotubes/carbon composites 55 2.7.6 Mixed oxide nanotubes 55 3. Materials and methods 61 3.1 Methodology 61 3.1.1 Synthesis of TiO2-CoO and TiO2 nanotubes 61 3.1.2 Synthesis of CNTs@TiO2-CoO NT composite 62 3.1.3 Synthesis of TiO2-SnO2 and TiO2 nanotubes 63 3.2 Characterization techniques 64 3.2.1 X-ray diffraction (XRD 64 3.2.2 Scanning electron microscopy (SEM 65 3.2.3 Energy-dispersive X-ray spectroscopy (EDXS 65 3.2.4 Transmission electron spectroscopy (TEM 66 3.2.5 X-ray photoelectron spectroscopy (XPS 66 3.2.6 Raman spectroscopy 67 3.2.7 Nitrogen sorption isotherms 67 3.2.8 Inductively coupled plasma optical emission spectroscopy (ICP–OES 68 3.3 Basic definitions and electrochemical concepts 68 3.3.1 Faraday’s law 68 3.3.2 Capacity 69 3.3.3 Discharging 69 3.3.4 Charging 69 3.4 Electrochemical techniques 70 3.4.1 Cyclic voltammetry 70 3.4.2 Galvanostatic discharging/charging cycling 70 3.4.3 Electrochemical impedance spectroscopy (EIS 71 3.5 Electrode preparation and measurement conditions 71 3.5.1 TiO2-CoO nanotube electrodes 71 3.5.2 CNTs@TiO2 and CNTs@TiO2/CoO NTs electrodes 72 3.5.3 TiO2-SnO2 nanotube electrodes 73 4. TiO2-CoO as anodes in lithium ion batteries 75 4.1 Introduction 76 4.2 Characterization 76 4.2.1 Phase identification of as cast Ti-Co alloy 76 4.2.2 Time-current density relationship 79 4.2.3 Morphology of the fabricated TiO2-CoO nanotubes 81 4.2.4 Phase identification of the fabricated TiO2-CoO nanotubes 85 4.2.5 Specific surface area of the fabricated TiO2-CoO nanotubes 87 4.2.6 Chemical state in the grown TiO2-CoO nanotubes 89 4.2.7 Raman spectroscopy of TiO2-CoO nanotubes 91 4.3 Electrochemical testing of TiO2-CoO electrodes 92 4.3.1 Cyclic voltammetry 92 4.3.2 Galvanostatic cycling with potential limitation 93 4.3.3 Electrochemical impedance spectroscopy (EIS) 97 4.3.4 Structural stability TiO2-CoO anodes over cycling 98 4.4 Summary of chapter 4 99 5. Ternary CNTs@TiO2-CoO nanotube composites: improved anode materials for LIBs 101 5.1 Introduction 102 5.2 Characterization 103 5.2.1 Morphology and Raman analysis of the fabricated CNTs@TiO2-CoO NTs 103 5.2.2 XRD analysis of the fabricated TiO2-CoO NTs before and after CNTs coating 106 5.3 Electrochemical properties 107 5.3.1 Cyclic voltammetry 107 5.3.2 Galvanostatic cycling with potential limitation 109 5.3.2 Electrochemical impedance spectroscopy (EIS 112 5.4 Summary of chapter 5 114 6. TiO2-SnO2 nanotubes as anodes in lithium ion batteries 115 6.1 Introduction 116 6.2 Characterization 117 6.2.1 ICP-OES analysis of the as-cast Ti-Sn alloys 117 6.2.2 SEM analysis of the as-cast Ti-Sn alloys 117 6.2.3 Phase analysis of the as-cast Ti-Sn alloys 118 6.2.4 Morphology of the fabricated TiO2-SnO2 nanotubes 121 6.2.5 XPS investigation of the grown TiO2-SnO2 nanotubes 127 6.2.6 Raman spectroscopy of TiO2-SnO2 nanotubes 129 6.3 Electrochemical Testing 130 6.3.1 Cyclic voltammetry 130 6.3.2 Galvanostatic cycling with potential limitation132 6.3.3 Specific surface area of the fabricated TiO2-SnO2 nanotubes135 6.3.4 Electrochemical impedance spectroscopy (EIS) and rate performance tests of the fabricated TiO2-SnO2 nanotubes 137 6.4 Summary of chapter 6140 7. Summary and outlook 141 7.1 Summary 141 7.2 Outlook 143 Appendix 145 Bibliography 157 List of figures 183 Glossary 191 Publications 193 Curriculum vitae 195 Acknowledgment 199 Declaration 201 / Um die zur Aufrechterhaltung unserer modernen Lebensweise unabdingbaren erneuerbaren Energiequellen effizient nutzen zu können, werden hochentwickelte wiederaufladbare Batterien dringend benötigt. Lithium-Ionenbatterien gelten aufgrund ihrer hohen Energiedichte (sowohl gravimetrisch als auch volumetrisch), ihrer langen Lebensdauer, moderater Produktionskosten und aufgrund der Möglichkeit, vielfältige Konzepte einfach herstellen zu können, als vielversprechend. Dennoch müssen die Elektrodenmaterialien dringend verbessert werden, um den Ansprüchen an zukünftige hochentwickelte Lithium-Ionenbatterien gerecht zu werden. TiO2-basierte Anoden gelten aufgrund ihrer schnellen Lade- und Entladekinetik, ihres umweltfreundlichen Verhaltens und niedriger Kosten als aussichtsreiche Alternativen zu Kohlenstoffen. Durch die geringe Volumenänderung beim Lithiumeinbau (unter 4%) werden außerdem eine hohe strukturelle Stabilität und erhöhte Sicherheit gewährleistet. Die hauptsächlichen Herausforderungen stellen die niedrige ionische und elektrische Leitfähigkeit (≈ 10−12 S m−1) von TiO2 dar. Zusammengefasst liegt das Ziel der vorliegenden Arbeit in der Entwicklung, Optimierung und Herstellung neuartiger Anodenmaterialien für Lithium-Ionenbatterien unter Verwendung stabiler, verfügbarer und umweltfreundlicher Materialien. In dieser Arbeit wurden sowohl zweiphasiges Ti80Co20 und einphasige Ti-Sn-Legierungen (mit verschiedenen Sn-Gehalten zwischen 1 und 10 at-%) zur Herstellung hochgeordneter, vertikal orientierter eindimensionaler Nanoröhren aus gemischten Übergangsmetalloxiden (TiO2–CoO und TiO2–SnO2) mittels anodischer Oxidation in NH4F-haltigen organischen Elektrolyten genutzt. Dabei wurden Abhängigkeiten der Oberflächenmorphologie und der Stromdichte für die Bildung der Nanoröhren von der Kristallstruktur der zugrundeliegenden Legierung beobachtet. Vielfältige Methoden wie REM, EDXS, TEM, XPS und Ramanspektroskopie wurden genutzt, um die Nanoröhren zu charakterisieren. Die Ergebnisse zeigen, dass gemischte TiO2-CoO und TiO2-SnO2 Nanoröhren in den gewählten Spannungsfenstern erfolgreich gebildet werden konnten. Die so hergestellten Nanoröhren sind amorph und in ihren Dimensionen präzise durch die Wahl der Spannung einstellbar. Eine elektrochemische Beurteilung der Nanoröhren erfolgte durch Tests gegen eine Li/Li+-Elektrode bei veschiedenen Stromdichten. Die Resultate zeigen, dass TiO2-CoO-Nanoröhren, welche bei 60 V hergestellt wurden, die höchsten Flächenkapazitäten von ~ 600 µAh cm–2 (d.h. 315 mAh g–1) bei einer Stromdichte von 10 µA cm–2 aufweisen. Bei höheren Stromdichten zeigen TiO2-CoO-Nanoröhren nahezu verdoppelte Lithiuminterkalation und eine Coulomb-Effizienz von 96 % nach 100 Zyklen, verglichen mit weniger effektiven TiO2–Nanoröhren, welche unter identischen Bedingungen hergestellt wurden. Um die elektrochemischen Eigenschaften der TiO2-CoO-Nanoröhren weiter zu verbessern, wurde ein neuer Komposit aus Kohlenstoff-Nanoröhren und TiO2-CoO-Nanoröhren ((CNT)s@TiO2/CoO) durch eine zweistufige Synthese hergestellt. Die Herstellung beinhaltet zunächst die anodische Bildung geordneter TiO2/CoO-Nanoröhren, ausgehend von einer Ti-Co-Legierung, gefolgt von einem horizontalen Kohlenstoff-Nanoröhren-Wachstum auf dem Oxid mittels einer simplen Sprühpyrolyse. Die einzigartige 1D-Struktur einer solchen hybriden Nanostruktur mit eingebundenen CNTs zeigt deutlich erhöhte Flächenkapazitäten und Belastbarkeiten im Vergleich zu Nanoröhren aus TiO2 und TiO2/CoO-Nanoröhren ohne CNTs, die unter identischen Bedingungen getestet wurden. Die Ergebnisse zeigen, dass die CNTs ein hochleitfähiges Netzwerk bilden, welches die Diffusion von Lithium-Ionen und deren Einbau in die TiO2/CoO-Nanoröhren begünstigt und somit hohe Kapazitäten und reproduzierbare hohe Belastbarkeiten bewirkt. Außerdem zeigen die Resultate, dass TiO2-SnO2 Nanoröhren, welche bei 40 V auf einer Ti-Sn-Legierung mit 1 at.% Sn hergestellt wurden, im Mittel eine 1,4-fache Erhöhung der Flächenkapazität und eine exzellente Zyklenstabilität über mehr als 400 Zyklen, verglichen mit unter identischen Konditionen hergestellten und getesteten TiO2-Nanoröhren, zeigen. Die Arbeit ist wie folgt organisiert: Kapitel 1: Allgemeine Einführung, in der die Energienachfrage und die Bedeutung von Lithium-Ionenbatterien in erneuerbaren Energiesystemen und tragbaren Geräten diskutiert wird. Eine kurze Einleitung zu TiO2-basierten Anoden in Lithium-Ionenbatterien und allgemeine Strategien zur Entwicklung von TiO2-Anoden werden ebenfalls gezeigt. Das Ziel der Arbeit und hauptsächliche Aufgaben werden zusammengefasst. Kapitel 2: Das grundlegende Konzept der Lithium-Ionenbatterie mit einem Überblick über ihre Hauptkomponenten wird diskutiert. Dies beinhaltet auch eine kurze Darstellung der Anodenmaterialien und der Kristallstruktur von TiO2-Anoden. Eine detaillierte Übersicht über TiO2-Nanomaterialien für LIB, welche Herstellungsmethoden und die elektrochemische Performance verschiedener TiO2-Nanostrukturen (Nanopartikel, Nanostäbe, Nanonadeln, Nanodrähte und Nanoröhren) und poröser TiO2-Nanostrukturen beinhaltet, wird gezeigt. Die Bildung von TiO2-Nanoröhren durch anodische Oxidation und der Wachstumsmechanismus werden hervorgehoben. Faktoren, welche die elektrochemische Performance anodisch hergestellter TiO2-Materialien, TiO2/Kohlenstoff-Komposite und TiO2 als Gemisch mit anderen Metalloxiden beeinflussen, werden diskutiert. Kapitel 3: In diesem Kapitel werden die Synthese von TiO2-CoO, (CNTs)@TiO2/CoO und TiO2-SnO2-Nanoröhren, die Charakterisierungsmethoden, elektrochemische Grundlagen und Konzepte diskutiert. Kapitel 4: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der TiO2-CoO- Nanoröhren und der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden gezeigt. Kapitel 5: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden diskutiert. Kapitel 6: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance von TiO2-SnO2-Nanoröhren werden gezeigt. Kapitel 7: Eine Zusammenfassung der Resultate, die in dieser Arbeit gezeigt wurden und Schlussfolgerungen, sowie interessante Ansatzpunkte für zukünftige Arbeiten werden präsentiert.:1. Introduction and scope of the thesis 15 1.1 Batteries for renewable energy systems and portable devices 15 1.2 TiO2-based anodes in lithium ion batteries 17 1.3 Strategies for developing TiO2 anodes 17 1.4 Scope of work 19 1.5 Tasks 20 2. Basics and literature review 23 2.1 Lithium ion battery system 23 2.2 Anode materials 26 2.3 Crystal structure of TiO2 28 2.4 TiO2 nanomaterials for LIBs 30 2.4.1 TiO2 nanoparticles 30 2.4.2 TiO2 nanoneedles 36 2.4.3 Porous TiO2 nanostructures 39 2.5 TiO2 nanotubes prepared by electrochemical anodization 44 2.6 The mechanism of nanotube formation by anodic oxidation 47 2.7 Anodically fabricated TiO2 nanotubes as anodes in LIBs 49 2.7.1 Anodization electrolyte 50 2.7.2 Amorphous and crystalline TiO2 anodes 50 2.7.3 Influence of the nnealing atmospheres of TiO2 52 2.7.4 Free-standing TiO2 nanotube membranes 54 2.7.5 TiO2 nanotubes/carbon composites 55 2.7.6 Mixed oxide nanotubes 55 3. Materials and methods 61 3.1 Methodology 61 3.1.1 Synthesis of TiO2-CoO and TiO2 nanotubes 61 3.1.2 Synthesis of CNTs@TiO2-CoO NT composite 62 3.1.3 Synthesis of TiO2-SnO2 and TiO2 nanotubes 63 3.2 Characterization techniques 64 3.2.1 X-ray diffraction (XRD 64 3.2.2 Scanning electron microscopy (SEM 65 3.2.3 Energy-dispersive X-ray spectroscopy (EDXS 65 3.2.4 Transmission electron spectroscopy (TEM 66 3.2.5 X-ray photoelectron spectroscopy (XPS 66 3.2.6 Raman spectroscopy 67 3.2.7 Nitrogen sorption isotherms 67 3.2.8 Inductively coupled plasma optical emission spectroscopy (ICP–OES 68 3.3 Basic definitions and electrochemical concepts 68 3.3.1 Faraday’s law 68 3.3.2 Capacity 69 3.3.3 Discharging 69 3.3.4 Charging 69 3.4 Electrochemical techniques 70 3.4.1 Cyclic voltammetry 70 3.4.2 Galvanostatic discharging/charging cycling 70 3.4.3 Electrochemical impedance spectroscopy (EIS 71 3.5 Electrode preparation and measurement conditions 71 3.5.1 TiO2-CoO nanotube electrodes 71 3.5.2 CNTs@TiO2 and CNTs@TiO2/CoO NTs electrodes 72 3.5.3 TiO2-SnO2 nanotube electrodes 73 4. TiO2-CoO as anodes in lithium ion batteries 75 4.1 Introduction 76 4.2 Characterization 76 4.2.1 Phase identification of as cast Ti-Co alloy 76 4.2.2 Time-current density relationship 79 4.2.3 Morphology of the fabricated TiO2-CoO nanotubes 81 4.2.4 Phase identification of the fabricated TiO2-CoO nanotubes 85 4.2.5 Specific surface area of the fabricated TiO2-CoO nanotubes 87 4.2.6 Chemical state in the grown TiO2-CoO nanotubes 89 4.2.7 Raman spectroscopy of TiO2-CoO nanotubes 91 4.3 Electrochemical testing of TiO2-CoO electrodes 92 4.3.1 Cyclic voltammetry 92 4.3.2 Galvanostatic cycling with potential limitation 93 4.3.3 Electrochemical impedance spectroscopy (EIS) 97 4.3.4 Structural stability TiO2-CoO anodes over cycling 98 4.4 Summary of chapter 4 99 5. Ternary CNTs@TiO2-CoO nanotube composites: improved anode materials for LIBs 101 5.1 Introduction 102 5.2 Characterization 103 5.2.1 Morphology and Raman analysis of the fabricated CNTs@TiO2-CoO NTs 103 5.2.2 XRD analysis of the fabricated TiO2-CoO NTs before and after CNTs coating 106 5.3 Electrochemical properties 107 5.3.1 Cyclic voltammetry 107 5.3.2 Galvanostatic cycling with potential limitation 109 5.3.2 Electrochemical impedance spectroscopy (EIS 112 5.4 Summary of chapter 5 114 6. TiO2-SnO2 nanotubes as anodes in lithium ion batteries 115 6.1 Introduction 116 6.2 Characterization 117 6.2.1 ICP-OES analysis of the as-cast Ti-Sn alloys 117 6.2.2 SEM analysis of the as-cast Ti-Sn alloys 117 6.2.3 Phase analysis of the as-cast Ti-Sn alloys 118 6.2.4 Morphology of the fabricated TiO2-SnO2 nanotubes 121 6.2.5 XPS investigation of the grown TiO2-SnO2 nanotubes 127 6.2.6 Raman spectroscopy of TiO2-SnO2 nanotubes 129 6.3 Electrochemical Testing 130 6.3.1 Cyclic voltammetry 130 6.3.2 Galvanostatic cycling with potential limitation132 6.3.3 Specific surface area of the fabricated TiO2-SnO2 nanotubes135 6.3.4 Electrochemical impedance spectroscopy (EIS) and rate performance tests of the fabricated TiO2-SnO2 nanotubes 137 6.4 Summary of chapter 6140 7. Summary and outlook 141 7.1 Summary 141 7.2 Outlook 143 Appendix 145 Bibliography 157 List of figures 183 Glossary 191 Publications 193 Curriculum vitae 195 Acknowledgment 199 Declaration 201

Page generated in 0.0639 seconds