Spelling suggestions: "subject:"ecuaciones"" "subject:"actuaciones""
91 |
La integral de Melnikov asociada a un punto de equilibrio hiperbólico de tipo sillaDionisio Armas, Vladimir Alfredo January 2016 (has links)
Presenta el método integral de Melnikov para un sistema de ecuaciones diferenciales ordinarias hamiltoniano, asociado a una perturbación uniparamétrica. Desarrolla un método para probar la existencia o no existencia de puntos homoclínicos transversales. Presenta como aplicación un estudio sobre la existencia y unicidad de una solución de tipo onda viajante para un modelo matemático en la combustión en un medio poroso.
|
92 |
Existencia de solución débil de un problema semilineal elípticoRojas Bazán, Edwar Augusto January 2016 (has links)
Prueba la existencia de la solución débil del problema de Dirichlet semilineal donde Ω es undominio (abierto y conexo) acotado en RN de clase C2 , f : Ω x R R es una función de Carathéodory que satisface ciertas condiciones y h E Lp (Ω). La existencia de la solución débil del problema Dirichlet semilineal se prueba por medio del siguiente resultado: todo funcional definido en un espacio de Banach que tiene mínimo y es Fréchet diferenciable en dicho espacio, posee un punto crítico. En nuestro trabajo construiremos un funcional sobre H10 (Ω) cuyo punto crítico será la solución débil del problema mencionado.
|
93 |
Two problems in nonlinear PDEs : existence in supercritical elliptic equations and symmetry for a hypo-elliptic operatorLópez Ríos, Luis Fernando January 2014 (has links)
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / En este trabajo se aborda el problema de encontrar soluciones regulares para algunas EDPs elípticas e hipo-elípticas no lineales y estudiar sus propiedades cualitativas.
En una primera etapa, se considera la ecuación
$$
-\Delta u = \lambda e^u,
$$
$\lambda > 0$, en un dominio exterior con condición de Dirichlet nula. Un esquema de reducción finito-dimensional permite encontrar infinitas soluciones regulares cuando $\lambda$ es suficientemente pequeño.
En la segunda parte se estudia la existencia de soluciones de la ecuación no local
$$
(-\Delta)^s u = u^{p \pm \epsilon}, u > 0,
$$
en un dominio acotado y suave, con condición de Dirichlet nula; donde $s > 0$ y $p:=(N+2s)/(N-2s) \pm \epsilon$ es cercano al exponente crítico ($\epsilon > 0$ pequeño). Para hallar soluciones, se utiliza un esquema de reducción finito-dimensional en espacios de funciones adecuados, donde el término principal de la función reducida se expresa a partir de las funciones de Green y de Robin del dominio. La existencia de soluciones dependerá de la existencia de puntos críticos de este término principal y de una condición de no degeneración.
Por último, se considera un problema no local en el grupo de Heisenberg $H$. En particular, se buscan propiedades de rigidez para soluciones estables de
$$
(-\Delta_H)^s v = f(v) en H,
$$
$s \in (0,1)$. Como paso fundamental, se prueba una desigualdad del tipo Poincaré en conexión con un problema elíptico degenerado en $R^4_+$. Esta desigualdad se usará en un procedimiento de extensión para dar un criterio bajo el cual los conjuntos de nivel de las soluciones del problema anterior son superficies mínimas en $H$, es decir, tienen $H$-curvatura media nula.
|
94 |
Study of different models of the evolution and motion of cell populationsVilches Ponce, Karina Alejandra January 2014 (has links)
Doctora en Ciencias de la Ingeniería, Mención Modelación Matemática / En el presente trabajo hemos estudiado dos modelos de Ecuaciones diferenciales parciales diferentes aplicados a la biomatemática.
En el primero consideramos un sistema de ecuaciones parabólicas para modelar la quimiotaxis positiva de dos poblaciones unicelulares, las cuales secretan un mismo quimio-atractante. Usando el método de los momentos y un funcional de energía, logramos dar las condiciones óptimas sobre las masas iniciales para la existencia global en tiempo y blow-up de soluciones del sistema.
El segundo modelo está en el marco de la Teoría de las dinámicas adaptativas, la cual modela a diferentes escalas la evolución fenotípica de poblaciones celulares. Hemos consideramos una ecuación de Transporte, para modelar la evolución genética en el tiempo de una población celular, en la cual existe una subpoblación resistente a las condiciones ambientales. Introduciendo un parámetro pequeño y usando una ecuación auxiliar, hemos logrado demostrar que el comportamiento asintótico de las soluciones de la ecuación de Transporte corresponde a una masa de Dirac parametrizada en una función Lipschitz continua.
Hemos usado conceptos clásicos de la teoría de EDP para conseguir estos resultados, los cuales son: Funcional de Energía, Desigualdad de Hardy-Littlewood- Sobolev, Principio del Máximo, Subsolución y Supersolución.
|
95 |
Water-wave equations and free boundary problems: inverse problems and controlLópez Ríos, Juan Carlos January 2015 (has links)
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / En este trabajo se aborda el problema de existencia de algunos tipos de soluciones para las ecuaciones de ondas en el agua así como la relación que existe entre estas soluciones y la forma de un fondo impermeable sobre la que se desliza el fluido.
Empezamos por describir las ecuaciones que modelan el fenómeno físico a partir de las leyes de conservación; el modelo general de las ecuaciones de ondas en el agua, escrito para la restricción de la velocidad potencial a la superficie libre, es
\begin{equation*}
\left\{
\begin{aligned}
&\partial_t\zeta-G(\zeta,b)\psi=0, \\
&\partial_t\psi+g\zeta+\frac{1}{2}|\nabla_X\psi|^2-\frac{1}{2(1+|\nabla_X\zeta|^2)}(G(\zeta,b)\psi+\nabla_X\zeta\cdot\nabla_X\psi)^2=0,
\end{aligned}
\right.
\end{equation*}
donde $G=G(\zeta,b)\psi$ es el operador Dirichlet-Neumann, el cual contiene la información del fondo $b$,
\begin{equation*}
G(\zeta,b)\psi:=-\sqrt{1+|\nabla_X\zeta|^2}\partial_n\phi|_{y=\zeta(t,X)},
\end{equation*}
y
\begin{equation*}
\left\{
\begin{array}{rl}
& \Delta\phi=0, \quad \R\times(b,\zeta), \\
& \phi|_{y=\zeta}=\psi, \quad \partial_n \phi|_{y=b(X)}=0.
\end{array}
\right.
\end{equation*}
Después de describir las condiciones para un teorema de existencia y unicidad de soluciones de las ecuaciones de ondas en el agua, en espacios de Sobolev, nos preguntamos sobre el mínimo de datos necesarios, sobre la superficie libre, para identificar el fondo de manera única. Por la relación que existe entre el operador Dirichlet-Neumann y la velocidad dentro del fluido y utilizando la propiedad de continuación única de las funciones armónicas hemos probado que basta conocer el perfil, la velocidad potencial y la velocidad normal en un instante de tiempo dado y un abierto de $\R$, aún cuando nuestro sistema es de evolución.
En la segunda parte se estudia la existencia de soluciones en forma de salto hidráulico para las ecuaciones estacionarias de ondas en el agua, en dimensión dos y su relación con la velocidad aguas arriba, caracterizada por un parámetro adimensional, llamado el número de Froude, $F$, como consecuencia de la existencia de ramas de bifurcación de la solución trivial para el problema
\begin{equation*}
\mathcal{F}(\eta,F)=\eta+F\widetilde{\psi}_{y^{\prime }}+\frac{\epsilon}{2}(%
\widetilde{\psi}_{x^{\prime }}^2+\widetilde{\psi}_{y^{\prime
}}^2)-\epsilon^2\eta_x\widetilde{\psi}_{x^{\prime }}\widetilde{\psi}%
_{y^{\prime }}+\frac{\epsilon^3}{2}\eta_x^2\widetilde{\psi}_{y^{\prime }}^2;
\end{equation*}
donde
\begin{equation*}
\left\{
\begin{aligned}
&\Delta\widetilde{\psi}=\epsilon G, && (-L,L)\times(0,1), \\
&\widetilde{\psi}_{x'}=0, && x'=-L,L, \\ &\widetilde{\psi}=0, && y'=0, \\
&\widetilde{\psi}=-F\eta, && y'=1.
\end{aligned}
\right.
\end{equation*}
|
96 |
Existencia y unicidad de la solución de la ecuación de Poisson en una región anularRuiz Quiroz, Jonathan January 2019 (has links)
Estudia la ecuación de Poisson, con condiciones de frontera tipo Robin, en una región anular. Demostrando resultados de existencia y unicidad de la solución débil, para dos sub-problemas, utilizando el método de formulación variacional y el Teorema de Lax-Milgram, asociado a espacios de Sobolev. En este análisis también mostramos resultados de regularidad de la solución utilizando series de Fourier y finalmente establecemos una relación entre el flujo de transferencia de calor y la temperatura externa del tubo a través de un operador lineal compacto. / Tesis
|
97 |
Formación de patrones inducidos por un flujo de corte en el modelo de Lotka-Volterra modificadoBalbín Arias, Julio José 28 April 2017 (has links)
En esta tesis se analiza la formación de patrones debido a inestabilidades en un
sistema de reacción - difusión - advección generadas mediante un flujo de corte. Las inestabilidades son similares a la formación de patrones de Turing en un sistema de activador - inhibidor donde una condición necesaria es que la difusividad del inhibidor es mayor que la difusividad del activador. En presencia de un flujo de corte, nosotros encontramos que esta condición no es necesaria. Nosotros analizamos dos modelos para un flujo de corte, uno de ellos consiste en dos capas moviéndose con diferentes velocidades, el otro correspondiente a un flujo de Poiseuille dentro de un tubo bidimensional. La inestabilidad aparece cuando la velocidad promedio del flujo aumenta por encima de cierta velocidad umbral, conduciendo así a los patrones que se mueven según el marco de referencia del flujo. Nuestros resultados, patrones aislados de Turing, pueden ser obtenidos usando una difusividad efectiva por efecto de la dispersión de Taylor. / Tesis
|
98 |
Análisis comparativo de diez ecuaciones dinámicas de hincado de pilotesPortugal Quevedo, Victor Hugo 11 July 2016 (has links)
El presente proyecto de investigación presenta la evaluación detallada de las penetraciones
obtenidas de 10 ecuaciones dinámicas de hincado de pilotes para definir los rangos de
aplicación de cada una de estas. Para ello fue necesario crear un repertorio casuístico amplio,
el cual permitió establecer aquellos parámetros de confiabilidad. Las fórmulas analizadas
fueron las de Hiley, Código de Edificaciones de Canadá, Engineering News Record, Delmag,
Bénabencq, Eytelwein, Goodrich, Gates, Código Unificado de Edificaciones de la Costa del
Pacífico y Janbu, las cuales utilizaron pilotes de madera, acero y concreto, así como 5 tipos
de martillos de hincado para definir las penetraciones a ser evaluadas. / Tesis
|
99 |
Resolución de la ecuación de advección lineal unidimensional por un método de volúmenes finitos compacto de alto ordenChávez Pacheco, Xyoby 12 February 2018 (has links)
Los métodos numéricos de alto orden, necesarios para la discretización espacial,
son una de las áreas más activas del campo de la dinámica de fluidos computacional (CFD en sus siglas en inglés). Dentro de estos, los Métodos de Volúmenes Finitos (MVF) han encontrado difcultades en la implementación de los procesos de reconstrucción. En el presente trabajo presentamos e implementamos en Python un novedoso proceso de reconstrucción compacto de alto orden propuesto por Q. Wang [22]. La novedad yace en que el orden alto es alcanzado usando un estencil compacto; es decir, usando únicamente celdas vecinas. En este proceso se obtiene un conjunto de relaciones que sirven para obtener los coeficientes de los polinomios de reconstrucción sobre los volúmenes de control de interés preservando sus valores promedios y el de sus derivadas. Con estas relaciones obtenemos un sistema lineal sobredeterminado que al ajustarse por mínimos cuadrados resultan en un sistema tridiagonal por bloques para el caso de una ecuación de advección 1D. Para esta ecuación de advección usamos además el Análisis de Fourier para examinar los números de onda modificados por el MVF compacto. La reconstrucción incluye parámetros que son optimizados para mejorar las propiedades de dispersión/disipación. Así mismo, el análisis de estabilidad de von Neumann nos permite estimar el número CFL (Courant Friedrich Levy) máximo para dos métodos de Runge-Kutta. Finalmente, validamos tanto los órdenes de convergencia de la combinación del MVF compacto con dos esquemas de Runge-Kutta como los parámetros óptimos de los esquemas de reconstrucción. / The numerical methods of high order, necessary for spatial discretization, are one of the most active areas of the field of Computational Fluid Dynamics. Within these, Finite Volume Methods (abbreviated as MVF in spanish) have encountered difficulties in the implementation of reconstruction processes. In the present work we present a novel high order compact reconstruction process proposed by
Q. Wang [22], and implemented in Python. The novelty lies in that high order is achieved using a compact stencil, that is, using only neighboring cells. In this process we obtain a set of relations that are constructed to obtain the coefficients of reconstruction polynomials on the control volumes of interest, preserving their average values and that of their derivatives. With these relations we obtain an overdetermined linear system that is adjusted by least squares resulting in a tridiagonal system by blocks in the case of a 1D advection equation. For this advection equation we also use the Fourier Analysis to examine the wave numbers modified by the compact MVF. The reconstruction includes parameters that are optimized to improve the dispersion / dissipation properties. Furthermore, the von Neumann stability analysis allows us to estimate the maximum CFL number for two Runge-Kutta methods. Finally, we validate the convergence orders of the combination of the compact MVF with two schemes of Runge-Kutta and we also validate the optimal parameters of the reconstruction schemes. / Tesis
|
100 |
La estructura de los valores humanos en la Unión Europea. Cómo definen y valoran los jóvenes europeos la democracia a través de su sistema de valoresCarratalá, Liberto 28 January 2016 (has links)
No description available.
|
Page generated in 0.0652 seconds