• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical modeling of amorphous and metal induced crystallized silicon with an effective medium approximation

Theophillus Frederic George Muller January 2009 (has links)
<p>In this thesis we report on the metal-mediated-thermally induced changes of the structural and optical properties of hydrogenated amorphous silicon deposited by hot-wire CVD, where aluminium and nickel were used to induce crystallization. The metal-coated amorphous silicon was subjected to a thermal annealing regime of between 150 and 520&deg / C. The structural measurements, obtained by Raman spectroscopy, show partial crystallization occurring at 350 &deg / C. At the higher annealing temperatures of 450&deg / C and 520&deg / C complete crystallization occurs. Reflection and transmission measurements in the UV-visible range were then used to extract the optical properties. By adopting the effective medium approximation a single optical model could be constructed that could successfully model material that was in different structural phases, irrespective of metal contamination. Changes in the absorption of the material in various stages of transition were confirmed with a directly measured absorption technique, and the modelled absorption closely followed the same trends This study forms part of the larger overall solar cell research project, of which the primary aim is to eventually develop a silicon solar panel that optimises the characteristics for best performance.</p>
2

Optical Modeling of Amorphous and Metal Induced Crystallized Silicon with an Effective Medium Approximation

Muller, Theophillus Frederic George January 2009 (has links)
<p>Hydrogenated amorphous silicon (a-Si:H) is second only to crystalline silicon in volume manufacturing of solar cells due to its attractive characteristics for solar panel manufacturing. These are lower manufacturing costs, and the fact that it can be deposited on any surface, and in any shape even on flexible substrates. The metal induced crystallization of hydrogenated amorphous silicon has been the subject of intense scrutiny in recent years. By combining the technology of hydrogenated amorphous silicon thin films with the superior characteristics of c-Si material, it is hoped that more efficient solar cells can be produced. In this thesis we report on the metal-mediated-thermally induced changes of the structural and optical properties of hydrogenated amorphous silicon deposited by hot-wire CVD, where aluminium and nickel were used to induce crystallization. The metal-coated amorphous silicon was subjected to a thermal annealing regime of between 150 and 520&deg / C. The structural measurements, obtained by Raman spectroscopy, show partial crystallization occurring at 350 &deg / C. At the higher annealing temperatures of 450&deg / C and 520&deg / C complete crystallization occurs. Reflection and transmission measurements in the UV-visible range were then used to extract the optical properties. By adopting the effective medium approximation a single optical model could be constructed that couldsuccessfully model material that was in different structural phases, irrespective of metal contamination. Changes in the absorption of the material in various stages of transition were confirmed with a directly measured absorption technique, and the modelled absorption closely followed the same trends This study forms part of the larger overall solar cell research project, of which the primary aim is to eventually develop a silicon solar panel that optimises the characteristics for best performance.</p>
3

Optical Modeling of Amorphous and Metal Induced Crystallized Silicon with an Effective Medium Approximation

Muller, Theophillus Frederic George January 2009 (has links)
<p>Hydrogenated amorphous silicon (a-Si:H) is second only to crystalline silicon in volume manufacturing of solar cells due to its attractive characteristics for solar panel manufacturing. These are lower manufacturing costs, and the fact that it can be deposited on any surface, and in any shape even on flexible substrates. The metal induced crystallization of hydrogenated amorphous silicon has been the subject of intense scrutiny in recent years. By combining the technology of hydrogenated amorphous silicon thin films with the superior characteristics of c-Si material, it is hoped that more efficient solar cells can be produced. In this thesis we report on the metal-mediated-thermally induced changes of the structural and optical properties of hydrogenated amorphous silicon deposited by hot-wire CVD, where aluminium and nickel were used to induce crystallization. The metal-coated amorphous silicon was subjected to a thermal annealing regime of between 150 and 520&deg / C. The structural measurements, obtained by Raman spectroscopy, show partial crystallization occurring at 350 &deg / C. At the higher annealing temperatures of 450&deg / C and 520&deg / C complete crystallization occurs. Reflection and transmission measurements in the UV-visible range were then used to extract the optical properties. By adopting the effective medium approximation a single optical model could be constructed that couldsuccessfully model material that was in different structural phases, irrespective of metal contamination. Changes in the absorption of the material in various stages of transition were confirmed with a directly measured absorption technique, and the modelled absorption closely followed the same trends This study forms part of the larger overall solar cell research project, of which the primary aim is to eventually develop a silicon solar panel that optimises the characteristics for best performance.</p>
4

Optical modeling of amorphous and metal induced crystallized silicon with an effective medium approximation

Theophillus Frederic George Muller January 2009 (has links)
<p>In this thesis we report on the metal-mediated-thermally induced changes of the structural and optical properties of hydrogenated amorphous silicon deposited by hot-wire CVD, where aluminium and nickel were used to induce crystallization. The metal-coated amorphous silicon was subjected to a thermal annealing regime of between 150 and 520&deg / C. The structural measurements, obtained by Raman spectroscopy, show partial crystallization occurring at 350 &deg / C. At the higher annealing temperatures of 450&deg / C and 520&deg / C complete crystallization occurs. Reflection and transmission measurements in the UV-visible range were then used to extract the optical properties. By adopting the effective medium approximation a single optical model could be constructed that could successfully model material that was in different structural phases, irrespective of metal contamination. Changes in the absorption of the material in various stages of transition were confirmed with a directly measured absorption technique, and the modelled absorption closely followed the same trends This study forms part of the larger overall solar cell research project, of which the primary aim is to eventually develop a silicon solar panel that optimises the characteristics for best performance.</p>
5

Optical modeling of amorphous and metal induced crystallized silicon with an effective medium approximation

Muller, Theophillus Frederic George January 2009 (has links)
Philosophiae Doctor - PhD / In this thesis we report on the metal-mediated-thermally induced changes of the structural and optical properties of hydrogenated amorphous silicon deposited by hot-wire CVD, where aluminium and nickel were used to induce crystallization. The metal-coated amorphous silicon was subjected to a thermal annealing regime of between 150 and 520°C. The structural measurements, obtained by Raman spectroscopy, show partial crystallization occurring at 350 °C. At the higher annealing temperatures of 450°C and 520°C complete crystallization occurs. Reflection and transmission measurements in the UV-visible range were then used to extract the optical properties. By adopting the effective medium approximation a single optical model could be constructed that could successfully model material that was in different structural phases, irrespective of metal contamination. Changes in the absorption of the material in various stages of transition were confirmed with a directly measured absorption technique, and the modelled absorption closely followed the same trends This study forms part of the larger overall solar cell research project, of which the primary aim is to eventually develop a silicon solar panel that optimises the characteristics for best performance. / South Africa
6

Advanced characterisation and optical simulation for the design of solar selective coatings based on carbon:transition metal carbide nanocomposites

Heras, I., Krause, M., Abrasonis, G., Pardo, A., Endrino, J. L., Guillén, E., Escobar-Galindo, R. 07 May 2019 (has links)
Solar selective coatings based on carbon transition metal carbide nanocomposite absorber layers were designed. Pulsed filtered cathodic arc was used for depositing amorphous carbon: metal carbide (a-C:MeC, Me = V, Mo) thin films. Composition and structure of the samples were characterized by ion beam analysis, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The optical properties were determined by ellipsometry and spectrophotometry. Three effective medium approximations (EMA), namely Maxwell-Garnett, Bruggeman, and Bergman, were applied to simulate the optical behaviour of the nanocomposite thin films. Excellent agreement was achieved between simulated and measured reflectance spectra in the entire wavelength range by using the Bergman approach, where in-depth knowledge of the nanocomposite thin film microstructure is included. The reflectance is shown to be a function of the metal carbide volume fraction and its degree of percolation, but not dependent on whether the nanocomposite microstructure is homogeneous or a self-organized multilayer. Solar selective coatings based on an optimized a-C:MeC absorber layer were designed exhibiting a maximum solar absorptance of 96% and a low thermal emittance of ~5 and 15% at 25 and 600ºC, respectively. The results of this study can be considered as predictive design tool for nanomaterial-based optical coatings in general.
7

Modelo de Anderson para duas impurezas : metodo dos campos efetivos / The two-impurity Anderson model : an effective medium approach

Chaves Neto, Antonio Maia de Jesus 11 May 2004 (has links)
Orientadores: Roberto Eugenio Lagos Monaco, Guillermo Gerardo Cabrera Oyarzun / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-04T08:16:12Z (GMT). No. of bitstreams: 1 ChavesNeto_AntonioMaiadeJesus_D.pdf: 1164069 bytes, checksum: a0ef564c6eb492fa671d7430fad4221a (MD5) Previous issue date: 2004 / Resumo: O Hamiltoniano do modelo de Anderson para duas impurezas é estudado via um desacoplamento das funções de Green. Neste caso resulta ser equivalente a aproximação de potencial coerente (CPA) que também, neste caso, coincide com a aproximação Hubbard-I. Consideram-se todos os termos de interação impureza-impureza, tanto os denominados termos de um corpo como os de dois corpos. Os parâmetros associados às interações mencionadas acima incluem: repulsão coulombiana intra e intersítio, hopping direto, hopping correlacionado e o termo de troca (exchange). Todos estes são modelados via orbitais atômicos de Slater, e neste caso se considera o modelo mais simples, o caso não degenerado, ou seja, um nível por impureza. Nesta modelagem, incluindo o metal hospedeiro, os parâmetros independentes resultam ser: a constante de hibridização eletrônica impureza-metal, o número de portadores do metal hospedeiro, o vetor de onda de Fermi associado ao mesmo, a largura dos orbitais atômicos das impurezas e a distância impureza-impureza. Para o caso particular de temperatura nula e no regime denominado de banda semicheia (a metade dos níveis das impurezas são preenchidos considerando os valores esperados) são calculadas as densidades espectrais (densidade de estados) associadas às impurezas, as funções de correlações de spin e carga, suscetibilidades magnéticas e de carga, e a energia de correlação associada as impurezas. Os resultados são discutidos no contexto dos modelos já a existentes na literatura, assim como os casos limites para os quais existem resultados exatos. Os resultados encontrados estão de acordo com os casos limites conhecidos e são interessantes. Mostram também a importância de se considerar todas as interações impureza-impureza, fato negligenciado até agora na literatura / Abstract: We study the two impurity Anderson Model Hamiltonian via a Greens function decoupling scheme. This case turns out to be equivalent to the Coherent Potential Approximation (CPA) and furthermore equivalent to the Hubbard-I approximation. We consider all one and two body impurity-impurity interactions. The parameters associated to the latter include: the intra and intersite Coulomb repulsion, direct (band) hopping, correlated hopping and the exchange term. All of the above are modeled via Slater atomic orbitals, and here we consider the simplest model, non degenerate single impurity level. Including the host metal the resulting independent parameters are: The impurity-metal hybridization constant, the metal host carrier density, the associated Fermi wavevector, the atomic orbital width and the impurity-impurity distance. For the zero temperature case and in the so called band half called regime (impurities levels half called, in the mean) we compute the impurities spectral densities (density of states), spin and charge correlation functions, their respective susceptibilities and the correlation energy. We discuss our results considering the existing literature as well as the exact results for particular limiting cases. Our results agree with the latter and also yield interesting consequences, among others: the importance of including all impurity-impurity interactions, hitherto not considered. / Doutorado / Física da Matéria Condensada / Mestre em Física
8

Infrarotellipsometrische Untersuchungen zur oberflächenverstärkten Infrarotabsorption

Buskühl, Martin 23 June 2003 (has links)
Auf dielektrische Substrate wurden Schichten aus Gold thermisch aufgedampft. Die Schichten wurden neben anderen Methoden wie AFM oder der Messung der Schichtleitfähigkeiten hauptsächlich mit Hilfe der spektroskopischen IR-Ellipsometrie (SIRE) in einem Schichtdickenbereich von 4 bis 60 nm systematisch untersucht. Aus den primär ermittelten ellipsometrischen Parametern tan(Psi) und Delta lassen sich der Brechungsindex n und der Absorptionsindex k bestimmen und auch weitere Größen wie z.B. der elektrische Widerstand bzw. die elektrische Leitfähigkeit errechnen. Die untersuchten Schichten lassen sich anhand der optischen, topographischen und elektrischen Eigenschaften in drei Gruppen einteilen: Dielektrische, aus isolierten Goldinseln bestehende Filme (4 bis 6 nm), Schichten in einem Übergangsbereich (8 bis ca. 16 nm), metallische Schichten (ab ca. 16 nm). Die dielektrischen Goldinselfilme zeigen optische Eigenschaften, die bislang für keine anderen Proben beschrieben worden sind. Der Brechungsindex n ist hoch (4 bis 9 bei 2400/cm) und der Absorptionsindex k klein (0 bis 4 bei 2400/cm). Beide Indizes sind spektral weitgehend konstant. Daß diese Filme dielektrische Eigenschaften besitzen, steht in direktem Widerspruch zur allgemeinen SEIRA-Literatur. Die Inselstruktur der dielektrischen Filme verursacht einen Verstärkungseffekt, der als Oberflächenverstärkte Infrarotabsorption (surface-enhanced infrared absorption - SEIRA) bekannt ist. Es zeigte sich, daß die optischen Konstanten der Filme einen erheblichen Einfluß auf die SEIRA-Verstärkung ausüben. Um Inselfilme mit reproduzierbaren optischen Eigenschaften herstellen zu können, wurde ein lithographisches Verfahren entwickelt. Auf einer geschlossenen, homogenen Goldschicht wurden monodisperse Nanopartikel aus Polystyrol (PS) in einer Monolage deponiert. Die PS-Nanopartikel dienten in einem trockenen Ätzprozeß im Ar-Plasma als lithographische Maske, um die darunterliegende Au-Schicht zu strukturieren. / Thin films were produced on dielectric substrates by thermal evaporation of gold in a high vacuum chamber. These films were investigated systematically in a range between 4 and 60 nm thickness. The method mainly applied was the spectroscopic IR-ellipsometry (SIRE), in addition to other methods like AFM or sheet resistance measurement. The primary results are the ellipsometric parameters tan(Psi) and Delta. They were used to determine the refractive index n and the absorption index k. Electrical parameters can also be calculated. Depending on the optical, topographical and electrical properties the population of different layers can be divided into three parts: dielectric films with isolated gold islands (4 to 6 nm), layers in a transient area (8 to ca. 16 nm), metal films (ca. 16 to 60 nm). The optical properties shown by dielectric gold island films were never before described for other samples. The refractive index n is high (4 to 9 at 2400/cm) and the absorption index small (0 to 4 at 2400/cm). Both indices are nearly constant in the spectral range. Directly in contrast to the SEIRA-literature the island films show dielectric properties. The island structure of the dielectric films gives rise to an enhancement effect called surface-enhanced infrared absorption (SEIRA). It could be shown that the optical constants of the island films have a considerable influence on the enhancement factors. A lithographic method was developed in order to find a way for manufacturing island films with reproducible optical properties. Monodispers polystyrene nanoparticles were deposited in a monolayer on a dense gold layer on a dielectric substrate. The layer of nanoparticles was used as a mask for a dry etch process in a reactive Ar-plasma.
9

Couches nanostructurées par dépôt en incidence oblique : corrélations microstructure et propriétés optiques pour application aux traitements antireflets hautes performances dans le visible étendu et l'infrarouge / Nanostructured layers by oblique incidence deposition : Microstructure andoptical properties correlations applicated to high-performance anti-reflectiontreatments in extended visible and infrared range

Maudet, Florian 15 November 2018 (has links)
Les traitements antireflets (AR) sont très largement utilisés pour améliorer la transmission de systèmes optiques composés de hublots, lentilles, de lames séparatrices,… Dans cette thèse les gammes spectrales visées sont le visible étendu [400-1800nm] et le moyen infrarouge [3,7-4,8µm]. La méthode de nanostructuration par dépôts de films minces utilisant des techniques PVD en incidence oblique (Oblique Angle Deposition) a été choisie car elle permet d’envisager des AR hautes performances sur une large gamme de longueur d’onde, via un procédé industrialisable. L’introduction de porosité via le contrôle des angles de dépôt est utilisée pour nanostructurer l’architecture de chaque couche et de l’empilement ; méthode permettant de modifier et d’optimiser les propriétés optiques des couches constituantes en vue d’un design complet optimal. Une cartographie des indices effectifs accessibles par OAD a été dégagée concernant les trois matériaux déposés (TiO2, SiO2 et Ge). Mais les propriétés optiques de ces couches nanostructurées diffèrent largement de celles des couches denses du fait de la présence d’anisotropie, de gradient d’indice, de diffusion et d’absorption. A partir de caractérisations microstructurales, chimiques et optiques poussées (AFM, MEB, MET, tomographie FIB, tomographie MET, EDX, EELS, spectrophotométrie et ellipsométrie généralisée) un modèle optique analytique plus complexe et couplé à des analyses par éléments finis (FDTD) est présenté. L’ensemble du travail a permis d’élaborer par OAD de simples antireflet bicouches démontrant déjà de hauts niveaux de transmission, supérieurs aux traitements AR existants (interférentiel) ou en développement (Moth-eyes). / Anti-reflective (AR) coatings are widely used to improve the transmission of optical systems composed of window, lenses, separating filters,... In this thesis, the spectral ranges targeted are the extended visible [400-1800nm] and the mid infrared [3.7-4.8µm]. Thin film deposition nanostructuring method using oblique angle deposition (oblique angle deposition) PVD technique was chosen because it allows high performance AR to be considered over a wide wavelength range, by an industrial process. The introduction of porosity with the control of deposition angle is used to nanostructure the architecture of each layer and stack; a method for modifying and optimizing the optical properties of the constituent layers for optimal complete design. A mapping of the effective indices accessible by OAD has been identified for the three materials deposited (TiO2, SiO2 and Ge). However optical properties of these nanostructured layers differ greatly from those of dense layers due to the presence of anisotropy, index gradient, diffusion and absorption. Based on advanced microstructural, chemical and optical characterizations (AFM, SEM, TEM, FIB tomography, TEM tomography, EDX, EELS, spectrophotometry and generalized ellipsometry) a more complex analytical optical model coupled with finite element analyses (FDTD) is presented. All the work has enabled OAD to develop simple two-layer anti-reflective coatings that already demonstrate high levels of transmission, superior to existing (interferential) or work in progress (Moth-eyes) AR treatments.

Page generated in 0.1286 seconds