Spelling suggestions: "subject:"electrical conductivity"" "subject:"electrical onductivity""
281 |
Electrical conductivity from first principlesYuan, Zhenkun 28 March 2022 (has links)
Die zuverlässige Berechnung der elektrischen Leitfähigkeit vieler Materialien aus ersten Prinzipien erfordert die Berücksichtigung der anharmonischen Gitterdynamik. Der ab initio Kubo-Greenwood (KG)-Ansatz, der die KG-Leitfähigkeitsformel und die ab initio-Molekulardynamik kombiniert, scheint vielversprechend zu sein, da er die Anharmonizität des Gitters auf natürliche Weise berücksichtigt. Seine Anwendung auf kristalline Materialien hat jedoch bisher nur wenig Beachtung gefunden. Diese Arbeit beschreibt den KG-Ansatz und stellt eine numerische Implementierung dieses Ansatzes für den harmonischen Kristall Si und den anharmonischen Kristall SnSe vor. Die Fallstudie für Si zeigt erhebliche numerische Schwierigkeiten bei den KG-Berechnungen auf. Insbesondere behindert die erforderliche dichte k-Punkt-Abtastung die Konvergenz in Superzellengröße und macht die Berechnungen nur innerhalb der (semi-)lokalen Dichtefunktionaltheorie (DFT) durchführbar. Außerdem führt die notwendige Einführung eines Verbreiterungsparameters (η) zu einer erheblichen Unsicherheit bei der Bestimmung der Leitfähigkeit. Um diese Probleme zu lösen, werden rechnerisch effiziente Strategien diskutiert, darunter: (i) der "Scherenoperator"-Ansatz zur Korrektur des DFT-Bandlückenproblems; (ii) das "Optimal-η-Schema" zur Wahl eines geeigneten Wertes von η; und (iii) die Finite-Size-Scaling-Methode zur Ableitung der Leitfähigkeit in der thermodynamischen Grenze. Es wird festgestellt, dass die KG-Berechnungen mit diesen Strategien Leitfähigkeiten in angemessener Übereinstimmung mit den Experimenten ergeben. Der Vergleich mit früheren ab initio Boltzmann-Transportberechnungen zeigt jedoch, dass das η-Problem und die Frage der Konvergenz in Superzellengröße weiter verbesserte Konzepte erfordern. Die Fallstudie für SnSe zeigt sehr ähnliche numerische Schwierigkeiten wie im Fall von Si. Es werden Einblicke in die Auswirkung der Anharmonizität auf die Konvergenz der Superzellengröße gegeben. / Reliable first-principles calculation of the electrical conductivity in many materials requires accounting for the anharmonic lattice dynamics. The ab initio Kubo-Greenwood (KG) approach, which combines the KG conductivity formula and ab initio molecular dynamics, appears to be promising because it naturally includes lattice anharmonicity. However, its application to crystalline materials has so far received very little attention. This thesis describes the KG approach and presents a numerical implementation of this approach for the harmonic crystal Si and the anharmonic crystal SnSe. The case study for Si identifies considerable numerical difficulties in the KG calculations. In particular, the dense k-point sampling required hinders supercell-size convergence and makes the calculations only feasible within (semi)local density-functional theory (DFT). Besides, the necessary introduction of a broadening parameter (η) introduces a significant uncertainty in determining the conductivity. To address these issues, computationally efficient strategies are discussed, including: (i) the "scissor operator" approach to correct the DFT band-gap problem; (ii) the "optimal-η scheme" to choose an appropriate value of η; and (iii) the finite-size scaling method to deduce the conductivity in the thermodynamic limit. It is found that with these strategies, the KG calculations yield conductivities in reasonable agreement with experiment. Yet, comparison with previous ab initio Boltzmann transport calculations shows that the η problem and the issue of supercell-size convergence still require improved concepts. The case study for SnSe shows very similar numerical difficulties as in the case of Si. Insights into the effect of anharmonicity on the supercell-size convergence are provided.
|
282 |
Développement de capteurs flexibles à courants de Foucault : applications à la caractérisation des propriétés électromagnétiques des matériaux et à la détection de défauts par imagerie statique / Development of flexible eddy current probes : applications to the characterization of the electromagnetic properties of materials and the detection of flaws by static imagingDelabre, Benjamin 01 December 2016 (has links)
Ce travail de thèse porte sur le développement et l’optimisation de capteurs dans le cadre du contrôle non destructif (CND) par courants de Foucault (CF). Le manuscrit présente plusieurs réalisations de capteurs CF souples gravés sur film Kapton. Un premier volet décrit l’évaluation des paramètres électromagnétiques (conductivité électrique σ et perméabilité magnétique µ) des matériaux typiquement rencontrés en CND par CF. Des méthodes conventionnelles pour estimer σ et µ ont été investiguées et mises en œuvre : il s’agit de la méthode à quatre pointes et du perméamètre. Néanmoins, ces méthodes présentent des difficultés pratiques au regard de l’état de surface (peinture, corrosion,…) et de la géométrie de l’échantillon. Deux capteurs ont donc été conçus : le premier composé d’une bobine d’émission et d’une bobine de réception afin d’évaluer la conductivité des matériaux purement conducteurs, puis le second composé d’un bobinage émetteur et d’une GMR pour évaluer la perméabilité magnétique. La conception des motifs et des résultats expérimentaux sont présentés dans le manuscrit. Le second volet décrit le développement d’un imageur CF flexible statique. L’imageur est un capteur multiélément composé de 576 récepteurs disposés en matrice permettant d’inspecter la surface d’une pièce sans déplacement du capteur par rapport à cette dernière. Le contrôle par l’imageur statique permet d’obtenir une image pixélisée de la surface sous le capteur. L’imageur a été optimisé de manière à détecter un défaut surfacique d’au moins 1 mm de long et d’orientation donnée quel que soit son emplacement vis-à-vis des bobines réceptrices. La conception du capteur et son évaluation expérimentale sont donnés dans le manuscrit. / The work of this thesis focuses on the development and the optimization of probes for non-destructive testing (NDT) by Eddy Currents (EC). The manuscript presents several achievements of flexible EC probes engraved on Kapton film. The first part describes the evaluation of the electromagnetic parameters (electrical conductivity σ and magnetic permeability µ) of materials typically encountered in NDT by EC. Conventional methods to estimate σ and μ have been investigated and implemented: it is the four-point probe and the permeameter. However, these methods present practical difficulties relating to the surface condition (paint, corrosion,…) and the sample geometry. Two probes have therefore been designed: the first is composed of a transmitting and a receiving coil in order to evaluate the conductivity of purely conductive materials, and the second is composed of a transmitter coil and a GMR for evaluate the magnetic permeability. Design patterns and experimental results are presented in the manuscript. The second part describes the development of a flexible static EC imager. The imager is a multielement probe composed of 576 receivers arranged in a matrix allowing to inspect the surface of a structure under test without moving the probe relative to the sample surface. The inspection by the static imager provides a pixelated image of the surface under the probe. The imager has been optimized to detect a surface defect of at least 1 mm long of given orientation regardless of its location relative to the receiver coils. The design of the probe and its experimental evaluation are given in the manuscript.
|
283 |
Aprotické gelové elektrolyty s tetraalkylamonnými solemi / Gel aprotic electrolytes with tetraalkylamonium saltsMichalec, Juraj January 2019 (has links)
The essence of this graduate thesis is to summarize knowledge about the aprotic gel electrolytes. In the graduate thesis, there are explained methods for mensuration electrochemical properties of the aprotic gel electrolytes. In the theoretical part, I focus on the knowledge related to gel polymeric electrolytes, their history, properties, mechanisms and application. In the experimental part, I describe the preparation of the samples of the gel polymeric electrolytes, in which I evaluate their properties, electrical conductivity and potencial window.
|
284 |
Strength of Nano-Cemented Paste Backfill Cured in Iso- and Non-Isothermal ConditionsBenkirane, Othmane 20 January 2023 (has links)
One hundred billion tons of mine solid waste are estimated to be produced worldwide each year. In Canada, the mining and oil industries produce the most solid and semi-solid waste in the country, with more than a billion tons each year. In the earlier days of mining, the initial practices that were used to contain these waste materials consisted of surface storage, river dumping or just simple abandonment, while the more recent practices include dam impoundment and underground waste fill. These methods however can potentially cause environmental hazards and geotechnical problems. Against this context and as a result of stricter environmental regulations, cemented paste backfilling has been developed as a solution. This relatively new technology uses the produced waste tailings to backfill the mine stopes, greatly reducing their environmental impact while offering proper structural support in an efficient manner. However, the cost of cemented paste backfill (CPB) is greatly impacted by the binder content which can constitute up to 75% of its total cost. Additionally, the binder is usually mostly composed of ordinary Portland cement, and its production is highly energy-intensive and generates a large volume of carbon dioxide (CO₂). Indeed, it is estimated that the cement industry accounts for approximately 7% of the global anthropogenic CO₂ emissions, which is expected to increase on an annual basis. All of these factors have compelled the mining industry to seek alternatives for cement to enhance CPB strength, in hopes of reducing its carbon footprint.
Against this context, this study investigates the effect of the addition of nanoparticles, namely nano silica (SiO₂) and nano-calcium carbonate (CaCO₃), on the strength development of CPB cured at a constant room temperature and in non-isothermal conditions. Nanoparticles have been studied and used as chemical admixtures in different cementitious materials with promising results; non-isothermal curing conditions better reflect the in-situ thermal curing conditions of CPB. Thus, numerous different laboratory tests and analyses, including uniaxial compressive strength (UCS), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) tests, thermogravimetric/derivative thermogravimetric (TG/DTG) analyses and electrical conductivity monitoring, have been conducted on CPB samples with or without nanoparticles, and cured at room temperatures or under non-isothermal conditions. The non-isothermal conditions replicate the development of temperature in two different sizes of CPB structures in the field. The results show that CPB that contains nanoparticles show a higher UCS over the entire period of curing in all of the tested conditions. The mechanical performance is further enhanced when tested under higher temperatures in non-isothermal temperature profiles. Most of the strength increase takes place at the early ages (3 days) of the testing. The reason for the improvement in the mechanical strength is linked to accelerated binder hydration and the nucleating and filler effects of the nano-material, which is corroborated by results obtained through microstructural analyses and EC monitoring. The use of natural gold tailings affects the mechanical performance of CPB and the accelerating effect of the nanoparticles due to sulphate attacks. Overall, these promising findings can help to contribute to reducing the carbon footprint of mining activities, and improve the efficiency and cost-effectiveness of mine backfilling processes.
|
285 |
The Influence of Particle Morphology and Heat Treatment on the Microstructural Evolution of Silver Inks for Additively Manufactured RF Applications: A Comparison between Nanoflake and Reactive InksSummers, Jason Masao 05 1900 (has links)
In recent years, advancements in additive manufacturing (AM) technologies have paved the way for 3D-printed flexible hybrid electronics (FHE) and created opportunities for extending these gains to RF applications. However, printed metal interconnects and devices are typically characterized by high porosity and chemical impurities that significantly limit their electrical conductivity and RF performance compared to bulk equivalents. Using direct ink writing (DIW), two silver inks, a nanoflake suspension and a nanoparticle-reactive ink, were investigated to understand the relationship between free interfacial energy, sintering behavior, DC conductivity, and RF loss. The printed silver samples were characterized using scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy to monitor microstructural evolution, grain size and orientation, and chemical purity as a function of heat treatment temperature. Three heat treatments were applied to each ink: the manufacturer's recommendation, 225°C for 30 minutes, and 350°C for 30 minutes. Four-wire structures and coplanar waveguides were printed to compare the DC and RF performance up to 18 GHz, respectively. The results show that ink formulations that facilitate larger grains, high density, and good chemical purity have superior RF performance. A low resistivity of 1.4 times bulk Ag, average of 0.8% greater RF loss factor than evaporated Ag, and a maximum current density of 4.6 x 105 A/cm2 were achieved with printed structures. This work highlights the importance of engineering a high density and high purity microstructure in printed silver components necessary for high-performance printed electronics.
|
286 |
Elucidating self-assembly of semiconducting polymers in the presence of a low molecular weight gelatorLakdusinghe, Madhubhashini 08 August 2023 (has links) (PDF)
Semiconducting polymers with a conjugated backbone are important for energy storage, conversion, and biomedical field applications. The self-assembly process of these polymers in solutions depends on the polymer concentration and quality of the solvent. The electrical properties of thin films obtained from the solution phase depend on the self-assembled process. Thin films of conjugated polymer gels with percolating networks of self-assembled structures display improved electrical conductivities. In this dissertation, we studied the impact of the secondary gel matrix formed by a low molecular weight gelator, on the self-assembly of conjugated polymers, the preservation of assembled structures in dried gel films and their electrical properties.
The study utilized di-Fmoc-l-Lysine gelator, to form a hybrid gel with poly(3-hexylthiophene) in chloroform. The aggregation of P3HT with the progression of gelation was captured using spectroscopic analysis. The aggregates remain in the interstitial spaces of the fibrillar microstructure of gelator. With restricted mobility and due to higher local concentration, the aggregates formed nanofibriliar structures. Microstructural data indicated the nanostructures formed a percolating network in the dried films with good bulk conductivity, despite conductive polymer content of only 20%.
Conjugated polymers require a high boiling point and toxic halogenated solvents to develop gels limiting their applications. By utilizing the amphiphilic nature of the gelator, a thermoreversible gel was obtained in 1-propanol, by combining it with an isoindigo-based DA polymer, engineered with galactose side chains to improve its solubility in eco-friendly solvents. Uniform distribution of aggregated polymer increased the shear moduli of the gels. The electrical conductivity of the dried gels confirmed the existence of percolated aggregates. Additional solvent systems were explored, such as 1-propanol mixed with chloroform. Although P3HT is insoluble in 1-propanol, by adjusting chloroform and 1-propanol ratio, a stable gel was obtained. The poor solvent, 1-propanol, assists the self-assembly of P3HT, improving the electrical performance of dried hybrid gels.
The findings from this study contribute to a better understanding of the self-assembly of conjugated polymers utilizing molecular gels as templates. It provides a framework for obtaining semiconducting gels for applications in the biomedical field, and for large-scale fabrication of optoelectronic devices.
Semiconducting polymers with a conjugated backbone are important for energy storage, conversion, and biomedical field applications. The self-assembly process of these polymers in solutions depends on the polymer concentration and quality of the solvent. The electrical properties of thin films obtained from the solution phase depend on the self-assembled process. Thin films of conjugated polymer gels with percolating networks of self-assembled structures display improved electrical conductivities. In this dissertation, we studied the impact of the secondary gel matrix formed by a low molecular weight gelator, on the self-assembly of conjugated polymers, the preservation of assembled structures in dried gel films and their electrical properties.
The study utilized di-Fmoc-l-Lysine gelator, to form a hybrid gel with poly(3-hexylthiophene) in chloroform. The aggregation of P3HT with the progression of gelation was captured using spectroscopic analysis. The aggregates remain in the interstitial spaces of the fibrillar microstructure of gelator. With restricted mobility and due to higher local concentration, the aggregates formed nanofibriliar structures. Microstructural data indicated the nanostructures formed a percolating network in the dried films with good bulk conductivity, despite conductive polymer content of only 20%.
Conjugated polymers require a high boiling point and toxic halogenated solvents to develop gels limiting their applications. By utilizing the amphiphilic nature of the gelator, a thermoreversible gel was obtained in 1-propanol, by combining it with an isoindigo-based DA polymer, engineered with galactose side chains to improve its solubility in eco-friendly solvents. Uniform distribution of aggregated polymer increased the shear moduli of the gels. The electrical conductivity of the dried gels confirmed the existence of percolated aggregates. Additional solvent systems were explored, such as 1-propanol mixed with chloroform. Although P3HT is insoluble in 1-propanol, by adjusting chloroform and 1-propanol ratio, a stable gel was obtained. The poor solvent, 1-propanol, assists the self-assembly of P3HT, improving the electrical performance of dried hybrid gels.
The findings from this study contribute to a better understanding of the self-assembly of conjugated polymers utilizing molecular gels as templates. It provides a framework for obtaining semiconducting gels for applications in the biomedical field, and for large-scale fabrication of optoelectronic devices.
|
287 |
Two-Dimensional Carbon-Rich Conjugated Frameworks for Electrochemical Energy ApplicationsYu, Minghao, Dong, Renhao, Feng, Xinliang 20 December 2021 (has links)
Following a 15-year-long investigation on graphene, two-dimensional (2D) carbon-rich conjugated frameworks (CCFs) have attracted growing research interest as a new generation of multifunctional materials. Typical 2D CCFs include 2D π-conjugated polymers (also classified as 2D π-conjugated covalent organic frameworks) and 2D π-conjugated metal–organic frameworks, which are characterized by layer-stacked periodic frameworks with high in-plane π-conjugation. These unique structures endow 2D CCFs with regular porosities, large specific surface areas, and superior chemical stability. In addition, 2D CCFs exhibit certain notable properties (e.g., excellent electronic conductivity, designable topologies, and defined catalytic/redox-active sites), which have motivated increasing efforts to explore 2D CCFs for electrochemical energy applications. In this Perspective, the structural features and synthetic principles of 2D CCFs are briefly introduced. Moreover, we discuss recent achievements in 2D CCFs designed for various electrochemical energy conversion (electrocatalysis) and storage (supercapacitors and batteries) applications. Particular emphasis is placed on analyzing the precise structural regulation of 2D CCFs. Finally, we provide an outlook about the future development of synthetic 2D CCFs for electrochemical applications, which concerns novel monomer design, chemical methodology/strategy establishment, and a roadmap toward practical applications.
|
288 |
Irreversible Electroporation Therapy for the Treatment of Spontaneous Tumors in Cancer PatientsNeal II, Robert Evans 04 January 2012 (has links)
Irreversible electroporation is a minimally invasive technique for the non-thermal destruction of cells in a targeted volume of tissue, using brief electric pulses, (~100 µs long) delivered through electrodes placed into or around the targeted region. These electric pulses destabilize the integrity of the cell membrane, resulting in the creation of nanoscale defects that increase a cell’s permeability to exchange with its environment. When the energy of the pulses is high enough, the cell cannot recover from these effects and dies in a non-thermal manner that does not damage neighboring structures, including the extracellular matrix. IRE has been shown to spare the major vasculature, myelin sheaths, and other supporting tissues, permitting its use in proximity to these vital structures. This technique has been proposed to be harnessed as an advantageous non-thermal focal ablation technique for diseased tissues, including tumors.
IRE electric pulses may be delivered through small (ø ≈ 1 mm) needle electrodes, making treatments minimally invasive and easy to apply. There is sub-millimeter demarcation between treated and unaffected cells, which may be correlated with the electric field to which the tissue is exposed, enabling numerical predictions to facilitate treatment planning. Immediate changes in the cellular and tissue structure allow real-time monitoring of affected volumes with imaging techniques such as computed tomography, magnetic resonance imaging, electrical impedance tomography, or ultrasound. The ability to kill tumor cells has been shown to be independent of a functioning immune system, though an immune response seems to be promoted by the ablation. Treatments are unaltered by blood flow and the electric pulses may be administered quickly (~ 5 min).
Recently, safety and case studies using IRE for tumor therapy in animal and human patients have shown promising results. Apart from these new studies, previous work with IRE has involved studies in healthy tissues and small cutaneous experimental tumors. As a result, there remain significant differences that must be considered when translating this ablation technique towards a successful and reliable therapeutic option for patients. The dissertation work presented here is designed to develop irreversible electroporation into a robust, clinically viable treatment modality for targeted regions of diseased tissue, with an emphasis on tumors. This includes examining and creating proving the efficacy for IRE therapy when presented with the many complexities that present themselves in real-world clinical patient therapies, including heterogeneous environments, large and irregular tumor geometries, and dynamic tissue properties resulting from treatment. The impact of these factors were theoretically tested using preliminary in vitro work and numerical modeling to determine the feasibility of IRE therapy in heterogeneous systems. The feasibility of use was validated in vivo with the successful treatment of human mammary carcinomas orthotopically implanted in the mammary fat pad of mice using a simple, single needle electrode design easily translatable to clinical environments.
Following preliminary theoretical and experimental work, this dissertation considers the most effective and accurate treatment planning strategies for developing optimal therapeutic outcomes. It also experimentally characterizes the dynamic changes in tissue properties that result from the effects of IRE therapy using ex vivo porcine renal cortical tissue and incorporates these into a revised treatment planning model. The ability to use the developments from this earlier work is empirically tested in the treatment of a large sarcoma in a canine patient that was surgically unresectable due to its proximity to critical arteries and the sciatic nerve. The tumor was a large and irregular shape, located in a heterogeneous environment. Treatment planning was performed and the therapy carried out, ultimately resulting in the patient being in complete remission for 14 months at the time of composing this work.
The work presented in this dissertation finishes by examining potential supplements to enhance IRE therapy, including the presence of an inherent tumor-specific patient immune response and the addition of adjuvant therapeutic modalities. / Ph. D.
|
289 |
Electrical Conduction Mechanisms in the Disordered Material System P-type Hydrogenated Amorphous SiliconShrestha, Kiran (Engineer) 12 1900 (has links)
The electrical and optical properties of boron doped hydrogenated amorphous silicon thin films (a-Si) were investigated to determine the effect of boron and hydrogen incorporation on carrier transport. The a-Si thin films were grown by plasma enhanced chemical vapor deposition (PECVD) at various boron concentrations, hydrogen dilutions, and at differing growth temperatures. The temperature dependent conductivity generally follows the hopping conduction model. Above a critical temperature, the dominant conduction mechanism is Mott variable range hopping conductivity (M-VRH), where p = ¼, and the carrier hopping depends on energy. However, at lower temperatures, the coulomb interaction between charge carriers becomes important and Efros-Shklosvkii variable hopping (ES-VRH) conduction, where p=1/2, must be included to describe the total conductivity. To correlate changes in electrical conductivity to changes in the local crystalline order, the transverse optical (TO) and transverse acoustic (TA) modes of the Raman spectra were studied to relate changes in short- and mid-range order to the effects of growth temperature, boron, and hydrogen incorporation. With an increase of hydrogen and/or growth temperature, both short and mid-range order improve, whereas the addition of boron results in the degradation of short range order. It is seen that there is a direct correlation between the electrical conductivity and changes in the short and mid-range order resulting from the passivation of defects by hydrogen and the creation of trap states by boron. This work was done under the ARO grant W911NF-10-1-0410, William W. Clark Program Manager. The samples were provided by L-3 Communications.
|
290 |
Etude de l'adsorption des molécules simples sur WO3 : application à la détection des gaz / Study of the adsorption of simple molecules on WO3 by ab initio calculations : application to the detection of gasSaadi, Lama 14 December 2012 (has links)
L'équipe micro-capteurs de l'IM2NP développe des capteursde gaz dont le principe de détection est basé sur la mesure de la variationde la conductance en présence de gaz. Le matériau utilisé comme élémentsensible est l'oxyde de tungstène (WO3) en couches minces. L'objet de cettethèse est donc d'étudier la surface de WO3 dans sa reconstruction c(2x2),obtenue par clivage selon la direction [001]. Cette étude a été également suivied'une étude des lacunes par des calculs ab initio basés sur la DFT, dans lesdeux approximations LDA et GGA. Ensuite, l'dsorption de molécules de gazsimples (O3, COx, NOx) sur des surfaces plus ou moins riches en oxygènea été effectuée. Pour simuler ces systèmes, nous avons fait le choix du codeSIESTA basé sur la DFT et qui présente l'avantage de pouvoir travailler. / The team of micro sensors at IM2NP mainly focuses onthe development of gas sensors based on measurement in conductancevariation in presence of gas. The material used as sensitive element istungsten oxide (WO3) thin film. The objective of present thesis is to studythe surface properties of WO3 in its reconstruction c(2x2), obtained bycleavage along the [001] direction. This study is also followed by a gapanalysis using ab initio calculations based on DFT in both LDA andGGA approximations. Then, the adsorption of molecules of simple gases((O3, COx NOx) for these surfaces (more or less rich in oxygen), is performed.To simulate these systems, we have chosen the SIESTA code based onDFT which is used for the larger number of atoms as compared to other codes.
|
Page generated in 0.0852 seconds