• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 51
  • 25
  • 21
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 289
  • 289
  • 261
  • 62
  • 60
  • 54
  • 53
  • 41
  • 40
  • 38
  • 38
  • 33
  • 32
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Physicochemical Modeling of Electrochemical Impedance in Solid-State Supercapacitors

Peyrow Hedayati, Davood, Singh, Gita, Kucher, Michael, Keene, Tony D., Böhm, Robert 14 February 2025 (has links)
Solid-state supercapacitors (SSCs) consist of porous carbon electrodes and gel-polymer electrolytes and are used in novel energy storage applications. The current study aims to simulate the impedance of SSCs using a clearly defined equivalent circuit (EC) model with the ultimate goal of improving their performance. To this end, a conventional mathematical and a physicochemical model were adapted. The impedance was measured by electrochemical impedance spectroscopy (EIS). An EC consisting of electrical elements was introduced for each modeling approach. The math- ematical model was purely based on a best-fit method and utilized an EC with intuitive elements. In contrast, the physicochemical model was motivated by advanced theories and allowed meaningful associations with properties at the electrode, the electrolyte, and their interface. The physicochemical model showed a higher approximation ability (relative error of 3.7%) due to the interface impedance integration in a more complex circuit design. However, this model required more modeling and opti- mization effort. Moreover, the fitted parameters differed from the analytically calculated ones due to uncertainties in the SSC’s microscale configuration, which need further investigations. Nevertheless, the results show that the proposed physicochemical model is promising in simulating EIS data of SSCs with the additional advantage of utilizing well-reasoned property-based EC elements.
212

Elektrochemická charakterizace nanostrukturovaných povrchů modifikovaných biolátkami s thiolovou vazbou / Electrochemical Characterization of Nanostructured Surfaces Modified by Substancies with Thiol Bound

Urbánková, Kateřina January 2014 (has links)
This master thesis deals with nanotechnology, nanoparticles and nanostructured surfaces, electrochemical methods, especially voltammetry, cyclic voltammetry, electrochemical impedance spectroscopy and contact angle measurement. One part is focused on electrodes primarily nanostructured and modified by substancies with thiol bound. Tutorial for preparation of gold nanostructured electrods is introduced in practical section including SEM photos of electrode surface. Nanostructured and bare gold electrodes were modified by 11-mercaptoundecanoic acid, streptavidin, glycine and biotin and measured by cyclic voltammetry, electrochemical impedance spectroscopy and contact angle.
213

Evaluation of process parameters and membranes for SO2 electrolysis / Andries Johannes Krüger

Krüger, Andries Johannes January 2015 (has links)
The environmentally unsafe by-products (CO2, H2S, NOx and SO2 for example) of using carbon-based fuels for energy generation have paved the way for research on cleaner, renewable and possibly cheaper alternative energy production methods. Hydrogen gas, which is considered as an energy carrier, can be applied in a fuel cell setup for the production of electrical energy. Although various methods of hydrogen production are available, sulphur-based thermochemical processes (such as the Hybrid Sulfur Process (HyS)) are favoured as alternative options for large scale application. The SO2 electrolyser is applied in producing H2 gas and H2SO4 by electrochemically converting SO2 gas and water. This study focused firstly on the evaluation of the performance of the SO2 electrolyser for the production of hydrogen and sulphuric acid, using commercially available PFSA (perfluorosulfonic acid) (Nafion®) as benchmark by evaluating i) various operating parameters (such as cell temperature and membrane thickness), ii) the influence of MEA (membrane electrode assembly) manufacturing parameters (hot pressing time and pressure) and iii) the effect of H2S as a contaminant. Subsequently, the suitability of novel PBI polyaromatic blend membranes was evaluated for application in an SO2 electrolyser. The parametric study revealed that, depending on the desired operating voltage and acid concentration, the optimisation of the operating conditions was critical. An increased cell temperature promoted both cell voltage and acid concentration while the use of thin membranes resulted in a reduced voltage and acid concentration. While an increased catalyst loading resulted in increased cell efficiency, such increase would result in an increase in manufacturing costs. Using electrochemical impedance spectroscopy at the optimised operating conditions, the MEA manufacturing process was optimised with respect to hot press pressure and time, while the effect of selected operating conditions was used to evaluate the charge transfer resistance, ohmic resistance and mass transport limitations. Results showed that the optimal hot pressing conditions were 125 kg.cm-2 and 50 kg.cm-2 for 5 minutes when using 25 and 10 cm2 active areas, respectively. The charge transfer resistance and mass transport were mostly influenced by the hot pressing procedure, while the ohmic resistance varied most with temperature. Applying the SO2 electrolyser in an alternative environment to the HyS thermochemical cycle, the effect of H2S on the SO2 electrolyser anode was investigated for the possible use of SO2 electrolysis to remove SO2 from mining off-gas which could contain H2S. Polarisation curves, EIS and CO stripping were used to evaluate the transient voltage response of various H2S levels (ppm) on cell efficiency. EIS confirmed that the charge transfer resistance increased as the H2S competed with the SO2 for active catalyst sites. Mass transport limitations were observed at high H2S levels (80 ppm) while the ECSA (electrochemical surface area obtained by CO stripping) showed a significant reduction of active catalyst sites due to the presence of H2S. Pure SO2 reduced the effective active area by 89% (which is desired in this case) while the presence of 80 ppm H2S reduced the active catalyst area to 85%. The suitability of PBI-based blend membranes in the SO2 electrolyser was evaluated by using chemical stability tests and electrochemical MEA characterisation. F6PBI was used as the PBI-containing base excess polymer which was blended with either partially fluorinated aromatic polyether (sFS001), poly(2,6-dimethylbromide-1,4-phenylene oxide (PPOBr) or poly(tetrafluorostyrene-4-phosphonic acid) (PWN) in various ratios. Some of the blend membranes also contained a cross-linking agent which was specifically added in an attempt to reduce swelling and promote cross-linking within the polymer matrix. The chemical stability of the blended membranes was confirmed by using weight and swelling changes, TGA-FTIR and TGA-MS. All membranes tested showed low to no chemical degradation when exposed to 80 wt% H2SO4 at 80°C for 120 h. Once the MEA doping procedure had been optimised, electrochemical characterisation of the PBI MEAs, including polarisation curves, voltage stepping and long term operation (> 24 h) was used to evaluate the MEAs. Although performance degradation was observed for the PBI membranes during voltage stepping, it was shown that this characterisation technique could be applied with relative ease, producing valuable insights into MEA stability. Since it is expected that the SO2 electrolyser will be operated under static conditions (cell temperature, pressure and current density) in an industrial setting (HyS cycle or for SO2 removal), a long term study was included. Operating the SO2 electrolyser under constant current density of 0.1 A cm-2 confirmed that PBI-based polyaromatic membranes were suitable, if not preferred, for the SO2 environment, showing stable performance for 170 hours. This work evaluated the performance of commercial materials while further adding insights into both characterisation techniques for chemical stability of polymer materials and electrochemical methods for MEA evaluation to current published literature. In addition to the characterisation techniques this study also provides ample support for the use of PBI-based materials in the SO2 electrolyser. / PhD (Chemistry), North-West University, Potchefstroom Campus, 2015
214

Evaluation of process parameters and membranes for SO2 electrolysis / Andries Johannes Krüger

Krüger, Andries Johannes January 2015 (has links)
The environmentally unsafe by-products (CO2, H2S, NOx and SO2 for example) of using carbon-based fuels for energy generation have paved the way for research on cleaner, renewable and possibly cheaper alternative energy production methods. Hydrogen gas, which is considered as an energy carrier, can be applied in a fuel cell setup for the production of electrical energy. Although various methods of hydrogen production are available, sulphur-based thermochemical processes (such as the Hybrid Sulfur Process (HyS)) are favoured as alternative options for large scale application. The SO2 electrolyser is applied in producing H2 gas and H2SO4 by electrochemically converting SO2 gas and water. This study focused firstly on the evaluation of the performance of the SO2 electrolyser for the production of hydrogen and sulphuric acid, using commercially available PFSA (perfluorosulfonic acid) (Nafion®) as benchmark by evaluating i) various operating parameters (such as cell temperature and membrane thickness), ii) the influence of MEA (membrane electrode assembly) manufacturing parameters (hot pressing time and pressure) and iii) the effect of H2S as a contaminant. Subsequently, the suitability of novel PBI polyaromatic blend membranes was evaluated for application in an SO2 electrolyser. The parametric study revealed that, depending on the desired operating voltage and acid concentration, the optimisation of the operating conditions was critical. An increased cell temperature promoted both cell voltage and acid concentration while the use of thin membranes resulted in a reduced voltage and acid concentration. While an increased catalyst loading resulted in increased cell efficiency, such increase would result in an increase in manufacturing costs. Using electrochemical impedance spectroscopy at the optimised operating conditions, the MEA manufacturing process was optimised with respect to hot press pressure and time, while the effect of selected operating conditions was used to evaluate the charge transfer resistance, ohmic resistance and mass transport limitations. Results showed that the optimal hot pressing conditions were 125 kg.cm-2 and 50 kg.cm-2 for 5 minutes when using 25 and 10 cm2 active areas, respectively. The charge transfer resistance and mass transport were mostly influenced by the hot pressing procedure, while the ohmic resistance varied most with temperature. Applying the SO2 electrolyser in an alternative environment to the HyS thermochemical cycle, the effect of H2S on the SO2 electrolyser anode was investigated for the possible use of SO2 electrolysis to remove SO2 from mining off-gas which could contain H2S. Polarisation curves, EIS and CO stripping were used to evaluate the transient voltage response of various H2S levels (ppm) on cell efficiency. EIS confirmed that the charge transfer resistance increased as the H2S competed with the SO2 for active catalyst sites. Mass transport limitations were observed at high H2S levels (80 ppm) while the ECSA (electrochemical surface area obtained by CO stripping) showed a significant reduction of active catalyst sites due to the presence of H2S. Pure SO2 reduced the effective active area by 89% (which is desired in this case) while the presence of 80 ppm H2S reduced the active catalyst area to 85%. The suitability of PBI-based blend membranes in the SO2 electrolyser was evaluated by using chemical stability tests and electrochemical MEA characterisation. F6PBI was used as the PBI-containing base excess polymer which was blended with either partially fluorinated aromatic polyether (sFS001), poly(2,6-dimethylbromide-1,4-phenylene oxide (PPOBr) or poly(tetrafluorostyrene-4-phosphonic acid) (PWN) in various ratios. Some of the blend membranes also contained a cross-linking agent which was specifically added in an attempt to reduce swelling and promote cross-linking within the polymer matrix. The chemical stability of the blended membranes was confirmed by using weight and swelling changes, TGA-FTIR and TGA-MS. All membranes tested showed low to no chemical degradation when exposed to 80 wt% H2SO4 at 80°C for 120 h. Once the MEA doping procedure had been optimised, electrochemical characterisation of the PBI MEAs, including polarisation curves, voltage stepping and long term operation (> 24 h) was used to evaluate the MEAs. Although performance degradation was observed for the PBI membranes during voltage stepping, it was shown that this characterisation technique could be applied with relative ease, producing valuable insights into MEA stability. Since it is expected that the SO2 electrolyser will be operated under static conditions (cell temperature, pressure and current density) in an industrial setting (HyS cycle or for SO2 removal), a long term study was included. Operating the SO2 electrolyser under constant current density of 0.1 A cm-2 confirmed that PBI-based polyaromatic membranes were suitable, if not preferred, for the SO2 environment, showing stable performance for 170 hours. This work evaluated the performance of commercial materials while further adding insights into both characterisation techniques for chemical stability of polymer materials and electrochemical methods for MEA evaluation to current published literature. In addition to the characterisation techniques this study also provides ample support for the use of PBI-based materials in the SO2 electrolyser. / PhD (Chemistry), North-West University, Potchefstroom Campus, 2015
215

On the Low Frequency Noise in Ion Sensing

Zhang, Da January 2017 (has links)
Ion sensing represents a grand research challenge. It finds a vast variety of applications in, e.g., gas sensing for domestic gases and ion detection in electrolytes for chemical-biological-medical monitoring. Semiconductor genome sequencing exemplifies a revolutionary application of the latter. For such sensing applications, the signal mostly spans in the low frequency regime. Therefore, low-frequency noise (LFN) present in the same frequency domain places a limit on the minimum detectable variation of the sensing signal and constitutes a major research and development objective of ion sensing devices. This thesis focuses on understanding LFN in ion sensing based on both experimental and theoretical studies. The thesis starts with demonstrating a novel device concept, i.e., ion-gated bipolar amplifier (IGBA), aiming at boosting the signal for mitigating the interference by external noise. An IGBA device consists of a modified ion-sensitive field-effect transistors (ISFET) intimately integrated with a bipolar junction transistor as the internal current amplifier with an achieved internal amplification of 70. The efficacy of IGBA in suppressing the external interference is clearly demonstrated by comparing its noise performance to that of the ISFET counterpart. Among the various noise sources of an ISFET, the solid/liquid interfacial noise is poorly studied. A differential microelectrode cell is developed for characterizing this noise component by employing potentiometry and electrochemical impedance spectroscopy. With the cell, the measured noise of the TiN/electrolyte interface is found to be of thermal nature. The interfacial noise is further found to be comparable or larger than that of the state-of-the-art MOSFETs. Therefore, its influence cannot be overlooked for design of future ion sensors. To understand the solid/liquid interfacial noise, an electrochemical impedance model is developed based on the dynamic site-binding reactions of surface hydrogen ions with surface OH groups. The model incorporates both thermodynamic and kinetic properties of the binding reactions. By considering the distributed nature of the reaction energy barriers, the model can interpret the interfacial impedance with a constant-phase-element behavior. Since the model directly correlates the interfacial noise to the properties of the sensing surface, the dependencies of noise on the reaction rate constants and binding site density are systematically investigated.
216

Elektrochemisches Modell zur Beschreibung der Konversion von Aluminium durch anodische Oxidation / Electrochemical model for the conversion of aluminium by anodic oxidation

Sieber, Maximilian 11 January 2017 (has links) (PDF)
Durch elektrochemische Impedanzspektroskopie während der anodischen Oxidation von Aluminium werden in der vorliegenden Arbeit die elektrochemischen Vorgänge während der Oxidbildung quantitativ und zeitabhängig untersucht. Es wird ein Modell vorgeschlagen und diskutiert, welches das Impedanzverhalten während der anodischen Oxidation in Schwefel-, Oxal- und Phosphorsäure über einen großen Bereich von Konzentrationen und Stromdichten abbilden kann. Aus den gewonnenen Ergebnissen werden die kapazitive Wirkung der Sperrschicht am Porengrund, der Eintritt von Ladungsträgern in die Sperrschicht, der Ionentransport durch die Sperrschicht sowie die Oxidbildungsreaktion selbst als wesentlich für das Impedanzverhalten identifiziert. Die ermittelten Zusammenhänge und Konstanten können als Grundlage für Modellvorstellungen dienen, welche das Verhalten elektrischer Prozessgrößen und die Ausbildung der charakteristischen Oxidstruktur bei der anodischen Oxidation von Aluminium verknüpfen. / In the present work, the electrochemical subprocesses of the oxide formation on aluminium by anodic oxidation are investigated using electrochemical impedance spectroscopy. The time dependence of the impedance behaviour and the quantitative relations between the process parameters and the impedance behaviour are considered. A model for the representation of the electrochemical behaviour during the anodic oxidation in sulphuric, oxalic and phosphoric acid is proposed and discussed for a wide range of anion concentrations and current densities. On the basis of the obtained results, the capacitive effect of the barrier layer, the charge transfer resistance of the barrier layer, the ion transport within the barrier layer and the oxide formation are identified as the dominating effects for the impedance behaviour. The established relations can serve as a basis for models, which interrelate both the electrochemical behaviour and the geometrical formation of the characteristic pore structure.
217

Katalytické a adsorpční vlastnosti papainu a jeho derivátů / Catalytic and adsorption properties of papain and its derivatives

Lachmanová, Štěpánka January 2012 (has links)
The aminoacid sequence of papain (EC 3.4.22.2) consists of 212 aminoacids. It has only one free sulfhydryl group, which is located in the active site of the protein. Some organometallic complexes could be bonded only to this free -SH group due to their structure. The artificial metalloproteins synthesised by this way may have different electrochemical properties. In this work, we have studied the electrochemical properties of papain and its derivatives. We compared the ability of papain and its three artificial derivatives to catalyse the hydrogen evolution by the chronopotenciometry. The work was completed by the study of the electrochemical properties of the organometallic complexes of ruthenium, which were used for the artificial metalloprotein preparation. The electrochemical properties of the compounds were never studied before. The process of the hydrogen evolution catalysed by the proteins is held in the adsorbed state of the catalyst. Due to this fact we have also studied the adsorption properties of papain on the substrates with different level of hydrofobicity. (In Czech)
218

Jednoduchý elektrochemický DNA biosenzor pro detekci poškození DNA způsobeného UV zářením / Simple Electrochemical DNA Biosensor for Detection of DNA Damage Caused by UV Radiation

Arustamian, Daria January 2018 (has links)
Ultraviolet (UV) radiation is a common DNA damaging agent. Major DNA lesions, such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone (6-4PPs) photoproducts, are carcinogenic and mutagenic. UV induced DNA damage was investigated using a simple electrochemical DNA biosensor based on an ultra-trace graphite electrode (UTGE) and low molecular weight doble-stranded DNA (dsDNA) from salmon sperm. Biosensor was prepared using adsorption of dsDNA on a surface of the UTGE and then used to detect UV-induced DNA damage. Effects of UV radiation were investigated using a combination of several electrochemical technics: square-wave voltammetry (SWV) for direct monitoring of DNA base oxidation and cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), as non-direct methods, using redox-active indicator [Fe(CN)6]4-/3- . CV and EIS, which allow characterization of electrode surface, were used to optimize preparation of the dsDNA/UTGE biosensor. Prepared dsDNA/UTGE biosensor was exposed to UV radiation using UV lamp with two set wavelengths: UVC of 254 nm and UVA of 365 nm. UVC radiation was used to damage DNA. Relative signal decrease was 50% after 20 minutes of exposure to UVC radiation. UVA radiation was used to compare effects of different types of UV radiation. Obtained...
219

Etude des interfaces de batteries lithium-ion : application aux anodes de conversion / Interfaces for conversion anodes - reliability and efficiency studies

Zhang, Wanjie 02 December 2014 (has links)
Les matériaux dits de conversion à base de Sb et Sn, utilisés comme électrodes, apparaissent comme des composés particulièrement intéressants compte tenu de leur forte capacité théorique. Le matériau TiSnSb a été récemment développé en tant qu’électrode négative pour batteries lithium-ion. Ce matériau est capable d’accueilir, de façon réversible, 6,5 Li par unité formulaire, ce qui correspond à une capacité spécifique de 580 mAh/g. Dans le domaine des batteries lithium-ion, les propriétés de l’interface électrode/électrolyte (« solid electrolyte interphase », SEI), formant une couche de passivation protectrice à la surface des électrodes sont considérées comme essentielles pour les performances au sens large des batteries. Cet aspect représente le sujet majeur traité dans ce travail de thèse. Dans cet optique, nous avons tout d'abord étudié les propriétés électrochimiques de l'électrode TiSnSb sous divers aspects, dont les effets du régime de cyclage, l’influence de la nature des additifs au sein de l’électrolyte ainsi que l’utilisation de liquides ioniques à température ambiante (RTILs). En particulier, un système d'électrolyte à base de RTILs a été développé et optimisé vis-à-vis des performances électrochimiques. Afin de caractériser l’interface électrode-électrolyte, deux techniques de caractérisation majeures ont été utilisées : la Spectroscopie Photoélectronique à Rayonnement X (XPS) et la Spectroscopie d'Impédance électrochimique (EIS). Cette étude a permis de cibler certains paramètres essentiels liant les aspects performances électrochimiques à la nature de l’interface électrode-électrolyte. / In the past decades, the need for portable power has accelerated due to the miniaturization of electronic appliances. It continues to drive research and development of advanced energy systems, especially for lithium ion battery systems. As a consequence, conversion materials for lithium-ion batteries, including Sb and Sn-based compounds, have attracted much intense attention for their high storage capacities. Among conversion materials, TiSnSb has been recently developed as a negative electrode for lithium-ion batteries. This material is able to reversibly take up 6.5 Li per formula unit which corresponds to a specific capacity of 580 mAh/g. In the field of lithium-ion battery research, the solid electrolyte interphase (SEI) as a protective passivation film formed at electrode surface owing to the reduction of the electrolyte components, has been considered as a determinant factor on the performances of lithium-ion battery. Thus it has been a focused topic of many researches. However, little information can be found about the formation and composition of the SEI layer formed on TiSnSb conversion electrode at this time. With the aim to investigate the influences of the SEI layer on the performances of composite TiSnSb electrode, we first studied the electrochemical properties of the electrode from various aspects, including the effects of cycling rates, electrolyte additives, as well as room temperature ionic liquids (RTILs). Especially, a RTILs-based electrolyte system was developed and optimized by evaluating its physicochemical properties to be able to further improve the performances of TiSnSb electrode. In order to characterize the SEI layer formed at electrode surface, we performed X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). This study allowed to target some essential parameters concerning electrochemical performances linked with the nature of the solid electrolyte interphase.*
220

S?ntese e avalia??o anticorrosiva experimental e te?rica de tioureias assim?tricas derivadas da benzil e fenetilamina / Synthesis and experimental and theoretical corrosion evaluation of asymmetric thioureas derived from benzyl and phenethylamine

Rodrigues, Arthur Valbon 04 August 2015 (has links)
Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-03-21T13:39:54Z No. of bitstreams: 1 2015 - Arthur Valbon Rodrigues.pdf: 2339821 bytes, checksum: 867f44f511f5a52dfdcf023619e589a9 (MD5) / Made available in DSpace on 2017-03-21T13:39:54Z (GMT). No. of bitstreams: 1 2015 - Arthur Valbon Rodrigues.pdf: 2339821 bytes, checksum: 867f44f511f5a52dfdcf023619e589a9 (MD5) Previous issue date: 2015-08-04 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / In this work six asymmetric thyourea, derived from benzylamine and phenethylamine, were synthesized by reaction of p-substituted phenyl isothiocyanates in the presence of benzylamine and phenethylamine in toluene as solvent by irradiation in ultrasonic bath, featuring the first report in the literature of the adoption of this method for such molecules. The compounds were obtained in high purity, requiring only one recrystallization from hexane/dichloromethane. Yields were very satisfactory, ranging from 89 to 98%. The compounds were characterized by spectroscopic techniques such as 1H, 13C Nuclear Magnetic Resonance and IR. The synthesized compounds were evaluated by electrochemical potentiodynamic polarization techniques, Electrochemical Impedance Spectroscopy and Linear Polarization Resistance as inhibitors to the corrosion AISI 1020 carbon steel in 1M HCl media. Molecular modeling was used for better visualization of the thiourea structures and to correlate theoretical parameters such as the energy of the symmetrical frontier orbital, Mulliken charge on the sulfur atom and dipole moment with the experimental results for corrosion efficiency. In general, all compounds showed corrosion inhibition efficiency with characteristics of mixed inhibitors with anodic trend, however compounds with nitro substituent showed less efficiency, a fact that may be related to their electrons withdrawing potential, which consequently decreases the electron density at the possible center of chemical adsorption, the sulfur atom. However, compounds which showed no substituent and those that contain electron donating group (OCH3) stood out as inhibitors, highlighting N- (p-methoxyphenyl) -N'-phenetylthiourea, which showed 95% efficiency corrosion inhibition, from Electrochemical Impedance spectroscopy. Thus, the asymmetric thiourea benzyl and phenethyl-substituted, especially methoxy-substituted phenyl, can be considered as promising corrosion inhibitors for carbon steel in acid. / Nesse trabalho de disserta??o foram sintetizadas seis tioureias assim?tricas, derivadas da benzilamina e fenetilamina. A obten??o ocorreu atrav?s da rea??o dos isotiocianatos de fenila p-substituidos na presen?a da benzilamina e fenetilamina em tolueno como solvente atrav?s de irradia??o em banho de ultrassom, sendo o primeiro relato na literatura dessa metodologia para tais mol?culas. Os compostos foram obtidos em alto grau de pureza, sendo necess?ria apenas uma recristaliza??o em hexano/diclorometano. Os rendimentos foram muitos satisfat?rios, variando de 89 ? 98%. Os compostos foram caracterizados por t?cnicas espectrosc?picas como Resson?ncia Magn?tica Nuclear 1H,13C e Infravermelho. Os compostos sintetizados foram avaliados atrav?s das t?cnicas eletroqu?micas de Polariza??o Potenciodin?mica, Espectroscopia de Imped?ncia Eletroqu?mica e Resist?ncia a Polariza??o Linear quanto ? a??o como inibidores de corros?o frente a a?o carbono AISI 1020 em HCl 1 mol.L-1. A Modelagem Molecular foi utilizada para melhor visualiza??o das estruturas das tioureias e correlacionar os par?metros te?ricos como a energia dos orbitais de fronteiras sim?tricos, carga de Mulliken no ?tomo de enxofre e momento dipolar com os resultados experimentais da efici?ncia anticorrosiva. De forma geral, todos apresentaram efici?ncia de inibi??o ? corros?o com caracter?sticas de inibidores mistos com tend?ncia an?dica, por?m os compostos com substituinte nitro apresentaram menor efici?ncia, fato esse que pode estar relacionado ao seu poder retirador de el?trons, que consequentemente, diminui a densidade eletr?nica no poss?vel centro de adsor??o qu?mica, o enxofre. Por?m, os compostos que n?o apresentaram substituintes e os que cont?m grupo doador de el?trons (OCH3) se destacaram como inibidores, dando destaque a N-(p-metoxi-fenil)-N?-fenetiltioureia, que apresentou efici?ncia de 95% de inibi??o da corros?o, pela t?cnica de Espectroscopia de Imped?ncia Eletroqu?mica. Assim, as tioureias assim?tricas benzil e fenetil-substitu?das, especialmente met?xi-fenil substitu?das, podem ser consideradas como promissores agentes inibidores da corros?o para o a?o-carbono em meio ?cido.

Page generated in 0.0587 seconds