• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 5
  • 4
  • Tagged with
  • 36
  • 36
  • 12
  • 11
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Green Charge : Advanced Battery Technologies for a Sustainable Future

Morantes, Gabrielle January 2024 (has links)
In order to combat the greenhouse gas emissions from the transportation sector, battery-powered electric vehicles have risen as an alternative that offers a cleaner and more sustainable mode of transportation that reduces reliance on fossil fuels and decreases carbon footprints. The climate scenario goals set by the International Energy Agency - the Net Zero Emissions, Announced Pledges, and Stated Policies Scenarios - revolve around an increased and expeditious demand for electric vehicles, machines that are intrinsically intertwined with battery production. This study focused on the sustainability of the battery's positive electrode (cathode), a critical, material-intensive component. The three different types of cathodes – Layered, Spinel, and Polyanionic – were studied to determine the basics behind their performances. It then became evident that the key ingredients of a battery cathode are lithium, manganese, nickel, iron, and aluminium. These materials were quantified in terms of their production, reserves, and resource numbers. An analysis on the electric vehicle market as a function of the type of battery chemistries was performed to determine how much the best sold and produced EV models consumed in terms of the different materials and how material intensive they were. The future production demand of the ingredients was studied. For lithium, this involved running two polynomial regressions with a demand and production peak in 2050. For manganese and nickel, the compositions of a hypothetical cathode were iterated to match the climate scenario targets, and thus, determine which compositions would meet them. Throughout the investigation, several aspects were uncovered: the current dominant battery chemistry in the EV market is the iron-rich, polyanionic type. However, to compensate for the lower performance of LFP batteries, manufacturers increased cathode size, nullifying the lithium savings. Regarding lithium production, a polynomial growth with a linear decline post the 2050 peak would seamlessly meet the climate scenario goals without exhausting the planetary resources. Manganese proved more sustainable than nickel, although nickel-rich cathodes remain the preferred choice. Manganese-rich cathodes showed the best material efficiency. Significant challenges remain in achieving sustainable EV batteries. The supply chain is highly centralized, and there are limited alternatives to lithium-reliant chemistries. Bereft from economically feasible lithium production methods, the industry is struggling to diversify its technology whilst treading lightly on fragile supply chains. There is comfort in the fact that the availability of these materials is still profuse - but this prosperity may not last if the projected demand is not congruent with the current state of nickel reserves, and if policy and car manufacturers continue to ignore the inherent chemical and physical limitations of the cathode types they prefer. In conclusion, while progress has been made, ensuring the sustainability of EV batteries requires continued innovation and strategic resource management.
22

Study of the influence of electrode material in the application of electrochemical advanced oxidation processes to removal of pharmaceutic pollutants from water

Sopaj, Flamur 06 December 2013 (has links) (PDF)
Permanent production and use of organic chemicals for many purposes has resulted in their introduction and accumulation in the environment. Depending on their physicochemical properties they can be transported by different ways from the source to very remote regions of the planet. Many organic chemicals are used in agriculture as pesticides for cultures protection or nutrient. Residues of these chemicals can always be found in fields, and under the effect of precipitations they leach and pass in streams and rivers. Pharmaceuticals and personal health care products and other house holding chemicals are continuously introduced in the environment through municipal wastewaters. These substances exhibit, in most of the cases, perturbation effects towards the living organisms, moreover the effect of many of them is not known yet. Despite their concentration in water is low, the exposure of organisms for long periods can lead to negative consequences, but these effects cannot be measured instantly. In order to reduce or avoid the pollution of water with chemicals many water treatment methods has been developed like adsorption of pollutants on adsorbents, membrane filtration, microbiological treatment, chemical oxidation with oxidizing agents and advanced oxidation processes. Most of the methods used in waste water treatment plants (WWTP) do not completely destroy the organic contaminants or they only separate the contaminants from water. Then they have to be deposed somewhere else remaining always a potential source of contamination. Advanced oxidation processes and in particular electrochemical advanced oxidation processes are methods developed later and are proven as more effective as they can completely oxidize the organic matter in water. The subject of this thesis is the use of electro-Fenton, an electrochemical advanced oxidation process for efficient destruction of organic pollutants in aqueous medium. In this method, organic pollutants are eliminated by H hydroxyl radicals (high oxidation power species) which are produced in situ through the Fenton's reagent (H2O2 + Fe2+) itself generated in the solution electrochemically and continuously. In this process, the electrode material is of fundamental importance in order to have an efficient process, so we have studied at large extent the influence of both cathode and anode material in this work. Firstly a systematic study on the oxidation capacity of the process of amoxicillin (AMX) as model pollutant with several anodes materials: BDD, Pt, DSA, PbO2 Carbon felt, Graphite and Carbon fibre was realised. In all cases a stainless steel electrode was used as cathode. The degradation of AMX was followed by HPLC analysis whereas the mineralization efficiency ot the process was measured by total organic carbon analyser (TOC). This revealed that BDD was the most efficient anode for AMX oxidation and DSA was the weakest one. Carbon felt showed a characteristic behaviour; it was very efficient on AMX oxidation but it could not transform AMX to CO2 and H2O. Afterwards four anodes were tested for their influence on electro-Fenton process efficiency namely Pt, BDD, DSA and Carbon felt, the cathode was always carbon felt. Sulfamethazine (SMT) was used as model pollutant. Apparent rate constants have given only moderate values of mineralization for currents lower than 100 mA. Here again the BDD anode was distinguished for its excellent mineralization capacity owing to the additional hydroxyl radicals and other oxidizing species introduced in the system. When electro-Fenton applied good degradation and mineralization results were obtained even with the DSA anode (...)
23

Pile à combustible à céramique conductrice protonique : développement, optimisation des matériaux, réalisation de cellules élémentaires PCFC opérant dans le domaine de température 400-600 °C / Proton-conducting Fuel Cell : Development, Optimisation of materialsElaboration of single cells operating in the 400-600 °C temperature range

Batocchi, Pierre 01 June 2012 (has links)
Ce travail s'inscrit dans le cadre du développement des piles à combustible à céramique conductrice protonique (PCFC) opérant dans le domaine de température 400 – 600 °C et concerne l'optimisation des composants de la cellule élémentaire. L'optimisation du matériau électrolytique consiste à rechercher le meilleur compromis entre stabilité chimique et conductivité élevée. Le matériau BaCe0.9Y0.1O2.95, synthétisé par la voie flash combustion, présente la conductivité protonique la plus élevée (10-2 S.cm-1 à 600 °C) mais réagit fortement avec le CO2. La substitution partielle du cérium par le zirconium (BCZY) et le niobium (BCYN30) a conduit à une amélioration significative de la stabilité chimique tout en conservant une conductivité de l'ordre de 5 × 10-3 S.cm-1 à 600 °C. En ce qui concerne les électrodes, l'enjeu est de développer des matériaux présentant une conductivité électronique élevée, une porosité suffisamment importante et une bonne tenue mécanique. L'approche a consisté en la mise au point de stratégies d'élaboration (synthèse en une étape, utilisation de porogène) permettant le contrôle de la microstructure des matériaux anodiques afin de minimiser les résistances spécifiques surfaciques (ASR). Comme dans le cas des SOFC, les matériaux cathodiques sont conducteurs mixtes ionique-électronique (MIEC). Le développement de cathodes composites MIEC-électrolyte a permis de réduire significativement les ASR. Les tests en pile de cellules élémentaires PCFC ont révélé que les performances dépendaient essentiellement de la nature et de l'épaisseur du matériau électrolytique et de la mise en œuvre de matériaux d'électrode de morphologie contrôlée et architecturée. L'optimisation des assemblages a permis d'accroître sensiblement les performances (156 mW.cm-2 à 600 °C). / Materials components for a Proton Conducting Fuel Cell (PCFC) operating in the 400 – 600 °C temperature range have been optimised. Electrolyte material optimisation involved finding the best compromise between chemical stability and conductivity. BaCe0.9Y0.1O2.95, synthesised by flash combustion, exhibits the highest protonic conductivity (10-2 S.cm-1 at 600 °C) but reacts strongly with CO2. Partial substitution of cerium by zirconium (BCZY) and niobium (BCYN30) led to a significant improvement of the chemical stability without drastic effect on the conductivity (5 × 10-3 S.cm-1 at 600 °C). The aim for the electrodes is to develop materials which exhibit high electronic conductivity, sufficient degree of porosity and good mechanical properties. The approach comprised the development of elaboration strategies (one-step synthesis, use of porogen) that allow the control of microstructure in order to minimize area specific resistances (ASR) at the anode. As in the case of SOFCs, cathodic materials are mixed ionic-electronic conductors (MIEC). Development of composite cathodes MIEC-electrolyte led to a significant reduction of ASR. PCFC single cell tests showed that performance was mostly dependent on electrolyte thickness and composition, and on the characteristics of nanostructured electrodes with controlled architecture and porosity. Optimisation of assemblies led to fuel cells performances of 156 mW.cm-2 at 600 °C.
24

Etudes structurales et électrochimiques des matériaux NaxMn1-yFeyO2 et NaNiO2 en tant qu’électrode positive de batteries Na-ion / Structural and Electrochemical studies of NaxMn1-yFeyO2 and NaNiO2 materials as positive electrode for Na-ion batteries

Mortemard de boisse, Benoit 01 December 2014 (has links)
Ce travail présente les études électrochimiques et structurales menées sur deux systèmes : P2/O3-NaxMn1-yFeyO2 et O’3-NaxNiO2 utilisés en tant que matériaux d’électrode positive pour batteries Na-ion.Concernant le système P2/O3-NaxMn1-yFeyO2, l’étude par diffraction des rayons X menée in situ pendantla charge de batteries a montré de nombreuses transitions structurales. Que leur structure soit de type P2ou O3, les matériaux présentent une phase distordue pour les taux d’intercalation (x) les plus élevés etune phase très peu ordonnée pour les taux d’intercalation les moins élevés. Entre ces deux étatsd’intercalation, les phases de type P2 présentent moins de transitions que les phases de type O3. Celaentraine de meilleures propriétés électrochimiques pour les phases de type P2 (meilleure capacité endécharge, meilleure rétention de capacité…). Les spectroscopies d’absorption des rayons X et Mössbauerdu 57Fe ont montré que les couples redox Mn4+/Mn3+ et Fe4+/Fe3+ sont impliqués lors du cyclage, à bas ethaut potentiel, respectivement.Concernant O’3-NaNiO2, la diffraction des rayons-X menée in situ pendant la charge de batteriesO’3-NaNiO2//Na a montré de nombreuses transitions structurales O’3 ↔ P’3 résultant du glissement desfeuillets MO2. Ces transitions s’accompagnent de mises en ordre Na+ - lacunes dans le matériau. La tailledes grains a montré avoir un intérêt majeur puisqu’elle influe sur le nombre de phases présentessimultanément dans le matériau. Lorsque la batterie est déchargée, la phase limitante Na≈0.8NiO2 estobservée et empêche le retour à O’3-NaNiO2 / This work concerns the electrochemical and structural studies carried out on two systems used aspositive electrode materials for Na-ion batteries: P2/O3-NaxMn1-yFeyO2 and O’3-NaxNiO2. Concerning theP2/O3-NaxMn1-yFeyO2 systems, in situ X-ray diffraction carried out during the charge of the batteriesshowed that both materials undergo several structural transitions. Both the P2 and O3 phases show adistorted phase for the higher intercalation rates (x) and a poorly ordered phase for the lower ones.Between these two states, P2-based materials exhibit less structural transitions than the O3-based ones.This is correlated to the better electrochemical properties the P2-based materials exhibit (better dischargecapacity, better capacity retention…). X-ray absorption and 57Fe Mössbauer spectroscopies showed thatthe Mn4+/Mn3+ and Fe4+/Fe3+ redox couples are active upon cycling, respectively at low and high voltage.Concerning O’3-NaNiO2, in situ X-ray diffraction carried out during the charge of O’3-NaNiO2//Nabatteries showed several structural transition between O’3 and P’3 structures, resulting from slab glidings.These transitions are accompanied by Na+ - vacancies ordering within the “NaO6” slabs. Upon discharge,the material does not come back to its initial state and, instead, the Na≈0.8NiO2 phase represents themaximum intercalated state. The occurrence of this limiting phase prevents O’3-NaNiO2 to be consideredas an interesting material for real Na-ion applications.
25

Studies On Electrode Materials For Lithium-Ion Batteries

Palale, Suresh 02 1900 (has links)
In the early 1970s, research carried out on rechargeable lithium batteries at the Exxon Laboratories in the US established that lithium ions can be intercalated electrochemically into certain layered transition-metal sulphides, the most promising being titanium disulphide. Stemming from this discovery for titanium disulphide, there has been increased interest on lithium-ion intercalation compounds for application in rechargeable batteries. The first rechargeable lithium cell was commercialized in late 1980s by Moli Energy Corporation in Canada. The cell comprised a spirally wound lithium foil as the anode, a separator and MoS2 as the cathode. The cell had a nominal voltage of 1.8 V and an attractive value of specific energy, which was 2 to 3 times greater than either lead-acid or nickel-cadmium cells. However, the battery was withdrawn from the market after safety problems were experienced. This paved way for the discovery of lithium-ion battery. The origin of lithium-ion battery lies in the discovery that Li+-ions can be reversibly intercalated within or deintercalated from the van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. Thus, lithium metal is replaced by carbon as the anode material for rechargeable lithium-ion batteries, and the problems associated with metallic lithium mitigated. Complimentary investigations on intercalation compounds based on transition metals resulted in establishing LiCoO2 and LiNiO2 as promising cathode materials. By employing aforesaid intercalation materials, namely carbon and LiCoO2 respectively, as negative and positive electrodes in a non-aqueous lithium-salt electrolyte, a Li-ion cell with a voltage value of about 3.5 V resulted. These findings led to a novel rechargeable battery technology. Lithium-ion batteries were first introduced commercially in 1991 by the Sony Corporation in Japan. Other Japanese manufacturers soon entered the market, followed closely by American and European companies. The subsequent growth in sales of the batteries was truly phenomenal. Beginning from 1991, the lithium-ion battery market has grown from an R&D interest to sales of over 400 million units in 1999. The global market value for lithium-ion batteries at original equipment manufacturer level was estimated to be $1.86 billion in 2000. By 2006, the market is expected to grow to over 1.2 billion units with value of over $4 billion, while the average unit price is expected to fall. Initially, realizable specific energy of commercial Li-ion battery was only about 120 Wh kg-1. However, with continuing improvements in various cell components, present day Li-ion batteries can provide a specific energy density of about 200 Wh kg-1. With the ‘holy grail’ far to be realized, the current R&D efforts are focussed on furthering the specific energy of lithium-ion batteries in conjunction with safety, environmental compatibility, and cost effectiveness. In the Li-ion cell, all of its electrochemical constituents, namely anode, cathode and electrolyte are central to its performance. This thesis describes some novel studies on cathode and anode materials for lithium-ion Batteries.
26

Electrochemical Investigations Of Sub-Micron Size And Porous Positive Electrode Materials Of Li-Ion Batteries

Sinha, Nupur Nikkan 05 1900 (has links) (PDF)
A Comprehensive review of literature on electrode materials for lithium-ion batteries is provided in Chapter 1 of the thesis. Chapter 2 deals with the studies on porous, sub-micrometer size LiNi1/3Co1/3O2 as a positive electrode material for Li-ion cells synthesized by inverse microemulsion route and polymer template route. The electromechanical characterization studies show that carbon-coated LiNi1/3Co1/3O2 samples exhibit improved rate capability and cycling performance. Furthermore, it is anticipated that porous LiNi1/3Co1/3O2 could be useful for high rates of charge-discharge cycling. Synthesis of sub-micrometer size, porous particles of LiNi1/3Co1/3O2 using a tri-block copolymer as a soft template is carried out. LiNi1/3Co1/3O2 sample prepared at 900ºC exhibits a high rate capability and stable capacity retention of cycling. The electrochemical performance of LiNi1/3Co1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. Chapter 4 involves the synthesis of sub-micrometer size particles of LiMn2O4 in quaternary microemulsion medium. The electrochemical characterization studies provide discharge capacity values of about 100 mAh g-1 at C/5 rate and there is moderate decrease in capacity by increasing the rate of charge-discharge cycling. Studies also include charge-discharge cycling as well as ac impedance studies in temperature range from -10 to 40º C. Chapter 5 reports the synthesis of nano-plate LiFePO4 by polyol route starting from two reactants, namely, FePO42H2O and LiOH.2H2O. The electrodes fabricated out of nano-plate of LiFePO4 exhibit a high electrochemical activity. A stable capacity of about 155 mAh g-1 is measured at 0.2 C over 50 charge-discharge cycles. Mesoporous LiFePO4/C composite with two sizes of pores is prepared for the first time via solution-based polymer template technique. The precursor of LiFePO4/C composite is heated at different temperatures in the range from 600 to 800ºC to study the effect of crystalllinity, porosity and morphology on the electrochemical performance. The compound obtained at 700ºC exhibits a high rate capability and stable capacity retention on cycling with pore size distribution around 4 and 46nm. In Chapter 6, the electrochemical characterization of LiMn2O4 in an aqueous solution of 5 M LiNO3 is reported. A typical cell employing LiMn2O4 as the positive electrode and V2O5 as the negative electrode was assembled and the characterized by charge-discharge cycling in 5 M LiNO3 aqueous electrolyte. Furthermore, it is shown that Li+-ion in LiMn2O4 can be replaced by other divalent ions resulting in the formation of MMn2O4 (M = Ca, Mg, Ba and Sr) in aqueous M(NO3)2 electrolytes by subjecting LiMn2O4 electrodes to cyclic voltametry. Cyclic voltammetry and chronopotentiometry studies suggest that MMn2O4 can undergo reversible redox reaction by intercalation/deintercalation of M2+-ions in aqueous M(NO3)2 electrolytes.
27

Study of the influence of electrode material in the application of electrochemical advanced oxidation processes to removal of pharmaceutic pollutants from water / Étude de l'influence du matériel d'électrode dans l'application des procédés électrochimiques d'oxydation avancée au traitement des polluants pharmaceutiques

Sopaj, Flamur 06 December 2013 (has links)
La production ainsi que l'utilisation massive des produits chimiques pour divers usages, a résulté à leur introduction et accumulation dans l'environnement. Ces produits peuvent se transporter par différentes façons de leur source à des régions très lointaines de la planète, ce qui dépend de leur propriété physico-chimiques. Une quantité et variété importante de composés organiques sont utilisées dans l'agriculture comme pesticides, afin de protéger les cultures et augmenter les rendements. Les résidus de ces produits peuvent toujours se trouver dans les champs, puis sous l'effet des précipitations ils passent par lixiviation dans les fleuves et d'autres system aqueux. Les produits pharmaceutiques et les produits de soins personnels sont introduits dans l'environnement de façon continue par les eaux usés municipales. Ces substances manifestent, dans la plus part des cas, des effets perturbants sur les organismes vivants. Malgré leur concentration faible dans les eaux naturelles, le contact permanent des organismes aquatiques peut avoir des conséquences négatives telles que la modification du comportement sexuel observé chez les poissons d'eau douce. Dans le but de réduire ou éliminer la pollution chimique des eaux des nombreuses méthodes ont vu le jour, telles que: l'adsorption des polluants sur des adsorbants, la filtration membranaire, le traitement microbiologique, l'oxydation chimique et les procédés d'oxydation avancée. La plus part des méthodes utilisées dans les stations d'épuration des eaux ne détruisent pas efficacement les contaminants organiques. L'utilisation des méthodes physiques permet de les séparer de l'eau, ce qui nécessite des opérations supplémentaires pour leur élimination. Au contraire, les procédés d'oxydation avancée et en particulier les procédés électrochimiques d'oxydation avancée (méthodes développées récemment) se montrent plus efficace dans l'élimination des polluants toxiques et non-biodégradables, car ces procédés sont capables à conduire jusqu'à minéralisation totale de la matière organique. Le sujet de cette thèse repose donc sur l'application du procédé électro-Fenton qui est un procédé électrochimique d'oxydation avancée pour la destruction des contaminants organiques dans l'eau. Cette méthode fait appel aux radicaux hydroxyles (espèces très oxydantes et extrêmement réactives) pour l'élimination des polluants récalcitrants, qui sont produit in situ à travers le réactif du Fenton (H2O2 + Fe2+). Ce réactif est généré in situ électrochimiquement. . Dans ce procédé la nature du matériau de l'électrode a une importance cruciale. Ainsi nous avons étudié dans ce travail l'influence du matériel de l'anode et de la cathode sur l'efficacité du procédé électro-Fenton. Dans un premier temps nous avons étudié de manière systématique le pouvoir d'oxydation d'anode comme de différentes matériaux d'anodes tels que : BDD, Pt, DSA, PbO2, Feutre de carbone, Graphite et Fibre de carbone dans l'oxydation de l'antibiotique amoxicilline (AMX). Dans tous les cas une électrode d'acier inox a été utilisée comme cathode. La dégradation de AMX a été suivie par l'analyse CLHP alors que la minéralisation de ses solutions par l'analyseur du carbone organique totale (COT). Il s'est avéré que l'anode BDD a était l'anode la plus puissante pour l'oxydation de l'AMX tandis que l'anode DSA a présenté les performances les plus faibles. D'autre part, le feutre de carbone a présenté un comportement caractéristique; il était très efficace sur l'oxydation de l'AMX mais ces performances en minéralisation étaient médiocres. Dans l'étape suivante, quatre anodes (Pt, BDD, DSA and Feutre de carbone) ont été testées pour élucider leur influence sur l'efficacité du procédé électro-Fenton, en utilisant toujours une cathode de feutre de carbone. L'antibiotique sulfamethazine (SMT) a été choisi comme polluant modèle (...) / Permanent production and use of organic chemicals for many purposes has resulted in their introduction and accumulation in the environment. Depending on their physicochemical properties they can be transported by different ways from the source to very remote regions of the planet. Many organic chemicals are used in agriculture as pesticides for cultures protection or nutrient. Residues of these chemicals can always be found in fields, and under the effect of precipitations they leach and pass in streams and rivers. Pharmaceuticals and personal health care products and other house holding chemicals are continuously introduced in the environment through municipal wastewaters. These substances exhibit, in most of the cases, perturbation effects towards the living organisms, moreover the effect of many of them is not known yet. Despite their concentration in water is low, the exposure of organisms for long periods can lead to negative consequences, but these effects cannot be measured instantly. In order to reduce or avoid the pollution of water with chemicals many water treatment methods has been developed like adsorption of pollutants on adsorbents, membrane filtration, microbiological treatment, chemical oxidation with oxidizing agents and advanced oxidation processes. Most of the methods used in waste water treatment plants (WWTP) do not completely destroy the organic contaminants or they only separate the contaminants from water. Then they have to be deposed somewhere else remaining always a potential source of contamination. Advanced oxidation processes and in particular electrochemical advanced oxidation processes are methods developed later and are proven as more effective as they can completely oxidize the organic matter in water. The subject of this thesis is the use of electro-Fenton, an electrochemical advanced oxidation process for efficient destruction of organic pollutants in aqueous medium. In this method, organic pollutants are eliminated by H hydroxyl radicals (high oxidation power species) which are produced in situ through the Fenton's reagent (H2O2 + Fe2+) itself generated in the solution electrochemically and continuously. In this process, the electrode material is of fundamental importance in order to have an efficient process, so we have studied at large extent the influence of both cathode and anode material in this work. Firstly a systematic study on the oxidation capacity of the process of amoxicillin (AMX) as model pollutant with several anodes materials: BDD, Pt, DSA, PbO2 Carbon felt, Graphite and Carbon fibre was realised. In all cases a stainless steel electrode was used as cathode. The degradation of AMX was followed by HPLC analysis whereas the mineralization efficiency ot the process was measured by total organic carbon analyser (TOC). This revealed that BDD was the most efficient anode for AMX oxidation and DSA was the weakest one. Carbon felt showed a characteristic behaviour; it was very efficient on AMX oxidation but it could not transform AMX to CO2 and H2O. Afterwards four anodes were tested for their influence on electro-Fenton process efficiency namely Pt, BDD, DSA and Carbon felt, the cathode was always carbon felt. Sulfamethazine (SMT) was used as model pollutant. Apparent rate constants have given only moderate values of mineralization for currents lower than 100 mA. Here again the BDD anode was distinguished for its excellent mineralization capacity owing to the additional hydroxyl radicals and other oxidizing species introduced in the system. When electro-Fenton applied good degradation and mineralization results were obtained even with the DSA anode (...)
28

Výzkum elektrochemických a materiálových charakteristik nově vyvinutých vrstevnatých elektrodových materiálů pro lithno-iontové baterie / The research on electrochemical and material characteristics new developed layered electrode materials for lithium-ion batteries

Kratochvíl, Miroslav January 2009 (has links)
The diploma thesis deals with electrode materials for lithium-ions accumulators, concretely layered materials prepared via new methods. The main objective of this work is dealing with new procedures prepare electrodes of newly developed layered electrode materials and subsequently their measure. Another challenge was a theoretical analysis of newly developed layered electrode materials for positive and negative electrodes and their preparation of new procedures. In this work the detailed procedures for the preparation of individual electrodes, electrolytes and other issues associated with these preparations. There were describing batteries of general, primary and secondary lithium cells, fuel cells, Lithium-ion batteries, layered materials forming the electrodes and of course the history these cells. Practical work is focused on separate measurements layered electrode materials prepared by new processes and assessment of results for individual layered materials. In the practical part has been made that the newly prepared layered electrode materials offer higher capacity and voltage.
29

An Initial Exploration of Transition Metal Nitroprussides as Electrode Materials for Sodium-ion Batteries

Enblom, Veronica January 2022 (has links)
Na-ion batteries (NIBs) are expected to revolutionise the battery sector by promising an affordable technology while capitalising on sustainable development. To compete with Li-ion batteries, however, electrode materials with higher capacities need to be developed. Transition metal nitroprussides (TM-NPs), NaxM[Fe(CN)5NO]1-y ·zH2O, is a material class derived from one of the most popular positive electrode materials for NIBs, Prussian blue analogues (PBAs), where one of the cyano ligands have been replaced by an electroactive nitrosyl (NO) ligand. Thus, in theory TM-NPs should be able to reach higher capacities than PBAs and therefore be attractive candidates for high-capacity electrodes. However, if the nitrosyl is redox active in NIBs and how the cycling behaviour may be affected by the M cation is unknown. The focus in this thesis is therefore to explore the charge-discharge behaviour of four different TM-NPs (M=Fe, Ni, Mn, and Cu) in Na-ion half-cell batteries to gain an initial understanding of their electrochemical behaviour and to set up research questions to be pursued in the future. Based on our observations and previous studies, we propose that the nitrosyl is electrochemically active in all four TM-NPs, and that it contributes with a considerable amount of capacity, although with a large voltage hysteresis. It is further concluded that all M cations apart from Ni were redox active, but to varying degrees on charging and discharging. We argue that both the redox and the voltage hysteresis is caused by anisotropic charge transfer within the materials, and that it needs to be understood before commercialisation of TM-NPs can be realised. Though there are challenges to overcome, the many interesting attributes of TM-NPs, including anionic redox, anisotropic charge transfer and structural diversity, makes them promising as a new type of cheap and sustainable electrode material for NIBs.
30

Adhesion of Neurons and Glial Cells with Nanocolumnar TiN Films for Brain-Machine Interfaces

Abend, Alice, Steele, Chelsie, Jahnke, Heinz-Georg, Zink, Mareike 22 January 2024 (has links)
Coupling of cells to biomaterials is a prerequisite for most biomedical applications; e.g., neuroelectrodes can only stimulate brain tissue in vivo if the electric signal is transferred to neurons attached to the electrodes’ surface. Besides, cell survival in vitro also depends on the interaction of cells with the underlying substrate materials; in vitro assays such as multielectrode arrays determine cellular behavior by electrical coupling to the adherent cells. In our study, we investigated the interaction of neurons and glial cells with different electrode materials such as TiN and nanocolumnar TiN surfaces in contrast to gold and ITO substrates. Employing single-cell force spectroscopy, we quantified short-term interaction forces between neuron-like cells (SH-SY5Y cells) and glial cells (U-87 MG cells) for the different materials and contact times. Additionally, results were compared to the spreading dynamics of cells for different culture times as a function of the underlying substrate. The adhesion behavior of glial cells was almost independent of the biomaterial and the maximum growth areas were already seen after one day; however, adhesion dynamics of neurons relied on culture material and time. Neurons spread much better on TiN and nanocolumnar TiN and also formed more neurites after three days in culture. Our designed nanocolumnar TiN offers the possibility for building miniaturized microelectrode arrays for impedance spectroscopy without losing detection sensitivity due to a lowered self-impedance of the electrode. Hence, our results show that this biomaterial promotes adhesion and spreading of neurons and glial cells, which are important for many biomedical applications in vitro and in vivo.

Page generated in 0.0957 seconds