• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 57
  • 50
  • 31
  • 26
  • 23
  • 16
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 437
  • 437
  • 106
  • 57
  • 49
  • 46
  • 44
  • 43
  • 42
  • 42
  • 41
  • 39
  • 38
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Drahtbasierte additive Fertigung des Warmarbeitsstahls X37CrMoV5-1 mittels Elektronenstrahls

Hengst, Philipp 02 August 2023 (has links)
Im Rahmen der vorliegenden Arbeit wurde die drahtbasierte additive Fertigung mittels Elektronstrahls (WEBAM) unter Nutzung einer lateralen Drahtzuführung und des Warmarbeitsstahls X37CrMoV5-1 untersucht. Die Schwerpunkte lagen auf der Analyse des Einflusses der Prozessparameter, der Drahtführungstechniken (schleppend, stechend und seitlich), des Substratwerkstoffes und des Materialübergangs auf die Prozessstabilität sowie die Auftraggeometrie. Das Ziel war die prozesssichere Herstellung von 3D-Geometrien mit bidirektionaler und kontinuierlicher Aufbaustrategie. Die Untersuchungen zeigten, dass die Auftraggeometrie und insbesondere der Materialübergang wesentlich vom Substratwerkstoff abhängig waren. Anhand eines aufgestellten Prozessfensters wurde ein Parametersatz ermittelt, welcher unabhängig von der Drahtführungstechnik nahezu identische Auftraggeometrien erzeugte. Mit Hilfe einer dynamischen Anpassung des Positionsversatzes für die jeweilige Drahtführungstechnik konnten rissfreie Aufbauten mit bidirektionaler, alternierender Aufbaustrategie generiert werden. Diese Aufbauten wurden anschließend hinsichtlich der Mikrostruktur sowie der mechanischen Eigenschaften in Abhängigkeit vom Wärmebehandlungszustand charakterisiert. Die Prozessstabilität und Reproduzierbarkeit konnte anhand von mehreren aufgebauten 3D-Geometrien mit hoher Konturtreu demonstriert werden.
332

INTEGRATED VACUUM TRANSISTORS AND FIELD EMITTER ARRAYS

Shabnam Ghotbi (14034600) 16 June 2023 (has links)
<p>   The arrival of Si transistors and integrated circuit technology more than half a century ago made vacuum electronic technology almost extinct. Today, there are only a few niche applications for vacuum electronics. The main issues with this technology are its high voltage requirement and high-power consumption, difficult and costly fabrication technology, lack of integration capability, and poor reliability characteristics. Some of these issues may be addressed by going to nm scale fabrication that did not exist 60 years ago. Other problems such as reliability and lack of integration capability require alternative solutions to what has been proposed so far. Vacuum is the ultimate conduction media allowing electrons to reach the speed of light without any scattering. Consequently, a vacuum transistor, if designed correctly, can achieve THz frequency performance, while delivering Watt-level powers. No semiconductor technology can compete with vacuum technology to deliver such performance. </p> <p>In this work, novel methods for implementing nanoscale field emitter arrays used in vacuum electronics are proposed. Gated and ungated field emitters are fabricated with self-assembly technology and electron beam lithography. Different anisotropic dry etching recipes are developed to achieve emitters with different sharpness and aspect ratios. Our methods lead to field emitter array operation under low voltages (less than 20 V) and high current densities (around 50 A/cm2) using self-assembly and soft film anode-cathode isolator, and field emitter devices with ~4.5 A/cm2 current density with a turn-on voltage less than 50 V using electron beam lithography and oxide anode-cathode isolator. </p> <p>Making reliable field emitter devices is challenging. Due to Joule heating, ion bombardment, and geometrical variations for each tip in the field emitter arrays, emission current becomes nonuniform across the array. Sharper tips emit at a higher rate and eventually, the heat generated at the tip deforms the tips leading to electron emission at a lower rate. With ultra-low doped emitters, the current of each tip is limited to a few nano-amperes leading to a negligible current fluctuation at the tips. </p> <p>Our fabricated ultra-low doped devices with both self-assembly and electron beam lithography techniques presented constant emission current with almost no change over 24 hours of continuous operation. Such excellent reliability characteristics in vacuum field emitter devices have not been demonstrated to date.</p> <p>The screening effect in close-packed field emitter arrays which occurs by nearby conductive or semiconductive objects is thoroughly investigated and different solutions are proposed to reduce this effect between the emitters. Simulation studies using Sentaurus TCAD, MATLAB, and COMSOL Multiphysics simulators facilitated the design and optimization of gated and ungated field emitter arrays. These studies included the effect of sharpness, the distance between neighboring emitters, enclosing the emitters by a Si block around the emitters as well as anode-cathode separation on the electrical characterization of field emitter arrays. </p> <p>The optimum location and operating voltages which lead to a maximum gate control and emitter current density are also studied for gated field emitter arrays. Instead of individually gating each field emitter, it was found that controlling the emission of a sub-array with a metallic all-around gate is more efficient and it leads to higher current densities. Guided by simulations, gated field emitter arrays with 5×5 and 2×2 sub-arrays are developed. In terms of strength of the grid control (transconductance), turn-on voltage, maximum emission current, and field intensification factor, the device with the 2×2 sub-array was superior to the one with the 5×5 sub-array. The VFET with 5×5 sub-arrays achieved a higher current density due to a larger number of field emitters packed per active emission area. Finally, plans to further improve the technology and transitioning into the fabrication of vacuum integrated circuits are discussed.</p> <p>  </p>
333

[pt] ANÁLISE POR FTIR DA RADIÓLISE E DO SPUTTERING DE BASES NITROGENADAS IRRADIADAS POR ELÉTRONS DE (KE)V SOB CONDIÇÕES ASTROFÍSICAS / [en] RADIOLYSIS AND SPUTTERING FTIR ANALYSIS OF NITROGENOUS BASES IRRADIATED BY (KE)V ELECTRONS UNDER ASTROPHYSICAL CONDITIONS

VINICIUS PESSANHA REGO 21 June 2022 (has links)
[pt] A origem da vida ainda é uma questão aberta na ciência. Dentre as possíveis respostas, a panspermia é uma alternativa amplamente discutida. Ao investigar esta possibilidade, o desenvolvimento de modelos que descrevam o comportamento de moléculas interagindo com raios cósmicos são de extrema importância. Para esta finalidade, filmes finos de diferentes espessuras de bases nitrogenadas - adenina, citosina, guanina e timina - foram depositados sobre pastilhas de ZnSe para serem irradiados por elétrons de 1,0 e 0,50 keV. A adenina foi irradiada sob diferentes temperaturas. Após cada irradiação parcial, a espectroscopia óptica na região do infravermelho (FTIR) foi usada para monitorar as modificações nas características espectrais. Observou-se que a seção de choque de destruição das bases nitrogenadas irradiadas é aproximadamente 10 elevado a -16 cm quadrados e, para a adenina, este valor aumenta para temperaturas baixas. Com base nos dados obtidos de glicina, o tempo de meia vida de adenina pura processada por vento solar a 1 UA estimado é de cerca de 40 dias. A seção de choque varia muito pouco quando as espessuras dos filmes são aumentadas de 10 para 30 nm, e os valores encontrados para as quatro bases seguem a ordem: citosina, adenina, guanina e timina, respectivamente, da menos para a mais radioresistente. Para melhor compreender o significado dos resultados experimentais, previsões foram obtidas com o algoritmo CASINO-estendido e apresentam bom acordo se radiólise e sputtering são considerados. / [en] The origin of life is still an open question in science. Among the possible answers, panspermia is a widely discussed alternative. To investigate this possibility, the development of models that describe the behavior of molecules interacting with cosmic rays is extremely important. For this purpose, thin films of different thicknesses of nitrogenous bases - adenine, cytosine, guanine, and thymine - were deposited on ZnSe disks to be irradiated by 1.0 and 0.50 keV electrons. Adenine was irradiated under different temperatures. After each partial irradiation, optical spectroscopy in the infrared region (FTIR) was used to monitor changes in spectral characteristics. It is observed that the destruction cross sections of irradiated nitrogenous bases are approximately 10 raised to -16 square cm and, for adenine, this value increases at low temperatures. In comparition to glycine data, the estimated half-life of pure adenine when processed at 1 au by the solar wind is about 100 days. The cross section varies very little when the film thicknesses are increased from 10 to 30 nm, and the bases follow the order: cytosine, adenine, guanine and thymine, respectively, from the least to the most radioresistant. To better analyze the experimental data, they are compared with predictions obtained with the CASINOextended algorithm. They are in good agreement if radiolysis and sputtering are considered.
334

[en] ANALYSIS OF THE IMPACT OF THE USE OF TELEVISION MARKETING CAMPAIGNS ON SUPERMARKET SALES / [pt] RADIÓLISE DA ALANINA POR ELÉTRONS DE 100 A 1000 EV ANALISADA POR ESPECTROSCOPIA NO INFRAVERMELHO

MATHEUS SEIXAS RODRIGUES 07 March 2022 (has links)
[pt] Compostos orgânicos observados em corpos do espaço interplanetário são de particular importância para revelar os processos físico-químicos que podem estar relacionados com a origem da vida. Aminoácidos, como a alanina, devem ter desempenhado um papel crucial neste processo, uma vez que são componentes básicos das proteínas, constituintes essenciais de todos os organismos vivos. Informações sobre a radioresistência deles são essenciais para o desenvolvimento de modelos sobre como as moléculas prebióticas são formadas ou resistem a viagens no Sistema Solar e além. Em particular, a seção de choque de destruição por impacto de elétrons precisa ser conhecida e o processo da radiólise, entendido. O presente estudo visa determinar a dependência da seção de choque de destruição da alanina por impacto de feixe de elétrons com energias na faixa de 100 eV até 1 keV para alvos com espessura entre 10 nm e 1000 nm. A degradação da amostra pelo feixe de elétrons foi monitorada por espectroscopia no infravermelho (FTIR). Além disso, são apresentadas simulações feitas pelo método Monte Carlo para irradiações na alanina com feixes de elétrons de 250 eV até 5 keV. Infere-se pelas simulações do programa CASINO que os parâmetros considerados variam em função de E(1,7). Resultados experimentais indicam que a seção de choque de destruição efetiva diminui exponencialmente com a espessura da amostra até atingir um nível de saturação. A seção de choque de destruição efetiva aumenta com a energia incidente segundo a lei de potência E (1,76). Determinou-se os valores dos A-values para as bandas estudadas, através do método de espectroscopia no infravermelho, e são da ordem de 10(-18) cm(2)/molec. Encontrou-se um acordo qualitativo moderado entre os resultados da modelagem com os dados experimentais. Conclui-se que ele será sensivelmente melhorado se for acrescentado o processo de sputtering à radiólise analisada. / [en] Organic compounds observed in interplanetary space bodies are of particular relevance for revealing the physical-chemical processes that may be related to life s origin. Amino acids, such as alanine, are supposed to have played a crucial role in this process since they are basic components of proteins, essential constituents of all living organisms. Information about their radioresistance is essential for the development of models on how prebiotics molecules are formed or resist travelling in the Solar System and beyond; in particular the destruction cross-section by electron impact needs to be known and the radiolysis process needs to be understood. The current study aims to determine the dependence of alanine destruction cross-section on electron beam impact with energies in the range of 100 eV - 1 keV for thickness targets range of 10 nm - 1000 nm. The sample s degradation by the electron beam was monitored by infrared spectroscopy (FTIR). Moreover, simulations performed by Monte Carlo method for alanine irradiation with electron beam energies from 250 eV up to 5 keV are presented. It is inferred by the CASINO simulations, that the considered parameters vary as a function of E(1.7). Experimental results indicate that the effective destruction cross section decreases exponentially with the sample s thickness until it reaches a saturation level. The effective destruction cross section increases with incident energy according to the power law of E (1.76). The bands A-values were determined by infrared spectroscopy method and are in the order of 10(-18) cm(2)/molec. A moderate qualitative agreement was found between modeling results and the experimental data. It is concluded that it will be significantly improved if the sputtering process is added to the analyzed radiolysis.
335

[pt] EFEITOS INDUZIDOS PELA IRRADIAÇÃO COM ÍONS DE MEV E ELÉTRONS DE KEV EM MATERIAIS PREBIÓTICOS: RADIÓLISE E SPUTTERING / [en] MEV ION AND KEV ELECTRON IRRADIATION EFFECTS ON PREBIOTIC MATERIALS: RADIOLYSIS AND SPUTTERING

CINTIA APARECIDA PIRES DA COSTA 06 December 2021 (has links)
[pt] A presença de aminoácidos em cometas e meteoritos levanta questões sobre como estes foram formados em ambientes cósmicos, bem como de que maneira eles foram capazes de sobreviver no espaço sideral; radioresistência é uma informação essencial para prever meias-vidas e avançar os estudos sobre origens da vida. O principal objetivo deste trabalho é determinar, por meio de espectroscopia no infravermelho, as seções de choque de destruição de aminoácidos comuns expostos à radiação de íons e elétrons energéticos. As forças de banda vibracionais (A-values) e a dependência do espectro infravermelho com a temperatura da amostra (10 – 400 K) foram analisadas. Seções de choque de destruição aparente (sigma)d(ap) e rendimentos de sputtering (Y0) para glicina, valina e fenilalanina irradiadas por H+, He+ e Nq+ íons de MeV e elétrons de keV foram medidos. Encontrou-se: i) uma dependência aproximadamente linear entre a seção de choque de destruição aparente e o poder de freamento eletrônico (Se): (sigma)d(ap) = (sigma)d + Y0 /N0 = a Sen (onde n aproximadamente 1) para projéteis de MeV e para amostras à temperatura ambiente; ii) resultados preliminares de σdap para feixes de nitrogênio multi-carregados; e iii) resultados de seção de choque de destruição de valina irradiada por elétrons de keV, bem como sua dependência com a energia de incidência do feixe, e com a espessura e temperatura da amostra. Como contribuição teórica, o modelo CASINO-estendido foi desenvolvido visando descrever a evolução da degradação de matéria orgânica por projéteis carregados, particularmente por feixes de elétrons. Comparadas aos resultados experimentais, as previsões do modelo subestimam o dano causado pelo feixe de elétrons, evidência de que efeitos de sputtering e provavelmente algumas características da amostra (como a estrutura cristalográfica) devem ser incluídos. Como implicações astrofísicas, meias-vidas para valina e fenilalanina irradiadas por raios cósmicos são estimadas em aproximadamente 10 milhões de anos no meio interestelar; da glicina, se irradiadas por vento solar a uma unidade astronômica do Sol, é aproximadamente 3 dias. Visando simular materiais astrofísicos realistas bombardeados por elétrons de keV, a meia-vida de valina envolta por gelos de água e CO2 e depositada sobre silicato é também prevista. / [en] The presence of amino acids in comets and meteorites raises questions about how they have been formed in cosmic environments, as well as how long they can survive in outer space; radioresistance is essential information to predict half-lives and make advances on the origins of life studies. The main objective of the current work is to determine, via infrared spectrometry, destruction cross sections of common amino acids exposed to energetic ion and electron radiation. Before sample irradiation, valine vibrational band strengths and their infrared spectral dependence on temperature (10 – 400 K) were analyzed. Apparent destruction cross sections (sigma)d(ap) and sputtering yields (Y0) for glycine, valine and phenylalanine, irradiated by MeV H+, He+ and Nq+ ions and keV electrons, were measured. From experimental data: i) an approximately linear dependence between the apparent destruction cross section and the electronic stopping power (Se) is found: (sigma)d(ap) = (sigma)d + Y0 /N0 = a Sen (where n approximately 1) for MeV projectiles and for samples at room temperature; ii) (sigma)d(ap) preliminary results relative to multi-charged nitrogen ion beams are discussed; and iii) destruction cross section of valine irradiated by keV electrons, as well as its dependence on incident beam energy, on sample thickness and on sample temperature are presented. As a theoretical contribution, the evolution of organic matter damage by charged projectiles, particularly for electron beams, the CASINO-extended model was developed. When compared to experimental results, the model predictions underestimate the damage caused by electron beams, evidence that sputtering and probably some sample characteristics (as crystallographic structure) are involved. As astrophysical implications, cosmic ray half-lives for valine and phenylalanine are estimated to be about 10 million years in the interstellar medium; solar wind half-life at 1 au from the Sun is approximately 3 days for glycine. Aiming to simulate realistic astrophysical materials bombarded by keV electrons, the half-life of valine embedded into water and CO2 ices over a silicate substrate is also predicted.
336

Styrd Fragmentering i Metalliska Stridsdelar : Teknikutveckling av fragmenterande stridsdelar / Controlled Fragmentation of Metallic Warheads : Technology development of Fragmenting Warheads

Persson, William, Rehnberg, Lukas January 2022 (has links)
Fragmenterande stridsdelar har funnits länge och idag finns tre huvudsakliga metoder för att uppnå fragmentering i en stridsdel. Metoden styrd fragmentering som undersöks i arbetet fungerar generellt sett bra men saknar önskad kontrollförmåga. Målet med arbetet var att utveckla koncept av styrt fragmenterande stridsdelar och undersöka om fragmentspridningen kan riktas och snävas in till mindre än ±20° enligt två fall, cirkelskiva och cirkelsektor. De framtagna koncepten önskades vara tillverkningsbara med additiv tillverkning och lämpligheten för detta skulle därför undersökas. I samband med detta önskades även ett materialval. Examensarbetet genomfördes i samarbete med uppdragsgivaren Saab Dynamics AB och Karlstads universitet. Arbetet följde en teknikutvecklingsprocess innefattande en förstudie där vetenskaplig litteratur studerades och kontakt etablerades med tillverkare samt områdesexperter för att undersöka möjligheterna. Följande förstudien genomfördes en konceptutvecklingsprocess där de 3D-modellerade konceptens funktion undersöktes och verifierades med SPH-simuleringar i IMPETUS Afea. Ett materialval gjordes utifrån tillverkarens tillgängliga material samt önskvärda materialegenskaper och konceptens tillverkningsbarhet undersöktes. De slutsatser som kan dras utifrån teknikutvecklingen är att det med styrd fragmentering är möjligt att rikta en stridsdels fragment till önskade spridningsfall, dock med förbättringsmöjligheter med avseende på bland annat fragmentens massfördelning. Koncepten som framställdes visades vara lämpliga att tillverka med additiv tillverkning då de framtagna geometriernas komplexitet gynnas av de ökade frihetsgraderna samt då det valda materialet tillät en godtagbar fragmentering och var tillverkningsbart med AM. Prototyper tillverkades i plast men verkliga tester genomfördes ej. Verkliga tester och vidare optimering av tekniken lämnades som framtida arbete. / Fragmentation warheads have been used for a long time and today there are three main methods of achieving fragmentation in a warhead. The method studied in this work is controlled fragmentation, a method that generally works adequately but can only control the fragmentation to a certain degree. The goal of this project was to develop multiple concepts of controlled fragmentation warheads and investigate whether it is possible to aim and reduce the projection angle of the fragments to ±20° for two cases, circular disc and circle sector. It was wished for the developed concepts to be manufacturable with additive manufacturing, its feasibility to be studied and therefore a material selection with this in mind to be done. The thesis work has been carried out in collaboration with Saab Dynamics AB and Karlstad University. A technology development process was used consisting of a literature study where scientific literature was studied and contact was established with the manufacturer as well as other experts in the field of study in order to examine the possibilities regarding the project. Following the literature study, a concept development process was carried through where the function of the 3D-modeled concepts were examined and verified through SPH-simulations in IMPETUS Afea. A material selection was done with regards to the manufacturers available materials and the sought after material properties. Finally, the concepts manufacturability was examined and verified. The conclusions drawn from this technology development are the following: It is possible to both reduce the projection angle and aim the resulting fragments to the specified cases, although with great room for improvement regarding, among other things, the fragment mass distribution. The presented concepts proved to be suitable for additive manufacturing, because of their geometric complexity where the increased design freedom of AM is greatly benefited. The chosen material also proved suitable for both AM and use in fragmenting warheads. Plastic prototypes were made but real experimental tests were not conducted. Real experiments and further optimization of the technology were left as future work.
337

Design, Fabrication, And Testing Of High-transparency Deep Ultra-violet Contacts Using Surface Plasmon Coupling In Subwavelength Aluminum Meshes

Mazuir, Clarisse 01 January 2011 (has links)
The present work aims at enhancing the external quantum efficiencies of ultra-violet (UV) sensitive photodetectors (PDs) and light emitting diodes (LEDs)for any light polarization. Deep UV solid state devices are made out of AlGaN or MgZnO and their performances suffer from the high resistivity of their p-doped regions. They require transparent p-contacts; yet the most commonly used transparent contacts have low transmission in the UV: indium tin oxide (ITO) and nickel-gold (Ni/Au 5/5 nms) transmit less than 50% and 30% respectively at 300 nm. Here we investigate the use of surface plasmons (SPs) to design transparent p-contacts for AlGaN devices in the deep UV region of the spectrum. The appeal of using surface plasmon coupling arose from the local electromagnetic field enhancement near the metal surface as well as the increase in interaction time between the field and semiconductor if placed on top of a semiconductor. An in/out-coupling mechanism is achieved by using a grating consisting of two perpendicularly oriented sets of parallel aluminum lines with periods as low as 250 nm. The incident light is first coupled into SPs at the air/aluminum interface which then re-radiate at the aluminum/AlGaN interface and the photons energy is transferred to SP polaritons (SPPs) and back to photons. High transmission can be achieved not only at normal incidence but for a wider range of incident angles. iv A finite difference time domain (FDTD) package from R-Soft was used to simulate and design such aluminum gratings with transparency as high as 100% with tunable peak wavelength, bandwidth and angular acceptance. A rigorous coupled wave analysis (RCWA) was developed in Matlab to validate the FDTD results. The high UV transparency meshes were then fabricated using an e-beam assisted lithography lift-off process. Their electrical and optical properties were investigated. The electrical characterization was very encouraging; the sheet resistances of these meshes were lower than those of the conventionally used transparent contacts. The optical transmissions were lower than expected and the causes for the lower measurements have been investigated. The aluminum oxidation, the large metal grain size and the line edge roughness were identified as the main factors of inconsistency and solutions are proposed to improve these shortcomings. The effect of aluminum oxidation was calculated and the passivation of aluminum with SiO2 was evaluated as a solution. A cold deposition of aluminum reduced the aluminum grain size from 60 nm to 20 nm and the roughness from 5 nm to 0.5 nm. Furthermore, replacing the conventional lift-off process by a dry back-etch process led to much smoother metal line edges and much high optical transparency. The optical measurements were consistent with the simulations. Therefore, reduced roughness and smooth metal line edges were found to be especially critical considerations for deep UV application of the meshes.
338

Electron-Induced Decomposition of Different Silver(I) Complexes: Implications for the Design of Precursors for Focused Electron Beam Induced Deposition

Martinović, Petra, Rohdenburg, Markus, Butrymowicz, Aleksandra, Sarigül, Selma, Huth, Paula, Denecke, Reinhard, Szymańska, Iwona B., Swiderek, Petra 31 August 2023 (has links)
Focused electron beam induced deposition (FEBID) is a versatile tool to produce nanostructures through electron-induced decomposition of metal-containing precursor molecules. However, the metal content of the resulting materials is often low. Using different Ag(I) complexes, this study shows that the precursor performance depends critically on the molecular structure. This includes Ag(I) 2,2-dimethylbutanoate, which yields high Ag contents in FEBID, as well as similar aliphatic Ag(I) carboxylates, aromatic Ag(I) benzoate, and the acetylide Ag(I) 3,3-dimethylbutynyl. The compounds were sublimated on inert surfaces and their electron-induced decomposition was monitored by electron-stimulated desorption (ESD) experiments in ultrahigh vacuum and by reflection−absorption infrared spectroscopy (RAIRS). The results reveal that Ag(I) carboxylates with aliphatic side chains are particularly favourable for FEBID. Following electron impact ionization, they fragment by loss of volatile CO2. The remaining alkyl radical converts to a stable and equally volatile alkene. The lower decomposition efficiency of Ag(I) benzoate and Ag(I) 3,3-dimethylbutynyl is explained by calculated average local ionization energies (ALIE) which reveal that ionization from the unsaturated carbon units competes with ionization from the coordinate bond to Ag. This can stabilise the ionized complex with respect to fragmentation. This insight provides guidance with respect to the design of novel FEBID precursors.
339

Some aspects on designing for metal Powder Bed Fusion

Hällgren, Sebastian January 2017 (has links)
Additive Manufacturing (AM) using the Powder Bed Fusion (PBF) is a relatively new manufacturing method that is capable of creating shapes that was previously practically impossible to manufacture. Many think it will revolutionize how manufacturing will be done in the future. This thesis is about some aspects of when and how to Design for Additive Manufacturing (DfAM) when using the PBF method in metal materials. Designing complex shapes is neither easy nor always needed, so when to design for AM is a question with different answers depending on industry or product. The cost versus performance is an important metric in making that selection. How to design for AM can be divided into how to improve performance and how to improve additive manufacturability where how to improve performance once depends on product, company and customer needs. Using advanced part shaping techniques like using Lattices or Topology Optimization (TO) to lower part mass may increase customer value in addition to lowering part cost due to faster part builds and less powder and energy use. Improving PBF manufacturability is then warranted for parts that reach series production, where determining an optimal build direction is key as it affects many properties of PBF parts. Complex shapes which are designed for optimal performance are usually more sensitive to defects which might reduce the expected performance of the part. Non Destructive Evaluation (NDE) might be needed to certify a part for dimensional accuracy and internal defects prior use. The licentiate thesis covers some aspects of both when to DfAM and how to DfAM of products destined for series production. It uses design by Lattices and Topology Optimization to reduce mass and looks at the effect on part cost and mass. It also shows effects on geometry translation accuracies from design to AM caused by differences in geometric definitions. Finally it shows the effect on how different NDE methods are capable of detecting defects in additively manufactured parts.
340

Process characterisation of an additive manufacturing equipment : An analysis of the effect of electron beam powder bed fusion process parameters on the melt pool geometry and microstructure of Ti-6Al-4V

Ljusell, Ida January 2023 (has links)
Additive manufacturing (AM) are manufacturing methods where components are produced by adding material layer by layer which allows for a high freedom of design as well as little or no material waste compared to conventional manufacturing methods. Despite the many benefits of AM there are still problems concerning the quality of the produced material. In this project an AM equipment was tested by using different process parameters and comparing their effect on the printed material. An electron beam powder bed fusion equipment was used and with varying values for beam power, scanning speed and preheat temperature. Initial tests were done using Ti-6Al-4V plates with a Ti-6Al-4V powder then being used for a few selected process settings. The EB-PBF did not act as predicted with varying beam powers compared to input values. Melting tracks using powder also proved to be difficult due to, for example, the build plate moving from being overcharged by the electron beam and the difficulty to control the powder layers. The geometry of printed tracks on plates was analysed and values for melt pool width, depth and height was measured. Both width and depth for the most part have a linear increase with increased power and line energy density. Preheating temperature has a smaller effect on the width and depth but leads to more even tracks.

Page generated in 0.9653 seconds