• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anwendung der hochauflösenden Laserspektroskopie zur Untersuchung der Energieniveaustruktur und der Elektron - Phonon - Wechselwirkung im lichtsammelnden Komplex II grüner Pflanzen

Pieper, Jörg 07 December 2000 (has links)
Hole-Burning (HB) und Fluorescence Line-Narrowing (FLN) bei 4.2 K sowie Experimente zur Temperaturabhängigkeit werden angewendet, um Energieniveaustruktur und Elektron-Phonon- Wechselwirkung im Antennenkomplex LHC II grüner Pflanzen zu untersuchen. Besondere Aufmerksamkeit gilt dabei der Vermeidung systematischer Meßfehler durch Reabsorption von Fluoreszenz oder durch Lichtstreuung und unerwünschtes Lochbrennen bei FLN-Experimenten. Durch die Auswertung von Lochspektren können erstmals drei niederenergetische elektronische Zustände bei 677.1, 678.4 und 679.8 nm nachgewiesen werden. Die inhomogene Breite der zugehörigen Absorptionsbanden beträgt etwa 4 nm. Wahrscheinlich stellt jeder dieser Zustände das tiefste Energieniveau einer Untereinheit des LHC II-Trimers dar und ist weitgehend an jeweils einem Chl a-Molekül lokalisiert. Die energetische Differenz zwischen den drei Zuständen kann durch strukturelle Heterogenität erklärt werden. Es kann nachgewiesen werden, daß die Meßergebnisse praktisch frei von Effekten durch unerwünschte Aggregation sind. Die homogene Linienbreite des energetisch tiefsten Zustandes bei 4.7 K wird vorwiegend durch phasenzerstörende Prozesse (pure dephasing) bestimmt. Die Lochbreiten innerhalb der 650 nm Absorptionsbande entsprechen Chl b-Chl a Energietransferzeiten von 1 ps und etwa 240 fs bei 4.2 K, während Lochbreiten innerhalb der 676 nm Absorptionsbande Chl a-Chl a Energietransferzeiten in der Größenordnung von 6-10 ps ergeben. In einer theoretischen Betrachtung werden die Beiträge zu Phonon-Seitenbanden bei HB und FLN separat analysiert. Auf dieser Grundlage können Ergebnisse von HB und FLN Experimenten an LHC II erstmals in einem konsistenten Modell durch schwache Elektron-Phonon-Wechselwirkung mit einem Huang-Rhys-Faktor von 0.9 und ein breites, stark asymmetrisches Ein-Phonon-Profil erklärt werden. / Spectral hole-burning (HB) is combined with fluorescence line-narrowing (FLN) experiments at 4.2 K and studies of temperature-dependent fluorescence spectra in order to investigate low-energy level structure as well as electron-phonon coupling of the LHC II antenna complex of green plants. Special attention has been paid to eliminate effects owing to reabsorption of fluorescence and to assure that the FLN spectra are virtually unaffected by hole-burning or scattering artifacts. For the first time, analysis of the 4.2 K hole spectra reveals three low-energy electronic states at 677.1, 678.4 and 679.8 nm, respectively. The inhomogeneous width of their absorption bands is approximately 4 nm. It is likely that each of these states is associated with the lowest energy state of one trimer subunit with the energetic separations being due to structural heterogeneity. It is likely that each of the low-energy states is highly localized on a single Chl a molecule of the corresponding trimer subunit. The results are shown to be virtually free from aggregation effects. The homogeneous width for the lowest state at 4.7 K is predominantly due to pure dephasing. Widths of holes burned into the 650 nm absorption band correspond to Chl b-Chl a energy transfer times of 1 ps and about 240 fs at 4.2 K while holewidths for the 676 nm absorption band lead to Chl a-Chl a energy transfer times in the 6-10 ps range. The complexities associated with the interpretation of the phonon structure in HB and FLN spectra are discussed by theoretically analyzing the different phonon sideband contributions. On this basis, 4.2 K HB and FLN data can be consistently interpreted for the first time by weak electron-phonon coupling with a Huang-Rhys factor of about 0.9 to protein phonons with a broad and strongly asymmetric one- phonon profile.
2

de Haas-van Alphen Untersuchungen nichtmagnetischer Borkarbidsupraleiter

Bergk, Beate 04 March 2010 (has links) (PDF)
Im Rahmen dieser Doktorarbeit werden de Haas-van Alphen-Untersuchungen an den nichtmagnetischen Borkarbidsupraleitern LuNi2B2C und YNi2B2C präsentiert. Aus den Quantenoszillationen in der normalleitenden Phase in Kombination mit Bandstrukturrechnungen konnten Informationen über die verzweigte Fermiflächenarchitektur und über die Elektron-Phonon-Kopplung der Borkarbide gewonnen werden. Die Kopplung ist stark anisotrop und fermiflächenabhängig. Dies spricht für einen Mehrbandmechanismus der Supraleitung in der Materialklasse. Zusätzlich konnten de Haas-van-Alphen-Oszillationen mehrerer Fermiflächen unterhalb von Bc2 tief in der Shubnikov-Phase beobachtet werden. Das Verhalten dieser Oszillationen lässt sich nicht mit bisher bekannten Theorien beschreiben. Allerdings weist das Bestehen der Oszillationen weit unterhalb von Bc2 auf ein Bestehen von elektronischen Zuständen in der Shubnikov-Phase hin.
3

de Haas-van Alphen Untersuchungen nichtmagnetischer Borkarbidsupraleiter

Bergk, Beate 05 February 2010 (has links)
Im Rahmen dieser Doktorarbeit werden de Haas-van Alphen-Untersuchungen an den nichtmagnetischen Borkarbidsupraleitern LuNi2B2C und YNi2B2C präsentiert. Aus den Quantenoszillationen in der normalleitenden Phase in Kombination mit Bandstrukturrechnungen konnten Informationen über die verzweigte Fermiflächenarchitektur und über die Elektron-Phonon-Kopplung der Borkarbide gewonnen werden. Die Kopplung ist stark anisotrop und fermiflächenabhängig. Dies spricht für einen Mehrbandmechanismus der Supraleitung in der Materialklasse. Zusätzlich konnten de Haas-van-Alphen-Oszillationen mehrerer Fermiflächen unterhalb von Bc2 tief in der Shubnikov-Phase beobachtet werden. Das Verhalten dieser Oszillationen lässt sich nicht mit bisher bekannten Theorien beschreiben. Allerdings weist das Bestehen der Oszillationen weit unterhalb von Bc2 auf ein Bestehen von elektronischen Zuständen in der Shubnikov-Phase hin.
4

Thermodynamik von Mehrband-Supraleitern

Wälte, Andreas 23 February 2007 (has links) (PDF)
In der vorliegenden Arbeit werden die mikroskopischen Eigenschaften des supraleitenden Zustands von MgCNi3, MgB2 und einigen Seltenerd-Nickel-Borkarbiden anhand von Messungen der spezifischen Wärme untersucht. Der die Supraleitung verursachende Cooper-Paarzustand der Elektronen wird durch eine Wechselwirkung der Elektronen mit Gitterschwingungen erzeugt. Daher wird zusätzlich zur spezifischen Wärme des supraleitenden Zustands auch die des normalleitenden Zustands untersucht. Aus letzterer kann unter Berücksichtigung theoretischer Ergebnisse für die elektronische Zustandsdichte die Elektron-Phonon-Wechselwirkungsstärke bestimmt werden. Mit Hilfe eines selbstentwickelten Computerprogramms wird ausserdem das Frequenzspektrum der Gitterschwingungen abgeschätzt und mit Ergebnissen aus Neutronenstreuexperimenten verglichen. Die Energielücke des supraleitenden Zustands kann aus der spezifischen Wärme des supraleitenden Zustands bestimmt werden, die ebenso wie das obere kritische Magnetfeld Hc2(0) Hinweise auf die Elektron-Phonon-Kopplung liefert. Aus der Analyse dieser Ergebnisse und dem Vergleich mit Ergebnissen aus Transportmessungen wie der Tunnel- oder Punktkontaktspektroskopie kann gefolgert werden, inwieweit das BCS-Modell der Supraleitung modifiziert werden muss, um den supraleitenden Zustand der untersuchten Verbindungen beschreiben zu können. Dazu stehen sowohl bekannte Erweiterungen zur Berücksichtigung von verstärkter Elektron-Phonon-Kopplung als auch im Rahmen dieser Arbeit entwickelte analytische Zweibandformulierungen zur Verfügung. Untersuchungen an MgCNi3, das sich nahe einer magnetischen Instabilität befindet, zeigen, dass auftretende magnetische Fluktuationen eine Halbierung der supraleitende Übergangstemperatur Tc zur Folge haben. Der unter diesem Aspekt relativ hohe Wert von Tc=7 K ist eine Konsequenz starker Elektron-Phonon Kopplung, die im Wesentlichen durch vom Kohlenstoff stabilisierte Nickelschwingungen getragen wird. Mehrbandeffekte sind in diesem System aufgrund der Dominanz eines der Bänder an der Fermi-Kante nur für den konsistenten Vergleich unterschiedlicher Experimente von Bedeutung. So messen Transportexperimente vorrangig die Eigenschaften der schnellen Ladungsträger (Band mit der geringen partiellen Zustandsdichte), während die spezifische Wärme über die Bandanteile mittelt und daher die Eigenschaften der langsamen Ladungsträger (Band mit der hohen partiellen Zustandsdichte) reflektiert. Eine erstmalig beobachtete ausgeprägte Anomalie in der spezifischen Wärme des klassischen Mehrbandsupraleiters MgB2 (hier mit reinem Bor-10) bei etwa Tc/4=10 K kann mittels eines Zweibandmodells in Übereinstimmung mit erst kürzlich gemachten theoretischen Vorhersagen für den Fall besonders schwacher Kopplung zwischen den beiden Bändern verstanden werden. Die Stärke der Interbandkopplung ist auch von praktischem Interesse, da durch das Einbringen von Streuzentren Hc2(0) zwar erhöht wird, gleichzeitig dann aber auch im Allgemeinen die Interbandkopplung ansteigt, was eine Absenkung des gemeinsamen Tc's beider Bänder zur Folge hat. Die Analyse der spezifischen Wärme der supraleitenden Phase der nichtmagnetischen Seltenerd-Nickel-Borkarbide YNi2B2C und LuNi2B2C führt zu dem Schluss, dass sichtbare Effekte des Mehrbandelektronensystems sowohl von der Masse auf dem Platz der Seltenen Erde, als auch des Übergangsmetalls [untersucht an Lu(Ni1-xPtx)2B2C] abhängig sind. Das Signal des in der spezifischen Wärme des antiferromagnetischen HoNi2B2C sichtbaren supraleitenden Phasenübergangs ist kleiner als erwartet. Die Diskrepanz entspricht etwa einem Drittel der elektronischen Zustandsdichte und deckt sich in etwa mit Ergebnissen zu den ebenfalls magnetischen Systemen DyNi2B2C und ErNi2B2C. Im Rahmen des Mehrbandmodells kann das als natürliche Konsequenz des unterschiedlich starken Einflusses des Magnetismus auf die verschiedenen Bänder gedeutet werden.
5

Thermodynamik von Mehrband-Supraleitern

Wälte, Andreas 16 February 2007 (has links)
In der vorliegenden Arbeit werden die mikroskopischen Eigenschaften des supraleitenden Zustands von MgCNi3, MgB2 und einigen Seltenerd-Nickel-Borkarbiden anhand von Messungen der spezifischen Wärme untersucht. Der die Supraleitung verursachende Cooper-Paarzustand der Elektronen wird durch eine Wechselwirkung der Elektronen mit Gitterschwingungen erzeugt. Daher wird zusätzlich zur spezifischen Wärme des supraleitenden Zustands auch die des normalleitenden Zustands untersucht. Aus letzterer kann unter Berücksichtigung theoretischer Ergebnisse für die elektronische Zustandsdichte die Elektron-Phonon-Wechselwirkungsstärke bestimmt werden. Mit Hilfe eines selbstentwickelten Computerprogramms wird ausserdem das Frequenzspektrum der Gitterschwingungen abgeschätzt und mit Ergebnissen aus Neutronenstreuexperimenten verglichen. Die Energielücke des supraleitenden Zustands kann aus der spezifischen Wärme des supraleitenden Zustands bestimmt werden, die ebenso wie das obere kritische Magnetfeld Hc2(0) Hinweise auf die Elektron-Phonon-Kopplung liefert. Aus der Analyse dieser Ergebnisse und dem Vergleich mit Ergebnissen aus Transportmessungen wie der Tunnel- oder Punktkontaktspektroskopie kann gefolgert werden, inwieweit das BCS-Modell der Supraleitung modifiziert werden muss, um den supraleitenden Zustand der untersuchten Verbindungen beschreiben zu können. Dazu stehen sowohl bekannte Erweiterungen zur Berücksichtigung von verstärkter Elektron-Phonon-Kopplung als auch im Rahmen dieser Arbeit entwickelte analytische Zweibandformulierungen zur Verfügung. Untersuchungen an MgCNi3, das sich nahe einer magnetischen Instabilität befindet, zeigen, dass auftretende magnetische Fluktuationen eine Halbierung der supraleitende Übergangstemperatur Tc zur Folge haben. Der unter diesem Aspekt relativ hohe Wert von Tc=7 K ist eine Konsequenz starker Elektron-Phonon Kopplung, die im Wesentlichen durch vom Kohlenstoff stabilisierte Nickelschwingungen getragen wird. Mehrbandeffekte sind in diesem System aufgrund der Dominanz eines der Bänder an der Fermi-Kante nur für den konsistenten Vergleich unterschiedlicher Experimente von Bedeutung. So messen Transportexperimente vorrangig die Eigenschaften der schnellen Ladungsträger (Band mit der geringen partiellen Zustandsdichte), während die spezifische Wärme über die Bandanteile mittelt und daher die Eigenschaften der langsamen Ladungsträger (Band mit der hohen partiellen Zustandsdichte) reflektiert. Eine erstmalig beobachtete ausgeprägte Anomalie in der spezifischen Wärme des klassischen Mehrbandsupraleiters MgB2 (hier mit reinem Bor-10) bei etwa Tc/4=10 K kann mittels eines Zweibandmodells in Übereinstimmung mit erst kürzlich gemachten theoretischen Vorhersagen für den Fall besonders schwacher Kopplung zwischen den beiden Bändern verstanden werden. Die Stärke der Interbandkopplung ist auch von praktischem Interesse, da durch das Einbringen von Streuzentren Hc2(0) zwar erhöht wird, gleichzeitig dann aber auch im Allgemeinen die Interbandkopplung ansteigt, was eine Absenkung des gemeinsamen Tc's beider Bänder zur Folge hat. Die Analyse der spezifischen Wärme der supraleitenden Phase der nichtmagnetischen Seltenerd-Nickel-Borkarbide YNi2B2C und LuNi2B2C führt zu dem Schluss, dass sichtbare Effekte des Mehrbandelektronensystems sowohl von der Masse auf dem Platz der Seltenen Erde, als auch des Übergangsmetalls [untersucht an Lu(Ni1-xPtx)2B2C] abhängig sind. Das Signal des in der spezifischen Wärme des antiferromagnetischen HoNi2B2C sichtbaren supraleitenden Phasenübergangs ist kleiner als erwartet. Die Diskrepanz entspricht etwa einem Drittel der elektronischen Zustandsdichte und deckt sich in etwa mit Ergebnissen zu den ebenfalls magnetischen Systemen DyNi2B2C und ErNi2B2C. Im Rahmen des Mehrbandmodells kann das als natürliche Konsequenz des unterschiedlich starken Einflusses des Magnetismus auf die verschiedenen Bänder gedeutet werden.

Page generated in 0.0558 seconds