Spelling suggestions: "subject:"elliptiques"" "subject:"élliptiques""
151 |
Résolution de systèmes polynomiaux et cryptologie sur les courbes elliptiquesHuot, Louise 13 December 2013 (has links) (PDF)
Depuis ces dix dernières années, les attaques sur le logarithme discret sur les courbes elliptiques (ECDLP) mettant en jeu la résolution de systèmes polynomiaux connaissent un large succès. C'est dans ce contexte que s'inscrit cette thèse dont les contributions sont doubles. D'une part, nous présentons de nouveaux outils de résolution de systèmes polynomiaux par bases de Gröbner. Nous montrons que la résolution de systèmes avec symétries est étroitement liée à la résolution de systèmes quasi-homogènes. Nous proposons ainsi de nouveaux résultats de complexité pour la résolution de tels systèmes. Nous nous intéressons également à l'étape bloquante de la résolution de systèmes : le changement d'ordre pour bases de Gröbner. La complexité classique de cette étape est cubique en le nombre de solutions et domine la complexité totale de la résolution. Nous proposons pour la première fois des algorithmes de changement d'ordre de complexité sous-cubique en le nombre de solutions. D'autre part, nous nous intéressons à l'attaque du logarithme discret sur les courbes elliptiques par calcul d'indice proposée par Gaudry. Nous mettons en évidence des familles de courbes elliptiques possédant des symétries particulières. Ces symétries impliquent un gain exponentiel sur la complexité de la résolution du ECDLP. Nous obtenons ainsi de nouveaux paramètres de sécurité pour certaines instances du ECDLP. Une des étapes principales de cette attaque nécessite le calcul de polynômes de sommation introduits par Semaev. Les symétries des courbes elliptiques binaires nous permettent d'élaborer un nouvel algorithme par évaluation-interpolation pour le calcul des polynômes de sommation. Munis de cet algorithme nous établissons un nouveau record pour le calcul de ces polynômes.
|
152 |
Cryptographie à base de courbes elliptiques et sécurité de composants embarquésVerneuil, Vincent 13 June 2012 (has links) (PDF)
<p>Les systèmes cryptographiques à base de courbes elliptiques sont aujourd'hui de plus en plus employés dans les protocoles utilisant la cryptographie à clef publique. Ceci est particulièrement vrai dans le monde de l'embarqué qui est soumis à de fortes contraintes de coût, de ressources et d'efficacité, car la cryptographie à base de courbes elliptiques permet de réduire significativement la taille des clefs utilisées par rapport à d'autres systèmes cryptographiques tels que RSA.</p> <p>Les travaux qui suivent décrivent dans un premier temps 'implantation efficace et sécurisée de la cryptographie à base de courbes elliptiques sur des composants embarqués, en particulier sur des cartes à puce. La sécurisation de ces implantations nécessite de prendre en compte les attaques physiques dont un composant embarqué peut être la cible. Ces attaques incluent notamment les analyses par canaux auxiliaires qui consistent à étudier le comportement d'un composant qui manipule une clef secrête pour en déduire de l'information sur celle-ci, et les analyses par faute dans lesquelles un attaquant peut perturber le fonctionnement d'un composant dans le même but.</p> <p>Dans la seconde partie de ce mémoire de thèse, nous étudions ces attaques et leurs conséquences concernant l'implantation des systèmes cryptographiques à clef publique les plus répandus. De nouvelles méthodes d'analyse et de nouvelles contre-mesures sont proposées pour ces systèmes cryptographiques, ainsi que des attaques spécifiques à l'algorithme de chiffirement par bloc AES.</p>
|
153 |
APPLICATION DE LA METHODE D'ANALYSE EN FREQUENCE EN DYNAMIQUE GALACTIQUEPapaphilippou, Yannis 27 January 1997 (has links) (PDF)
Dans le but de clarifier les aspects dynamiques des modèles galactiques triaxiaux, le potentiel logarithmique est étudié a travers la méthode d'analyse en fréquence. Les caractéristiques dynamiques principales du système sont présentées en utilisant le formalisme hamiltonien approprié. Afin de comparer cette nouvelle approche avec des études précédentes, la méthode est appliquée a la version axisymétrique du potentiel. La précision de la méthode est démontrée a travers des techniques de perturbation et des transformations numériques en variables action-angle. En outre, la construction des applications fréquence pour plusieurs valeurs du paramètre de perturbation permet de fournir une vision globale de la dynamique du potentiel plan. Les zones chaotiques, les résonances importantes ainsi que les orbites périodiques sont détectées. La méthode est appliquée ensuite a la version tridimensionnelle du potentiel logarithmique. Les approximations quasi-périodiques fournies par la méthode permettent de clarifier la dynamique des types d'orbites principales et leur connexion avec des perturbations du hamiltonien général. Tous les détails fins de la dynamique, qui sont associés a l'addition du troisième degré de liberté, sont représentés dans les applications fréquence complètes, des images instantanées du réseau d'Arnold (''Arnol'd web'') du système. Ainsi, nous pouvons visualiser l'étendu des zones chaotiques et l'influence des lignes résonantes dans l'espace physique du système. Cette approche révèle plusieurs caractéristiques dynamiques inconnues des potentiels galactiques triaxiaux et indique que le chaos doit être une caractéristique importante des configurations triaxiales. Nous discutons finalement l'influence de ces résultats sur la construction des modèles galactiques auto-consistants.
|
154 |
Implantations et protections de mécanismes cryptographiques logiciels et matériels / Implementations and protections of software and hardware cryptographic mechanismsCornelie, Marie-Angela 12 April 2016 (has links)
La protection des mécanismes cryptographiques constitue un enjeu important lors du développement d'un système d'information car ils permettent d'assurer la sécurisation des données traitées. Les supports utilisés étant à la fois logiciels et matériels, les techniques de protection doivent s'adapter aux différents contextes.Dans le cadre d'une cible logicielle, des moyens légaux peuvent être mis en oeuvre afin de limiter l'exploitation ou les usages. Cependant, il est généralement difficile de faire valoir ses droits et de prouver qu'un acte illicite a été commis. Une alternative consiste à utiliser des moyens techniques, comme l'obscurcissement de code, qui permettent de complexifier les stratégies de rétro-conception en modifiant directement les parties à protéger.Concernant les implantations matérielles, on peut faire face à des attaques passives (observation de propriétés physiques) ou actives, ces dernières étant destructives. Il est possible de mettre en place des contre-mesures mathématiques ou matérielles permettant de réduire la fuite d'information pendant l'exécution de l'algorithme, et ainsi protéger le module face à certaines attaques par canaux cachés.Les travaux présentés dans ce mémoire proposent nos contributions sur ces sujets tes travaux. Nous étudions et présentons les implantations logicielle et matérielle réalisées pour le support de courbes elliptiques sous forme quartique de Jacobi étendue. Ensuite, nous discutons des problématiques liées à la génération de courbes utilisables en cryptographie et nous proposons une adaptation à la forme quartique de Jacobi étendue ainsi que son implantation. Dans une seconde partie, nous abordons la notion d'obscurcissement de code source. Nous détaillons les techniques que nous avons implantées afin de compléter un outil existant ainsi que le module de calcul de complexité qui a été développé. / The protection of cryptographic mechanisms is an important challenge while developing a system of information because they allow to ensure the security of processed data. Since both hardware and software supports are used, the protection techniques have to be adapted depending on the context.For a software target, legal means can be used to limit the exploitation or the use. Nevertheless, it is in general difficult to assert the rights of the owner and prove that an unlawful act had occurred. Another alternative consists in using technical means, such as code obfuscation, which make the reverse engineering strategies more complex, modifying directly the parts that need to be protected.Concerning hardware implementations, the attacks can be passive (observation of physical properties) or active (which are destructive). It is possible to implement mathematical or hardware countermeasures in order to reduce the information leakage during the execution of the code, and thus protect the module against some side channel attacks.In this thesis, we present our contributions on theses subjects. We study and present the software and hardware implementations realised for supporting elliptic curves given in Jacobi Quartic form. Then, we discuss issues linked to the generation of curves which can be used in cryptography, and we propose an adaptation to the Jacobi Quartic form and its implementation. In a second part, we address the notion of code obfuscation. We detail the techniques that we have implemented in order to complete an existing tool, and the complexity module which has been developed.
|
155 |
Sur les courbes invariantes par un difféomorphisme C1-générique symplectique d’une surface / On the invariant curves of a C1-generic symplectic diffeomorphism of a surfaceGirard, Marie 18 December 2009 (has links)
Au début du XXème siècle, Poincaré puis Birkhoff ont été amenés, lors de leur recherche sur le problème restreint des trois corps, à étudier les courbes invariantes par une transformation d’une surface préservant l’aire. Cinquante ans plus tard, les théorèmes KAM démontrent la persistance de courbes invariantes après perturbation en topologie de classe k plus grande ou égale à trois. On peut alors se demander ce que devient ce résultat en topologie de classe moins élevée. Par ailleurs, l’étude des dynamiques C1-génériques connaît de nombreux développements, grâce notamment au Connecting Lemma. Par exemple, Bonatti et Crovisier on démontré qu’un difféomorphisme C1-générique d’une telle surface possède un ensemble dense de points dont l’orbite sort de tout compact. Ces deux résultats permettent de penser qu’un difféomorphisme C1-générique d’une surface n’admet pas de courbes fermées simples invariantes. C’est ce que nous démontrons dans ce travail. On obtient assez facilement, en utilisant le Connecting Lemma ainsi que les propriétés topologiques de l’anneau, qu’un difféomorphisme C1-générique de l’anneau possède des points périodiques sur toute courbe fermée simple invariante. Cela se généralise à une surface quelconque en utilisant une famille dénombrable d’anneau constituant une base de voisinages d’une courbe fermée simple quelconque. La construction d’une telle famille d’anneaux est le principal résultat du premier chapitre. Il s’agit alors de supprimer les points périodiques sur les courbes invariantes. Dans un premier temps, nous nous inspirerons d’un argument qu’Herman utilise dans le cadre de courbes invariantes par les twists de l’anneau pour montrer que tous les points périodiques ne peuvent être hyperboliques. Ensuite, nous définissons une propriété, la propriété G, qui si elle est vérifiée par un difféomorphisme symplectique et l’un de ses points périodiques elliptiques, empêche que ce point périodique appartienne à une courbe invariante. En montrant que cette propriété est vérifiée par un difféomorphisme C1-générique et tous ses points périodiques elliptiques, nous obtenons le résultat souhaité. Dans le quatrième chapitre, nous nous employons à définir de façon rigoureuse la notion de fonction génératrice qui est l’outil classique pour perturber des difféomorphismes symplectiques / Poincaré and Birkhoff were led, during their research on the restricted problem of three bodies, to study invariant curves under an area preserving map of a surface. Fifty years later, theorems KAM show the persistance of invariant curves in topology Ck with k greater or equal to three. What becomes this result in topology class lower. Moreover, the study of C1-generic dynamics knows many developments particulary through the Connecting Lemma. For example, Bonatti and Crovisier showed a C1-generic symplectic diffeomorphism of a compact surface is transitive. What they have adapted with M.-C. Arnaud to a non compact surface : a C1-generic symplectic diffeomorphism of a non compact surface has a dense set of points whose orbit leaves every compacts. These two results suggest a such application has not an invariant simple closed curve. The proof of this result is the aim of this work. We obtain, using the Connecting Lemma, a C1-generic symplectic diffeomorphism has periodic points on all the invariant curves. Then, deleting the periodic points from the invariant curves is the challenge. At first, we use an argument that Herman used in the context of curves invariant by a twist of annulus, to show that all periodic points cannot be hyperbolic. Then, we define a property, the property G, which, if it is verified by a symplectic diffeomorphism and one of its periodic elliptic points, prevents this periodic point belongs to an invariant curve. By showing that property is verified by a C1-generic symplectic diffeomorphism, we obtain the desired result. In the fourth chapter, we explain how to pertube a symplectic diffeomorphism with generating functions
|
156 |
Effets non-locaux pour des systèmes elliptiques critiques. / Nonlocal effects for critical elliptic systems.Thizy, Pierre-Damien 05 December 2016 (has links)
Les travaux de cette thèse sont regroupés en trois grandes parties traitant respectivement-des ondes stationnaires des systèmes de Schr"odinger-Maxwell-Proca et de Klein-Gordon-Maxwell-Proca sur une variété riemannienne fermée (compacte sans bord dans toute la thèse),-de systèmes elliptiques de Kirchhoff sur une variété riemannienne fermée,-de phénomènes d'explosion propres aux petites dimensions. / This thesis, divided into three main parts, deals with-standing waves for Schrödinger-Maxwell-Proca and Klein-Gordon-Maxwell-Proca systems on a closed Riemannian manifold (compact without boundary during all the thesis),-elliptic Kirchhoff systems on a closed manifold,-low-dimensional blow-up phenomena.
|
157 |
Improving multifrontal solvers by means of algebraic Block Low-Rank representations / Amélioration des solveurs multifrontaux à l’aide de representations algébriques rang-faible par blocsWeisbecker, Clément 28 October 2013 (has links)
Nous considérons la résolution de très grands systèmes linéaires creux à l'aide d'une méthode de factorisation directe appelée méthode multifrontale. Bien que numériquement robustes et faciles à utiliser (elles ne nécessitent que des informations algébriques : la matrice d'entrée A et le second membre b, même si elles peuvent exploiter des stratégies de prétraitement basées sur des informations géométriques), les méthodes directes sont très coûteuses en termes de mémoire et d'opérations, ce qui limite leur applicabilité à des problèmes de taille raisonnable (quelques millions d'équations). Cette étude se concentre sur l'exploitation des approximations de rang-faible dans la méthode multifrontale, pour réduire sa consommation mémoire et son volume d'opérations, dans des environnements séquentiel et à mémoire distribuée, sur une large classe de problèmes. D'abord, nous examinons les formats rang-faible qui ont déjà été développé pour représenter efficacement les matrices denses et qui ont été utilisées pour concevoir des solveurs rapides pour les équations aux dérivées partielles, les équations intégrales et les problèmes aux valeurs propres. Ces formats sont hiérarchiques (les formats H et HSS sont les plus répandus) et il a été prouvé, en théorie et en pratique, qu'ils permettent de réduire substantiellement les besoins en mémoire et opération des calculs d'algèbre linéaire. Cependant, de nombreuses contraintes structurelles sont imposées sur les problèmes visés, ce qui peut limiter leur efficacité et leur applicabilité aux solveurs multifrontaux généraux. Nous proposons un format plat appelé Block Rang-Faible (BRF) basé sur un découpage naturel de la matrice en blocs et expliquons pourquoi il fournit toute la flexibilité nécéssaire à son utilisation dans un solveur multifrontal général, en terme de pivotage numérique et de parallélisme. Nous comparons le format BRF avec les autres et montrons que le format BRF ne compromet que peu les améliorations en mémoire et opération obtenues grâce aux approximations rang-faible. Une étude de stabilité montre que les approximations sont bien contrôlées par un paramètre numérique explicite appelé le seuil rang-faible, ce qui est critique dans l'optique de résoudre des systèmes linéaires creux avec précision. Ensuite, nous expliquons comment les factorisations exploitant le format BRF peuvent être efficacement implémentées dans les solveurs multifrontaux. Nous proposons plusieurs algorithmes de factorisation BRF, ce qui permet d'atteindre différents objectifs. Les algorithmes proposés ont été implémentés dans le solveur multifrontal MUMPS. Nous présentons tout d'abord des expériences effectuées avec des équations aux dérivées partielles standardes pour analyser les principales propriétés des algorithmes BRF et montrer le potentiel et la flexibilité de l'approche ; une comparaison avec un code basé sur le format HSS est également fournie. Ensuite, nous expérimentons le format BRF sur des problèmes variés et de grande taille (jusqu'à une centaine de millions d'inconnues), provenant de nombreuses applications industrielles. Pour finir, nous illustrons l'utilisation de notre approche en tant que préconditionneur pour la méthode du Gradient Conjugué. / We consider the solution of large sparse linear systems by means of direct factorization based on a multifrontal approach. Although numerically robust and easy to use (it only needs algebraic information: the input matrix A and a right-hand side b, even if it can also digest preprocessing strategies based on geometric information), direct factorization methods are computationally intensive both in terms of memory and operations, which limits their scope on very large problems (matrices with up to few hundred millions of equations). This work focuses on exploiting low-rank approximations on multifrontal based direct methods to reduce both the memory footprints and the operation count, in sequential and distributed-memory environments, on a wide class of problems. We first survey the low-rank formats which have been previously developed to efficiently represent dense matrices and have been widely used to design fast solutions of partial differential equations, integral equations and eigenvalue problems. These formats are hierarchical (H and Hierarchically Semiseparable matrices are the most common ones) and have been (both theoretically and practically) shown to substantially decrease the memory and operation requirements for linear algebra computations. However, they impose many structural constraints which can limit their scope and efficiency, especially in the context of general purpose multifrontal solvers. We propose a flat format called Block Low-Rank (BLR) based on a natural blocking of the matrices and explain why it provides all the flexibility needed by a general purpose multifrontal solver in terms of numerical pivoting for stability and parallelism. We compare BLR format with other formats and show that BLR does not compromise much the memory and operation improvements achieved through low-rank approximations. A stability study shows that the approximations are well controlled by an explicit numerical parameter called low-rank threshold, which is critical in order to solve the sparse linear system accurately. Details on how Block Low-Rank factorizations can be efficiently implemented within multifrontal solvers are then given. We propose several Block Low-Rank factorization algorithms which allow for different types of gains. The proposed algorithms have been implemented within the MUMPS (MUltifrontal Massively Parallel Solver) solver. We first report experiments on standard partial differential equations based problems to analyse the main features of our BLR algorithms and to show the potential and flexibility of the approach; a comparison with a Hierarchically SemiSeparable code is also given. Then, Block Low-Rank formats are experimented on large (up to a hundred millions of unknowns) and various problems coming from several industrial applications. We finally illustrate the use of our approach as a preconditioning method for the Conjugate Gradient.
|
158 |
Topological asymptotic expansions for a class of quasilinear elliptic equations. Estimates and asymptotic expansions of condenser p-capacities. The anisotropic case of segments / Développements asymptotiques topologiques pour une classe d'équations elliptiques quasilinéaires. Estimations et développements asymptotiques de p-capacités de condensateurs. Le cas anisotrope du segmentBonnafé, Alain 16 July 2013 (has links)
La Partie I présente l’obtention du développement asymptotique topologique pour une classe d’équations elliptiques quasilinéaires. Un point central réside dans la possibilité de définir la variation de l’état direct à l’échelle 1 dans R^N. Après avoir défini un cadre fonctionnel approprié faisant intervenir les normes L^p et L^2, et avoir justifié la classe d’équations considérée, la méthode se poursuit par l’étude du comportement asymptotique de la solution du problème d’interface non linéaire dans R^N et par une mise en dualité appropriée des états direct et adjoint aux différentes étapes d’approximation.La Partie II traite d’estimations et de développements asymptotiques de p-capacités de condensateurs, dont l’obstacle est d’intérieur vide et de codimension > ou = 2. Après les résultats préliminaires, les condensateurs équidistants permettent de donner deux illustrations de l’anisotropie engendrée par un segment dans l’équation de p-Laplace, puis d’établir une minoration de la p-capacité N-dimensionnelle d’un segment, qui fait intervenir les p-capacités d’un point, respectivement en dimensions N et (N-1). Les condensateurs elliptiques permettent d’établir que le gradient topologique de la 2-capacité n’est pas un outil approprié pour distinguer les courbes des obstacles d’intérieur non vide en 2D / Part I deals with obtaining topological asymptotic expansions for a class of quasilinear elliptic equations. A key point lies in the ability to define the variation of the direct state at scale 1 in R^N. After setting up an appropriate functional framework involving both the L^p and the L^2 norms, and then justifying the chosen class of equations, the approach goes on with the study of the asymptotic behavior of the solution of the nonlinear interface problem in R^N and by setting up an adequate duality scheme between the direct and adjoint states at each step of approximation. Part II deals with estimates and asymptotic expansions of condenser p-capacities and focuses on obstacles with empty interiors and with codimensions > ou = 2. After preliminary results, equidistant condensers are introduced to point out the anisotropy caused by a segment in the p-Laplace equation, and to provide a lower bound to the N-dimensional condenser p-capacity of a segment, by means of the N-dimensional and of the (N-1)-dimensional condenser p-capacities of apoint. Introducing elliptical condensers, it turns out that the topological gradient of the 2-capacity is not an appropriate tool to separate curves and obstacles with nonempty interior in 2D
|
159 |
Study of the dynamics of barred early type galaxies via numerical simulations / Etude de la dynamique des galaxies barrées de type précoce via simulations numériquesLablanche, Pierre-Yves 04 April 2012 (has links)
Depuis la célèbre classification d’Edwin Hubble dans les années 30, il est coutume de définir unegalaxie comme appartenant soit au groupe des galaxies dites de type tardif (late-type galaxiesabr´eg´e LTGs) soit à celui des galaxies dites de type précoce (early-type galaxies ou ETGs). Lafamille des LTGs est principalement composée de galaxies spirales (S) quand la famille des ETGsregroupe les galaxies lenticulaires (S0) et elliptiques (E). L’étude morphologique de ces galaxies arévélé qu’environ 60% des LTGs et 45% des S0 présentent une barre. Par ailleurs, il a été montréque dans l’Univers local les galaxies pouvaient être séparées en deux grands ensembles : le nuagebleu composé majoritairement de LTGs et la séquence rouge peuplée principalement par les ETGs.Plusieurs mécanismes sont à l’origine de cette distribution et l’évolution séculaire en est évidemmentun point majeur. Un nombre important de recherches ont montré l’importance des barres sur ladynamique et l’évolution d’une galaxie. Le but de ma th`ese est d’´etudier `a quel point la formationd’une barre et l’évolution qui s’ensuit influe sur l’évolution des ETGs. Pour ce faire j’ai réalisédes simulations à N-corps de galaxies barrées (et non barr´ees) qui m’a permis d´étudier les pointssuivants.Je me suis tout d’abord penché sur l’impact de la présence d’une barre dans une galaxie sur unemodélisation de cette dernière par un modèle supposant une ditribution de masse axisymmétrique.Ce genre de modélisation permettant de déterminer le rapport masse/luminosité M/L et donc lamasse d’une galaxie observée mais ´egalement son inclinaison et son anisotropie, il est importantd’estimer l’impact de la présence d’une barre sur ces paramètres. J’ai donc montré qu’en fonctionde l’inclinaison de la galaxie et de la position de la barre par rapport à l’observateur, le rapportM/L était très souvent surestimé avec des erreurs allant jusqu’`a 25%. La taille et la force de labarre sont également apparus comme des facteurs importants mais une étude plus approfondies’imposerait afin de quantifier ce résultat.D’autre part, je me suis intéressé à l’impact d’une barre sur la distribution de masse et de métauxdans une galaxie lenticulaire. J’ai tout d’abord confirmé que la présence d’une barre, de partson influence sur la dynamique d’un système, applatissait les gradients de métallicité. De plusj’ai montré que le degrés d’aplatissement ainsi que la position des zones affectées peuvent êtredirectement mis en relation avec la structure de la barre et notament avec la localisation desrésonances dynamiques. Néanmoins l’influence purement dynamique d’une barre n’explique pasà elle seule les gradients d’âges et de m´etallicité observés. L’étude de l’influence d’un potentielgravitationnel barré sur la dynamique du gaz et donc sur la formation stellaire est donc égalementà prendre un compte. Cela fait l’objet des dernières simulations produites qui permettront de mieuxcomprendre l’influence global d’une barre sur l’évolution séculaire des galaxies de type précoce. / Since the 30’s and Edwin Hubble’s famous classification, galaxies are usually separated in twogroups : the late-type galaxies (LTGs) and the early-type galaxies (ETGs). The LTGs family ismainly made of spiral galaxies (S) while the ETGs family is composed of elliptical (E) and lenticular(S0) galaxies. A morphological study of all these galaxies revealed that around 60% of LTGs and45% of S0 present a bar. It has also been shown that, in the local Universe, galaxies fall into twobig groups : the blue cloud mostly populated by LTGs and the red sequence mainly made of ETGs.Several mechanisms are responsible for this distribution and the secular evolution is obviously animportant one to examine, sepcially in the context of bars, as an important number of studiesshowed the importance of bars in the dynamics and evolution of a galaxy.The goal of my thesis is to study the importance of the formation and ensued bar-drivenevolution influence on ETGs evolution. In that context, I have performed N-body simulations ofbarred (and unbarred) galaxies in order to investigate the following issues.First of all, I focused on the influence of a bar in a galaxy when modelling it with a dynamicalmodel assuming an axisymmetric mass distribution. As these kinds of models allow to determine themass-to-light ratio M/L, thus the dynamical mass of an observed galaxy, but also its inclinationand its anisotropy, it is important to evalute the consequence of the presence of a bar on theseparameters. I have shown that, depending on the galaxy inclination and the bar position angle,M/L is most of the time biased and overestimated, and this can be up to 25%. The size andstrength of the bar also seem to be important factors but a deeper study has to be done to quantifythis preliminary result.In a second step, I have studied the role of bars on the mass and metallicity redistributionsin a lenticular galaxy. I confirmed that the presence of a bar, due to its influence on its hostsystem dynamics, flattens pre-existing metallicity gradients. Moreover, I showed that the degree offlattening and the position of affected regions are directly correlated with the bar structure and thelocation of the dynamical resonances. Nonetheless, this dynamical effect cannot explain the varietyof observed ages and metallicity gradients. The consequences of a barred gravitational potentialon the gas dynamics and the stellar formation should therefore be investigated. This is the topicof the last set of numerical simulations produced which will allow to better understand the globalinfluence a bar has on the secular evolution of ETGs.
|
160 |
Images des représentations galoisiennes / Images of Galois representationsAnni, Samuele 24 October 2013 (has links)
Dans cette thèse, on étudie les représentations 2-dimensionnelles continues du groupe de Galois absolu d'une clôture algébrique fixée de Q sur les corps finis qui sont modulaires et leurs images. Ce manuscrit se compose de deux parties.Dans la première partie, on étudie un problème local-global pour les courbes elliptiques sur les corps de nombres. Soit E une courbe elliptique sur un corps de nombres K, et soit l un nombre premier. Si E admet une l-isogénie localement sur un ensemble de nombres premiers de densité 1 alors est-ce que E admet une l-isogénie sur K ? L'étude de la repréesentation galoisienne associéee à la l-torsion de E est l'ingrédient essentiel utilisé pour résoudre ce problème. On caractérise complètement les cas où le principe local-global n'est pas vérifié, et on obtient une borne supérieure pour les valeurs possibles de l pour lesquelles ce cas peut se produire.La deuxième partie a un but algorithmique : donner un algorithme pour calculer les images des représentations galoisiennes 2-dimensionnelles sur les corps finis attachées aux formes modulaires. L'un des résultats principaux est que l'algorithme n'utilise que des opérateurs de Hecke jusqu'à la borne de Sturm au niveau donné n dans presque tous les cas. En outre, presque tous les calculs sont effectués en caractéristique positive. On étudie la description locale de la représentation aux nombres premiers divisant le niveau et la caractéristique. En particulier, on obtient une caractérisation précise des formes propres dans l'espace des formes anciennes en caractéristique positive.On étudie aussi le conducteur de la tordue d'une représentation par un caractère et les coefficients de la forme de niveau et poids minimaux associée. L'algorithme est conçu à partir des résultats de Dickson, Khare-Wintenberger et Faber sur la classification, à conjugaison près, des sous-groupes finis de $\PGL_2(\overline{\F}_\ell)$. On caractérise chaque cas en donnant une description et des algorithmes pour le vérifier. En particulier, on donne une nouvelle approche pour les représentations irréductibles avec image projective isomorphe soit au groupe symétrique sur 4 éléments ou au groupe alterné sur 4 ou 5 éléments. / In this thesis we investigate $2$-dimensional, continuous, odd, residual Galois representations and their images. This manuscript consists of two parts.In the first part of this thesis we analyse a local-global problem for elliptic curves over number fields. Let $E$ be an elliptic curve over a number field $K$, and let $\ell$ be a prime number. If $E$ admits an $\ell$-isogeny locally at a set of primes with density one then does $E$ admit an $\ell$-isogeny over $K$? The study of the Galois representation associated to the $\ell$-torsion subgroup of $E$ is the crucial ingredient used to solve the problem. We characterize completely the cases where the local-global principle fails, obtaining an upper bound for the possible values of $\ell$ for which this can happen.In the second part of this thesis, we outline an algorithm for computing the image of a residual modular $2$-dimensional semi-simple Galois representation. This algorithm determines the image as a finite subgroup of $\GL_2(\overline{\F}_\ell)$, up to conjugation, as well as certain local properties of the representation and tabulate the result in a database. In this part of the thesis we show that, in almost all cases, in order to compute the image of such a representation it is sufficient to know the images of the Hecke operators up to the Sturm bound at the given level $n$. In addition, almost all the computations are performed in positive characteristic.In order to obtain such an algorithm, we study the local description of the representation at primes dividing the level and the characteristic: this leads to a complete description of the eigenforms in the old-space. Moreover, we investigate the conductor of the twist of a representation by characters and the coefficients of the form of minimal level and weight associated to it in order to optimize the computation of the projective image.The algorithm is designed using results of Dickson, Khare-Wintenberger and Faber on the classification, up to conjugation, of the finite subgroups of $\PGL_2(\overline{\F}_\ell)$. We characterize each possible case giving a precise description and algorithms to deal with it. In particular, we give a new approach and a construction to deal with irreducible representations with projective image isomorphic to either the symmetric group on $4$ elements or the alternating group on $4$ or $5$ elements.
|
Page generated in 0.0606 seconds