• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 58
  • 14
  • 1
  • Tagged with
  • 185
  • 82
  • 61
  • 59
  • 59
  • 31
  • 30
  • 28
  • 26
  • 26
  • 24
  • 23
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Méthode des éléments finis inversés pour des domaines non bornés / Inverted finite elements method for unbounded domains

Kaliche, Keltoum 16 February 2016 (has links)
La méthode des éléments finis inversés est une méthode sans troncature qui a été introduite pour résoudre des équations aux dérivées partielles en domaines non bornés. L’objective de cette thèse est d’analyser, d’adapter puis d’implémenter cette méthode pour résoudre quelques problèmes issus de la physique, notamment lorsque le domaine géométrique est l’espace R3 tout entier. Dans un premier temps, nous présentons de manière détaillée les aspects et les principes fondamentaux de la méthode. Ensuite, nous adapterons la méthode à des problèmes de type div-rot et de potentiels vecteurs posés dans R3. Après avoir analysé la convergence de la méthode, on montrera quelques résultats numériques obtenus avec un code tridimensionnel. On s’intéresse ensuite au problème de calcul de l’énergie magnétostatique dans des problèmes de micromagnétisme, où on développe avec succès une approche numérique utilisant les éléments finis inversés. Dans la dernière partie, on adapte la méthode à un problème provenant de la chimie quantique (modèle de continuum polarisable) pour lequel on prouve qu’elle donne des résultats numériques très prometteurs. La thèse comporte beaucoup de résultats numériques issus de codes tridimensionnels écrits ou co-écrits, notamment lorsque le domaine est l’espace tout entier. Elle comporte aussi des résultats théoriques liés à l’utilisation des espaces de Sobolev à poids comme cadre fonctionnel. On apporte en particulier une preuve constructive de quelques inégalités de type div-rot dans des domaines non bornés. / Inverted finite element method (IFEM) is a non runcature method which was introduced for solving partial differential equations in unbounded domains. The objective of this thesis is to analyze, to adapt and to implement IFEM for solving several problems arising in physics, especially when the domain is the whole space R3. We first give a presentation in which we detail the principles and the main features of the method. Then, we adapt IFEM for solving some div-curl systems and vector potential problems in the whole space. In a second part, we successfully develop an IFEM based approach for computing the stray-field energy in micromagnetism. In the last part, we are interested in the study of the polarizable continuum model arising in quantum chemistry. The manuscript contains a large number of numerical results obtained with some 3D codes, especially when the domain is the whole space R3. It also contains some theoretical results in relation with weighted Sobolev spaces. We give in particular a constructive proof of some div-curl inequalities in unbounded domains.
132

Equations aux dérivées partielles elliptiques du quatrième ordre avec exposants critiques de Sobolev sur les variétés riemanniennes avec et sans bord

CARAFFA BERNARD, Daniela 23 April 2003 (has links) (PDF)
L'objet de cette thèse est l'étude, sur les variétés riemanniennes compactes $(V_n,g)$ de dimension $n>4$, de l'équation aux dérivées partielles elliptique de quatrième ordre $$(E)\; \Delta^2u+\nabla [a(x)\nabla u] +h(x)u= f(x)|u|^(N-2)u$$ où $a$, $h$, $f$ sont fonction $C^\infty $, avec $f(x)$ fonction constante ou partout positive et $N=(2n\over((n-4)))$ est l'exposant critique. En utilisant la méthode variationnelle on prouve dans le théorème principal que l'équation $(E)$ admet une solution $C^((5,\alpha))(V)$ $0<\alpha<1$ non nulle si une certaine condition qui dépend de la meilleure constante dans les inclusion de Sobolev ($H_2\subset L_(2n\over(n-4))$) est satisfaite. De plus on montre que si $a$ et $h$ sont des fonctions constantes bien précisées la solution de l'équation est positive et $C^\infty(V)$. Lorsque $n\geq 6$, on donne aussi des applications du théorème principal. Dans la dernière partie de cette thèse sur une variété riemannienne compacte à bord de dimension $n$, $(\overline(W)_n,g )$ nous nous intéressons au problème : $$ (P_N) \; \left\lbrace \begin(array)(c) \Delta^2 v+\nabla [a(x)\nabla u] +h(x) v= f(x)|v |^(N-2)v \; \hbox(sur)\; W \\ \Delta v =\delta \, , \, v = \eta \;\hbox(sur) \;\partial W \end(array)\right.$$ avec $\delta$,$\eta$,$f$ fonctions $C^\infty (\overline (W))$ avec $f(x)$ fonction partout positive et on démontre l'existence d'une solution non triviale pour le problème $(P_N)$.
133

Stark-Heegner points and p-adic L-functions / Points de Stark-Heegner et fonctions L p-adiques

Casazza, Daniele 28 October 2016 (has links)
Soit K|Q un corps de nombres et soit ζK(s) sa fonction L complexe associée. La formule analytique du nombre de classes fournit un lien entre les valeurs spéciales de ζK(s) et les invariants du corps K. Elle admet une version Galois-équivariante. On a un schema similaire pour les courbes elliptiques. Soit E/Q une courbe elliptique et soit L(E/Q, s) sa fonction L complexe associée. La conjecture de Birch et Swinnerton-Dyer prédit un lien entre le comportement de L(E/Q, s) au point s = 1 et la structure des solutions rationnelles de l’équation definie par E. Comme la formule analytique du nombre de classes, la conjecture de Birch et Swinnerton-Dyer admet une version équivariante. La conjecture de Stark elliptique formulée par H. Darmon, A. Lauder et V. Rotger propose un analogue p-adique de la conjecture de Birch et Swinnerton-Dyer équivariante, qui nécessite certaines hypothèses. Dans leur article, les auteurs formulent la conjecture et donnent une démonstration dans certains cas où E a bonne réduction en p. Pour cela, ils utilisent la méthode de Garrett-Hida qui conduit à une factorisation de fonctions L p-adiques. Dans cette thèse on se concentre sur la conjecture de Stark elliptique et l’on montre comme il est possible d’étendre le résultat de Darmon, Lauder et Rotger. Dans le cas où E a bonne réduction en p on peut étendre le résultat en utilisant la méthode de Hida- Rankin. Cette méthode nous donne un contrôle meilleur sur les constantes apparaissant dans les formules et nous amène à une formule explicite contenant les invariants de la courbe elliptique. Pour obtenir le résultat on adapte la preuve du théorème principal de Darmon, Lauder et Rotger à notre cas et on utilise une formule p-adique de Gross et Zagier qui relie les valeurs spéciales de la fonction L padique de Bertolini-Darmon-Prasanna et les points de Heegner. Ensuite on voit comment étendre notre résultat et celui de Darmon-Lauder-Rotger au cas où E a réduction multiplicative en p. Dans ce cadre, on ne peut pas utiliser la fonction L p-adique de Bertolini-Darmon-Prasanna en raison de problèmes techniques. Pour éliminer cette difficulté on consid`ere la fonction L p-adique de Castellà. On utilise aussi la méthode de Garrett-Hida ainsi que la méthode d’Hida-Rankin et l’on obtient des résultats similaires aux cas de bonne réduction. / Let K|Q be a number field and let ζK(s) be its associated complex L-function. The analytic class number formula relates special values of ζK(s) with algebraic invariants of the field K itself. It admits a Galois equivariant refinement known as Stark conjectures. We have a very similar picture in the case of elliptic curves. Let E/Q be an elliptic curve and let L(E/Q, s) be its associated complex L-function. The conjecture of Birch and Swinnerton-Dyer relates the behaviour of L(E/Q, s) at s = 1 to the structure of rational solutions of the equation defined by E. The equivariant Birch and Swinnerton- Dyer conjecture is obtained including in the picture the action of Galois groups. The elliptic Stark conjecture formulated by H. Darmon, A. Lauder and V. Rotger purposes a p-adic analogue of the equivariant Birch and Swinnerton-Dyer conjecture, under several assumption. In their paper, the authors formulate the conjecture and prove it in some cases of good reduction of E at p using Garrett-Hida method and performing a factorization of p-adic L-functions. In this dissertation we focus on the elliptic Stark conjecture and we show how it is possible to extend the result of Darmon, Lauder and Rotger. In the case of good reduction of E at p we can slightly extend the result using Hida- Rankin method. This method also gives us a better control of the constants appearing in the result, thus yielding an explicit formula which contains invariants associated with the elliptic curve. To achieve the proof we mimic the main result of Darmon, Lauder and Rotger in our setting and we make use of a p-adic Gross-Zagier formula which relates special values of the Bertolini-Darmon-Prasanna p-adic L-function to Heegner points. In a second moment we extend both our result and Darmon-Lauder-Rotger result to the case of multi- plicative reduction of E at p. In this setting we cannot use Bertolini- Darmon Prasanna p-adic L-function due to some technical reasons. In order to avoid the problem we consider Castellà’s two variables p-adic L-function. We use both Garrett-Hida method and Hida-Rankin method. In the two cases we obtain formulae which are similar to those of the good reduction setting.
134

Contribution à l’étude de la conjecture de Gras et de la conjecture principale d’Iwasawa, par les systèmes d’Euler / Contribution of the study of Gras conjecture and Iwasawa’s main conjecture, by Euler systems

Viguié, Stéphane 12 December 2011 (has links)
Le but de ce travail est de montrer comment la théorie des systèmes d’Euler permet de comparer, dans certaines extensions abéliennes, le module galoisien des unités globales modulo unités de Stark avec le module galoisien des p-classes d’idéaux. On ne s’intéresse ici qu’aux extensions abéliennes ayant pour corps de base k un corps quadratique imaginaire, ou un corps global de caractéristique non nulle. La conjecture de Gras prévoit que pour toute extension abélienne finie K/k, tout nombre premier p premier à [K : k], et tout Qp-caractère ψ irréductible et non trivial de Gal (K/k), les ψ-parties du groupe des p-classes de K et du groupe des unités de K modulo le groupe des unités de Stark ont le même cardinal. Après avoir démontré une version faible de la conjecture, nous reprenons la méthode des systèmes d’Euler afin d’étendre les résultats obtenus entre autres par Rubin, Xu et Zhao. Ensuite nous nous plaçons dans le cas où k est un corps quadratique imaginaire uniquement, et nous considérons une certaine Zp-extension k∞ de k, où p est un nombre premier différent de 2 et 3, décomposé dans k. Nous démontrons que pour toute extension finie K∞ de k∞ abélienne sur k, et tout Cp-caractère irréductible χ du sous-groupe de torsion de Gal(K∞/k), les idéaux caractéristiques des χ-quotients du module des p-classes et du module des unités modulo unités de Stark sont les mêmes. Il s'agit d'une des versions de la conjecture principale de la théorie d’Iwasawa, qui élargit un résultat de Rubin et Bley. C'est aussi une étape pour un travail ultérieur, où nous étendons un résultat de Rubin concernant la conjecture principale à deux variables / The goal of this work is to show how Euler systems allows us to compare, for some abelian extensions, the Galois module of global units modulo Stark units with the Galois module of ideal p-classes. We restricts ourselves to abelian extensions over a base field k which can be an imaginary quadratic field or a global field of positive characteristic. The Gras conjecture predicts that for all finite abelian extension K/k, all prime number p not dividing [K : k], and all irreducible and nontrivial Qp-character ψ of Gal (K/k), the ψ-part of the p-class group of K and the ψ-part of the group of global units modulo Stark units have the same cardinal. First we prove a weak form of the conjecture, and then we use Euler systems to extend the results obtained among others by Rubin, Xu et Zhao. Then we assume that k is an imaginary quadratic field, and we consider a special Zp-extension k∞ of k, where p is a prime number different from 2 and 3, decomposed in k. We prove that for all finite extension K∞ of k∞ abelian over k, and for all irreducible Cp-character χ of the torsion subgroup of Gal(K∞/k), the characteristic ideal of the χ-quotients of the module of p-classes and the characteristic ideal of the module of global units modulo Stark units are the same. It is one of the versions of the main conjecture in Iwasawa theory, which extends a result of Rubin and Bley. It is also a step for a further work, where we extend a result of Rubin on the two variables main conjecture
135

Explicit computation of the Abel-Jacobi map and its inverse / Calcul explicite de l'application d'Abel-Jacobi et de son inverse

Labrande, Hugo 14 November 2016 (has links)
L'application d'Abel-Jacobi fait le lien entre la forme de Weierstrass d'une courbe elliptique définie sur C et le tore complexe qui lui est associé. Il est possible de la calculer en un nombre d'opérations quasi-linéaire en la précision voulue, c'est à dire en temps O(M(P) log P). Son inverse est donné par la fonction p de Weierstrass, qui s'exprime en fonction de thêta, une fonction importante en théorie des nombres. L'algorithme naturel d'évaluation de thêta nécessite O(M(P) sqrt(P)) opérations, mais certaines valeurs (les thêta-constantes) peuvent être calculées en O(M(P) log P) opérations en exploitant les liens avec la moyenne arithmético-géométrique (AGM). Dans ce manuscrit, nous généralisons cet algorithme afin de calculer thêta en O(M(P) log P). Nous exhibons une fonction F qui a des propriétés similaires à l'AGM. D'une façon similaire à l'algorithme pour les thêta-constantes, nous pouvons alors utiliser la méthode de Newton pour calculer la valeur de thêta. Nous avons implanté cet algorithme, qui est plus rapide que la méthode naïve pour des précisions supérieures à 300 000 chiffres décimaux. Nous montrons comment généraliser cet algorithme en genre supérieur, et en particulier comment généraliser la fonction F. En genre 2, nous sommes parvenus à prouver que la même méthode mène à un algorithme qui évalue thêta en O(M(P) log P) opérations ; la même complexité s'applique aussi à l'application d'Abel-Jacobi. Cet algorithme est plus rapide que la méthode naïve pour des précisions plus faibles qu'en genre 1, de l'ordre de 3 000 chiffres décimaux. Nous esquissons également des pistes pour obtenir la même complexité en genre quelconque. Enfin, nous exhibons un nouvel algorithme permettant de calculer une isogénie de courbes elliptiques de noyau donné. Cet algorithme utilise l'application d'Abel-Jacobi, car il est facile d'évaluer l'isogénie sur le tore ; il est sans doute possible de le généraliser au genre supérieur / The Abel-Jacobi map links the short Weierstrass form of a complex elliptic curve to the complex torus associated to it. One can compute it with a number of operations which is quasi-linear in the target precision, i.e. in time O(M(P) log P). Its inverse is given by Weierstrass's p-function, which can be written as a function of theta, an important function in number theory. The natural algorithm for evaluating theta requires O(M(P) sqrt(P)) operations, but some values (the theta-constants) can be computed in O(M(P) log P) operations by exploiting the links with the arithmetico-geometric mean (AGM). In this manuscript, we generalize this algorithm in order to compute theta in O(M(P) log P). We give a function F which has similar properties to the AGM. As with the algorithm for theta-constants, we can then use Newton's method to compute the value of theta. We implemented this algorithm, which is faster than the naive method for precisions larger than 300,000 decimal digits. We then study the generalization of this algorithm in higher genus, and in particular how to generalize the F function. In genus 2, we managed to prove that the same method leads to a O(M(P) log P) algorithm for theta; the same complexity applies to the Abel-Jacobi map. This algorithm is faster than the naive method for precisions smaller than in genus 1, of about 3,000 decimal digits. We also outline a way one could reach the same complexity in any genus. Finally, we study a new algorithm which computes an isogeny of elliptic curves with given kernel. This algorithm uses the Abel-Jacobi map because it is easy to evaluate the isogeny on the complex torus; this algorithm may be generalizable to higher genera
136

Étude de quelques problèmes elliptiques et paraboliques quasi-linéaires avec singularités / Study of some quasilinear and singular elliptic and parabolic problems

Sauvy, Paul 04 December 2012 (has links)
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles non-linéaires. Plus précisément, nous avons fait ici l’étude de problèmes quasi-linéaires singuliers. Le terme "singulier" fait référence à l’intervention d’une non-linéarité qui explose au bord du domaine où ’équation est posée. La présence d’une telle singularité entraîne un manque de régularité et donc de compacité des solutions qui ne nous permet pas d’appliquer directement les méthodes classiques de l’analyse non-linéaire pour démontrer l’existence de solutions et discuter des propriétés de régularité et de comportement asymptotique de ces solutions. Pour contourner cette difficulté, nous sommes amenés à établir des estimations a priori très fines au voisinage du bord du domaine en combinant diverses méthodes : méthodes de monotonie (reliée au principe du maximum), méthodes variationnelles, argument de convexité, méthodes de point fixe et semi-discrétisation en temps. A travers, l’étude de trois problèmes-modèle faisant intervenir l’opérateur p-Laplacien, nous avons montré comment ces différentes méthodes pouvaient être mises en œuvre. Les résultats que nous avons obtenus sont décrits dans les trois chapitres de cette thèse : Dans le Chapitre I, nous avons étudié un problème d’absorption elliptique singulier. En utilisant des méthodes de sur- et sous solutions et des méthodes variationnelles, nous établissons des résultats d’existence de solutions. Par des méthodes de comparaison locale, nous démontrons également la propriété de support compact de ces solutions, pour de fortes singularités. Dans le Chapitre II, nous étudions le cas d’un système d’équations quasi-linéaires singulières. Par des arguments de point fixe et de monotonie, nous démontrons deux résultats généraux d’existence de solutions. Dans un deuxième temps, nous faisons une analyse plus détaillée de systèmes du type Gierer-Meinhardt modélisant des phénomènes biologiques. Des résultats d’unicité ainsi que des estimations précises sur le comportement des solutions sont alors obtenus. Dans le Chapitre III, nous faisons l’étude d’un problème d’absorption, parabolique singulier. Nous établissons par une méthode de semi-discrétisation en temps des résultats d’existence de solutions. Grâce à des inégalités d’énergie, nous démontrons également l’extinction en temps fini de ces solutions. / This thesis deals with the mathematical field of nonlinear partial differential equations analysis. More precisely, we focus on quasilinear and singular problems. By singularity, we mean that the problems that we have considered involve a nonlinearity in the equation which blows-up near the boundary. This singular pattern gives rise to a lack of regularity and compactness that prevent the straightforward applications of classical methods in nonlinear analysis used for proving existence of solutions and for establishing the regularity properties and the asymptotic behavior of the solutions. To overcome this difficulty, we establish estimations on the precise behavior of the solutions near the boundary combining several techniques : monotonicity method (related to the maximum principle), variational method, convexity arguments, fixed point methods and semi-discretization in time. Throughout the study of three problems involving the p-Laplacian operator, we show how to apply this different methods. The three chapters of this dissertation the describes results we get :– In Chapter I, we study a singular elliptic absorption problem. By using sub- and super-solutions and variational methods, we prove the existence of the solutions. In the case of a strong singularity, by using local comparison techniques, we also prove that the compact support of the solution. In Chapter II, we study a singular elliptic system. By using fixed point and monotonicity arguments, we establish two general theorems on the existence of solution. In a second time, we more precisely analyse the Gierer-Meinhardt systems which model some biological phenomena. We prove some results about the uniqueness and the precise behavior of the solutions. In Chapter III, we study a singular parabolic absorption problem. By using a semi-discretization in time method, we establish the existence of a solution. Moreover, by using differential energy inequalities, we prove that the solution vanishes in finite time. This phenomenon is called "quenching".
137

Problématiques d’analyse numérique et de modélisation pour écoulements de fluides environnementaux / Mathematical modeling and numerical analysis of environmental flows

Cathala, Mathieu 18 October 2013 (has links)
Ce travail s'inscrit dans l'étude mathématique d'écoulements de fluides environnementaux. Nous en abordons deux aspects, à travers deux contextes distincts d'application.En lien avec la simulation des écoulements en milieux poreux, on s'intéresse dans une première partie à la discrétisation d'opérateurs de diffusion anisotropes hétérogènes par des méthodes de volumes finis sur des maillages généraux. Dans le but d'obtenir des solutions approchées qui respectent les bornes physiques des modèles, notre attention se porte sur la conservation du principe du maximum pour les opérateurs elliptiques. Nous présentons des mécanismes généraux permettant de corriger tout schéma volumes finis afin de garantir un principe du maximum discret tout en préservant certaines de ses propriétés principales. On étudie en particulier les propriétés de coercivité et de convergence des schémas corrigés.La deuxième partie est consacrée à la construction de modèles approchés pour la propagation des vagues en eaux peu profondes et sur des topographies irrégulières. A cet effet, nous proposons tout d'abord une adaptation de la démarche d'étude classique à des écoulements bidimensionnels sur des topographies polygonales. Dans un cadre plus général, nous développons ensuite une démarche formelle qui débouche sur des alternatives non locales à quelques modèles classiques (équations de Saint-Venant, équations de Serre, système de Boussinesq). Ces nouveaux modèles contiennent des termes régularisants pour les contributions du fond. / This work investigates two research questions associated with environmental flows and their mathematical modeling.The first part is devoted to the development of finite volume methods for anisotropic and heterogeneous diffusion operators arising in models of porous media flows. To ensure that the approximate solutions lie within physical bounds, we aim at maintaining a discrete analogous of the maximum principle for elliptic operators. Starting from any given cell-centered finite volume scheme, we present a general approach to devise non-linear corrections providing a discrete maximum principle while retaining some main properties of the scheme. In particular, we study the coercivity and convergence properties of the modified schemes.The second part of this work focuses on the derivation of approximate models for shallow water wave propagation over rough topographies. In the particular case of one-dimensional polygonal bottom profiles, we first propose an adaptation of the usual derivation method using complex analysis tools. We then develop a formal approach to account for more general topographies. We propose nonlocal alternatives to some classical models (namely Saint-Venant equations, Serre equations and Boussinesq system). All these alternative models only involve smoothing contributions of the bottom.
138

Analyse de nouvelles primitives cryptographiques pour les schémas Diffie-Hellman / Analysis of new cryptographic primitives for Diffie-Hellman schemes

Kammerer, Jean-Gabriel 23 May 2013 (has links)
L'objet de cette thèse est l'étude de diverses primitives cryptographiques utiles dans des protocoles Diffie-Hellman. Nous étudions tout d'abord les protocoles Diffie-Helmman sur des structures commutatives ou non. Nous en proposons une formulation unifiée et mettons en évidence les différents problèmes difficiles associés dans les deux contextes. La première partie est consacrée à l'étude de pseudo-paramétrisations de courbes algébriques en temps constant déterministe, avec application aux fonctions de hachage vers les courbes. Les propriétés des courbes algébriques en font une structure de choix pour l'instanciation de protocoles reposant sur le problème Diffie-Hellman. En particulier, ces protocoles utilisent des fonctions qui hachent directement un message vers la courbe. Nous proposons de nouvelles fonctions d'encodage vers les courbes elliptiques et pour de larges classes de fonctions hyperelliptiques. Nous montrons ensuite comment l'étude de la géométrie des tangentes aux points d'inflexion des courbes elliptiques permet d'unifier les fonctions proposées tant dans la littérature que dans cette thèse. Dans la troisième partie, nous nous intéressons à une nouvelle instanciation de l'échange Diffie-Hellman. Elle repose sur la difficulté de résoudre un problème de factorisation dans un anneau de polynômes non-commutatifs. Nous montrons comment un problème de décomposition Diffie-Hellman sur un groupe non-commutatif peut se ramener à un simple problème d'algèbre linéaire pourvu que les éléments du groupe admettent une représentation par des matrices. Bien qu'elle ne soit pas applicable directement au cas des polynômes tordus puisqu'ils n'ont pas d'inverse, nous profitons de l'existence d'une notion de divisibilité pour contourner cette difficulté. Finalement, nous montrons qu'il est possible de résoudre le problème Diffie-Hellman sur les polynômes tordus avec complexité polynomiale. / In this thesis, we study several cryptographic primitives of use in Diffie-Hellman like protocols. We first study Diffie-Hellman protocols on commutative or noncommutative structures. We propose an unified wording of such protocols and bring out on which supposedly hard problem both constructions rely on. The first part is devoted to the study of pseudo-parameterization of algebraic curves in deterministic constant time, with application to hash function into curves. Algebraic curves are indeed particularly interesting for Diffie-Hellman like protocols. These protocols often use hash functions which directly hash into the curve. We propose new encoding functions toward elliptic curves and toward large classes of hyperelliptic curves. We then show how the study of the geometry of flex tangent of elliptic curves unifies the encoding functions as proposed in the litterature and in this thesis. In the third part, we are interested in a new instantiation of the Diffie-Hellman key exchange. It relies on the difficulty of factoring in a non-commutative polynomial ring. We show how to reduce a Diffie-Hellman decomposition problem over a noncommutative group to a simple linear algebra problem, provided that group elements can be represented by matrices. Although this is not directly relevant to the skew polynomial ring because they have no inverse, we use the divisibility to circumvent this difficulty. Finally, we show it's possible to solve the Diffie-Hellman problem on skew polynomials with polynomial complexity.
139

La mesure de Mahler d’une forme de Weierstrass

Giard, Antoine 05 1900 (has links)
No description available.
140

La distribution des zéros des fonctions L

Comeau-Lapointe, Antoine 08 1900 (has links)
No description available.

Page generated in 0.0511 seconds