• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 58
  • 14
  • 1
  • Tagged with
  • 185
  • 82
  • 61
  • 59
  • 59
  • 31
  • 30
  • 28
  • 26
  • 26
  • 24
  • 23
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Etude de deux problèmes quasilinéaires elliptiques avec terme de source relatif à la fonction ou à son gradient

Abdel Hamid, Haydar 07 December 2009 (has links) (PDF)
Dans ce manuscrit de thèse nous présentons des nouveaux résultats concernant l'existence, la non-existence, la multiplicité et la régularité des solutions positives pour deux problèmes quasilinéaires elliptiques avec conditions de Dirichlet dans un domaine borné. Dans le chapitre 1 d'introduction, nous décrivons les deux problèmes que nous allons étudier et nous donnons les principaux résultats. Le premier, d'inconnue u, comporte un terme de source de gradient à croissance critique. Le second, d'inconnue v, contient un terme source d'ordre 0. Dans le chapitre 2 nous donnons des nouveaux résultats de régularité des solutions renormalisées utiles pour notre étude. A l'aide d'un changement d'inconnue, nous établissons un lien précis entre les problèmes en u et v. Le chapitre 3 est consacré à montrer ce lien et à donner une première application. Dans les chapitres 4 et 5 nous traitons de l'existence de solutions, la solution extrémale et sa régularité, l'existence d'une deuxième solution bornée du problème en v. Dans le chapitre 6 nous démontrons un résultat d'existence pour le problème en v avec des données mesures de Radon bornées quelconques. Dans le chapitre 7 nous obtenons des nouveaux résultats pour le problème en u en utilisant la connexion entre ces deux problèmes.
142

Méthodes analytiques pour le Risque des Portefeuilles Financiers

SADEFO KAMDEM, Jules 15 December 2004 (has links) (PDF)
Dans cette thèse, on propose des méthodes analytiques ou numériques pour l'estimation de la VaR ou l'Expected Shortfall des portefeuilles linéaires, quadratiques, lorsque le vecteur des facteurs de risques suit un mélange convexe de distributions elliptiques. Aussi, on introduit pour la prémière fois la notion de "portefeuille quadratique" d'actifs de bases (ie. actions).
143

Etude de Certaines Equations aux Dérivées Partielles

Droniou, Jérôme 18 June 2001 (has links) (PDF)
La première partie de ce travail concerne les équations elliptiques non coercitives. Nous prouvons, tout d'abord dans un cadre linéaire, l'existence et l'unicité d'une solution faible dans l'espace d'énergie habituel $H^1(\Omega)$ pour une classe d'équations de convection-diffusion pour lesquelles le terme de convection provoque la perte de coercitivité. Nous prouvons des résultats de régularité höldérienne sur les solutions de ces équations qui permettent ensuite de résoudre ces mêmes équations avec un second membre mesure. Nous étendons aussi les résultats d'existence et d'unicité d'une solution dans des cas variationnels non-linéaires non-coercitifs et nous étudions, pour une équation elliptique linéaire non-coercitive, la convergence d'un schéma volumes finis. La deuxième partie concerne l'unicité des solutions à des problèmes elliptiques non-linéaires avec seconds membres mesure. La troisième partie aborde la question de la condition d'hyperbolicité des systèmes du premier ordre à coefficients constants. Nous prouvons une CNS pour qu'un tel système ait une solution pour toute condition initiale de type Riemann (condition initiale naturelle dans l'étude des discrétisations numériques de ces systèmes). A l'aide d'un système particulier, nous étudions ensuite la différence entre notre CNS et les diverses conditions d'hyperbolicité de la littérature, puis nous prouvons que la solution d'un système hyperbolique n'est pas toujours stable par rapport au flux. La quatrième partie rassemble quelques autres travaux. Le premier concerne la densité dans $W^{1,p}(\Omega)$ des fonctions régulières satisfaisant une condition de Neumann. Le second est l'étude d'une discrétisation EF mixtes---VF pour un écoulement diphasique à travers un milieu poreux. Le troisième et dernier est l'étude des mesures sur $]0,T[\times \Omega$ ne chargeant pas le boréliens de capacité parabolique nulle et l'application de cette étude à la résolution d'une équation parabolique non-linéaire avec second membre mesure.
144

Trace au bord de solutions d'équations de Hamilton-Jacobi elliptiques et trace initiale de solutions d'équations de la chaleur avec absorption sur-linéaire

Nguyen, Phuoc Tai 02 February 2012 (has links) (PDF)
Cette thèse est constituée de trois parties. Dans la première partie, on s'intéresse au problème de trace au bord d'une solution positive de l'équation de Hamilton-Jacobi (E1) $-\Delta u+g(|\nabla u|)=0$ dans un domaine borné $\Omega$ de ${\mathbb R}^N$, satisfaisant (E2) $u = \mu$ sur $\partial \Omega$. Si $g(r) \geq r^q$ avec $q > 1$, on prouve que toute solution positive de (E1) admet une trace au bord considérée comme une mesure de Borel régulière, pas nécessairement localement bornée. Si $g(r) = r^q$ avec $1 < q < q_c = \frac{N+1}{N}$ , on montre l'existence d'une solution positive dont la trace au bord est une mesure de Borel régulière $\nu \not \equiv \infty$ et on caractérise les singularités frontières isolées de solutions positives. Si $g(r) = r^q$ avec $q_c \leq q < 2$, on établit une condition nécessaire de résolution en terme de capacité de Bessel $C_{\frac{2-q}{q},q'} . On étudie aussi des ensembles éliminables au bord pour des solutions modérées. La deuxième partie est consacrée à étudier la limite, lorsque $k \to \infty$, de solutions d'équation $\partial_t u - \Delta u + f(u) =0$ dans ${\mathbb R}^N \times (0;\infty)$ avec donnée initiale $k\delta_0$ où $0$ est la masse de Dirac concentrée à l'origine et f est une fonction positive, continue, croissante et satisfaisant $f(0) = f^{-1}(0) = 0$. On prouve, sous certaines hypothèses portant sur f, qu'il existe essentiellement trois types de comportement possible en fonction des valeurs finies ou infinies des intégrales $\int_1^\infty f^{-1}(s)ds$ et $\int_1^\infty F^{-1/2}(s)ds$, où $F(s)=\int_0^s f(r)dr$. Grâce à ces résultats, on donne une nouvelle construction de la trace initiale et quelques résultats d'unicité et de non-unicité de solutions dont la donnée initiale n'est pas bornée. Dans la troisième partie, on élargit le cadre de nos investigations et généralise les résultats obtenus dans la deuxième partie au cas où l'opérateur est non-linéaire. En particulier, on s'intéresse à des propriétés qualitatives de solutions positives de l'équation $ \partial_t u-\Delta_p u+f(u)=0$ où $p > 1, \Delta_p u = div(\abs{\nabla u}^{p-2}\nabla u)$ et $f$ est une fonction continue, croissante, positive et satisfaisant $f(0) = 0 = f^{-1}(0)$. Si $p > \frac{2N}{N+1}$, on fournit une condition suffisante portant sur f pour l'existence et l'unicité des solutions fondamentales de données initiales $k\delta_0$ et on étudie la limite, lorsque $k \to \infty$, qui dépend du fait que $f^{-1}$ et $F^{-1/p}$ soient intégrables à l'infini ou pas, où $F(s) =\int_0^s f(r)dr. On donne aussi de nouveaux résultats de non-unicité de solutions avec donnée initiale non bornée. Si $p \geq 2$, on prouve que toute solution positive admet une trace initiale dans la classe de mesures de Borel régulières positives. Finalement on applique les résultats ci-dessus au cas modèle $f(u)=u^\alpha \ln^\beta(u+1)$ avec $\alpha>0$ et $\beta>0$.
145

Quelques problèmes de contrôle d'équations aux dérivées partielles : inégalités spectrales, systèmes couplés et limites singulières

Léautaud, Matthieu 22 June 2011 (has links) (PDF)
Dans cette thèse, on s'intéresse à la contrôlabilité de différentes équations aux dérivées partielles. La première partie est consacrée à la méthode de Lebeau-Robbiano pour le contrôle des équations paraboliques linéaires. On étend tout d'abord cette méthode à des opérateurs elliptiques non-autoadjoints, montrant une inégalité spectrale ainsi que la contrôlabilité de l'équation parabolique associée. On prouve ensuite ces deux propriétés pour un modèle de transmission à travers une interface, pour lequel la condition de transmission implique une diffusion tangentielle. La preuve repose sur une inégalité de Carleman, uniforme par rapport au petit paramètre représentant l'épaisseur de l'interface. Dans la deuxième partie, on analyse les propriétés de certains systèmes d'équations aux dérivées partielles linéaires couplées par des termes d'ordre zéro. Après avoir étudié la stabilisation de deux équations d'ondes, dont une seulement est amortie, on montre la contrôlabilité en temps grand d'un système similaire au moyen d'un seul contrôle, sous des conditions géométriques optimales sur les zones de contrôle et de couplage. Par des méthodes d'analyse microlocale, on obtient de plus la contrôlabilité de systèmes d'ondes en cascade, ainsi que l'expression exacte du temps minimal de contrôle. On déduit de ces résultats la contrôlabilité des systèmes paraboliques associés, dans des situations où les zones de contrôle et de couplage sont disjointes. Enfin, dans la troisième partie, on étudie la contrôlabilité uniforme de perturbations visqueuses de lois de conservation scalaires, dans la limite de viscosité évanescente. On montre la contrôlabilité exacte globale aux états constants au moyen de contrôles uniformément bornés lorsque la viscosité tend vers zéro.
146

Autour de la conjecture de parité

De La Rochefoucauld, Thomas 22 October 2012 (has links) (PDF)
Cette thèse porte sur des questions liées à la conjecture de parité. On démontre la conjecture de p-parité pour un certain twist d'une courbe elliptique sur un corps local. On en déduit des résultats globaux d'invariance de la conjecture de p-parité (pour une courbe elliptique) par certaines extensions. Avec l'objectif de généraliser les résultats précédents, on démontre une formule pour les signes locaux des représentations essentiellement symplectiques et modérément ramifiées du groupe de Weil. Cette formule généralise celle, déjà connue, pour les courbes elliptiques ayant potentiellement bonne réduction. Finalement, on fait un premier pas vers la généralisation escomptée en comparant les nombres de Tamagawa et les constantes de régulation pour certains prémotifs.
147

Problématiques d'analyse numérique et de modélisation pour écoulements de fluides environnementaux

Cathala, Mathieu 18 October 2013 (has links) (PDF)
Ce travail s'inscrit dans l'étude mathématique d'écoulements de fluides environnementaux. Nous en abordons deux aspects, à travers deux contextes distincts d'application.En lien avec la simulation des écoulements en milieux poreux, on s'intéresse dans une première partie à la discrétisation d'opérateurs de diffusion anisotropes hétérogènes par des méthodes de volumes finis sur des maillages généraux. Dans le but d'obtenir des solutions approchées qui respectent les bornes physiques des modèles, notre attention se porte sur la conservation du principe du maximum pour les opérateurs elliptiques. Nous présentons des mécanismes généraux permettant de corriger tout schéma volumes finis afin de garantir un principe du maximum discret tout en préservant certaines de ses propriétés principales. On étudie en particulier les propriétés de coercivité et de convergence des schémas corrigés.La deuxième partie est consacrée à la construction de modèles approchés pour la propagation des vagues en eaux peu profondes et sur des topographies irrégulières. A cet effet, nous proposons tout d'abord une adaptation de la démarche d'étude classique à des écoulements bidimensionnels sur des topographies polygonales. Dans un cadre plus général, nous développons ensuite une démarche formelle qui débouche sur des alternatives non locales à quelques modèles classiques (équations de Saint-Venant, équations de Serre, système de Boussinesq). Ces nouveaux modèles contiennent des termes régularisants pour les contributions du fond.
148

Conception et sécurisation d'unités arithmétiques hautes performances pour courbes elliptiques

Francq, Julien 16 December 2009 (has links) (PDF)
La cryptographie basée sur les courbes elliptiques (ECC) est de plus en plus utilisée dans les cryptosystèmes à clé publique, notamment parce qu'à niveau de sécurité équivalent, la taille nécessaire des clés ECC est nettement inférieure à ce que son prédécesseur, le RSA, requiert. L'ECC conduit donc à implanter des circuits plus compacts que pour le RSA, ce qui indique qu'elle est plus adaptée aux circuits fortement contraints (cartes à puce, etc.). L'ECC a d'ailleurs bénéficié de l'amélioration continue de l'arithmétique (des ordinateurs et des courbes) ces dernières années, ce qui lui permet de se positionner comme un remplaçant crédible au RSA dans le monde industriel. Il est vrai qu'un concepteur de circuits cryptographiques doit chercher à améliorer les performances de son cryptosystème, mais il doit également protéger ce dernier contre des attaques physiques pouvant compromettre sa sécurité. En effet, des attaques efficaces dites "par observation" et "par perturbation" ont été mises en évidence. Le concepteur de circuits cryptographiques doit donc implanter des parades à ces attaques, également appelées contre-mesures. Cependant, l'ajout de ces contre-mesures ne doit pas d'une part ajouter de nouvelles vulnérabilités au cryptosystème, et d'autre part diminuer drastiquement ses performances. Ces travaux de thése proposent une nouvelle architecture d'unité arithmétique pour l'ECC. Il se trouve que les performances de cette derniére sont meilleures que la plupart de celles présentes dans la littérature. Ceci est essentiellement dû à l'utilisation d'une représentation redondante des nombres, appelée repréesentation à retenues signées. Le second r'ésultat principal de ces travaux provient de la protection de cette unité contre les attaques par observation à l'aide de l'état de l'art : ce faisant, nous proposons là encore la solution la plus performante de la littérature. Enfin, nous avons exploré la possibilié de protéger notre circuit contre les attaques par perturbation à l'aide du principe de la préservation de la parité. Cette dernière contribution amène des réesultats encourageants
149

Développements asymptotiques topologiques pour une classe d'équations elliptiques quasilinéaires. Estimations et développements asymptotiques de p-capacités de condensateurs. Le cas anisotrope du segment.

Bonnafé, Alain 16 July 2013 (has links) (PDF)
Les développements asymptotiques topologiques n'ont pas encore été étudiés pour les équations elliptiques quasilinéaires. Cette question apparaît dans la perspective d'appliquer les méthodes d'asymptotique topologique en optimisation de forme aux équations non linéaires de l'élasticité comme en imagerie pour la détection d'ensembles de codimension $\geq 2$ (points en 2D ou courbes en 3D). Dans la Partie I, notre principal résultat réside dans l'obtention du développement asymptotique topologique pour une classe d'équations elliptiques quasilinéaires, perturbées dans des sous-domaines non vides. Le gradient topologique peut être décomposé en un terme linéaire classique et en un terme nouveau, qui rend compte de la non linéarité. L'étude des difficultés spécifiques qui apparaissent avec l'équation de p-Laplace, par comparaison avec l'équation de Laplace, montre qu'un point central réside dans la possibilité de définir la variation de l'état direct à l'échelle 1 dans R^N. Nous étudions en conséquence des espaces de Sobolev à poids et quotientés, dont la semi-norme est la somme des normes L^p et L^2 du gradient dans R^N. Puis nous construisons une classe d'équations elliptiques quasilinéaires, telle que le problème définissant l'état direct à l'échelle 1 vérifie une double propriété de p- et 2- ellipticité. La méthode se poursuit par l'étude du comportement asymptotique de la solution du problème d'interface non linéaire dans R^N et par une mise en dualité appropriée des états directs et adjoints aux différentes étapes d'approximation pour les variations de l'état direct. La Partie II traite d'estimations et de développements asymptotiques de p-capacités de condensateurs, dont l'obstacle est d'intérieur vide et de codimension $\geq 2$. Après quelques résultats préliminaires, nous introduisons les condensateurs équidistants pour étudier le cas des segments. L'effet anisotrope engendré par un segment dans l'équation de p-Laplace est tel que l'inégalité de réarrangement de Pólya-Szegö pour les intégrales de type Dirichlet fournit un minorant trivial. De plus, quand p > N, on ne peut construire par extension une solution admissible pour le segment, aussi petite sa longueur soit-elle, à partir du cas du point. Nous établissons une minoration de la p-capacité N-dimensionnelle d'un segment, qui fait intervenir les p-capacités d'un point, respectivement en dimensions N et (N−1). Les cas de positivité de la p-capacité s'en déduisent. Notre méthode peut être étendue à des obstacles de dimensions supérieures et de codimension $\geq 2$. Introduisant les condensateurs elliptiques, nous montrons que le gradient topologique de la 2-capacité n'est pas un outil approprié pour distinguer les courbes et les obstacles d'intérieur non vide en 2D. Une solution pourrait être de choisir différentes valeurs de p ou bien de considérer le développement asymptotique à l'ordre 2, i.e. la hessienne topologique.
150

Implémentation matérielle de coprocesseurs haute performance pour la cryptographie asymétrique

Guillermin, Nicolas 06 January 2012 (has links) (PDF)
Dans cette thèse, je propose des architectures de coprocesseurs haute performance pour implémenter les primitives de cryptographie asymétrique, comme le RSA, les courbes elliptiques ou le couplage. Les coprocesseurs décrits dans cette thèse ont été implémentés dans des FPGA, et présentent des performances jamais égalées auparavant dans la littérature publique sur ce type de technologie. La particularité de ces architectures est l'utilisation du Residue Number System, un mode de représentation alternatif qui utilise les restes chinois pour calculer efficacement les opérations arithmétiques sur les grands nombres. Ces travaux permettent de confirmer expérimentalement les avantages théoriques de ce mode de représentation pour l'arithmétique modulaire, issus de [14, 13, 43]. Au bénéfice théorique que le RNS apporte s'ajoute une forte capacité de parallélisation qui permet d'obtenir des designs réguliers et pipelinés, proposant une fréquence maximale importante tout en réalisant les opérations modulaires dans un nombre très faible de cycles, et ce quelle que soit la taille des nombres. A titre d'exemple, une multiplication scalaire sur une courbe de 160 bits s'effectue en 0.57 ms sur un Altera Stratix, et en 4 ms pour une courbe de 512 bits, là ou les techniques de représentation classiques réalisent la même opération en le double de temps, à technologie équivalente (excepté pour des courbes particulières). Dans le cas du couplage, le gain est encore plus intéressant, puisqu'il a permis une division par 4 de latence de la meilleure implémentation sur corps de grande caractéristique au moment de la publication de [35], et la première implémentation d'un couplage à 128 bits de sécurité sur corps de grande caractéristique à descendre en dessous de la milliseconde. Enfin, je démontre la capacité du RNS à sécuriser une implémentation haute performance, en proposant 2 contre-mesures contre les canaux auxiliaires et les fautes s'adaptant efficacement sur les coprocesseurs et pouvant être utilisées pour toutes les primitives cryptographiques basées sur l'arithmétique modulaire de grands nombres.

Page generated in 0.0385 seconds