• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 21
  • 10
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 109
  • 28
  • 16
  • 13
  • 13
  • 12
  • 9
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Interleucina 6 e proteinograma sérico de ovinos submetidos à endotoxemia experimental /

Gerardi, Bianca. January 2012 (has links)
Orientador: Luiz Cláudio Nogueira Mendes / Coorientador: Juliana Regina Peiró / Banca: Valéria Marçal Félix de Lima / Banca: José Paes de Oliveira Filho / Resumo: Objetivando-se avaliar as concentrações séricas de Interleucina 6 (IL-6) e proteinograma de ovinos submetidos à endotoxemia experimental. Dez ovinos (4 anos) foram divididos em dois grupos, Grupo Controle (GC, n=4) inoculados com NaCl 0,9 %, IV e Grupo Tratado (GT, n= 6) inoculados com 400 ng/Kg de LPS de Escheria coli. O exame físico foi realizado, imediatamente antes da inoculação (M0), bem como a coleta de sangue para perfil hematológico e bioquímico, dosagem de IL-6 e proteinograma. As amostras foram coletadas em M0 e após 2, 4, 6, 12, 24, 36, 48 e 60 horas, de realizada a inoculação. A dosagem de IL-6 foi feita pelo método de ELISA e o proteinograma pelo método de eletroforese em poliacrilamida com dodecil sulfato de sódio (SDS-PAGE), para o perfil hematológico utilizou-se contador de células automático (BCVet- 2800), o perfil bioquímico foi realizado utilizando-se kits comerciais (Labtest®) e por fim, a concentração de glicose foi mensurada por meio de um monitor de glicemia (Breeze 2, Bayer®). Constatou-se um aumento na concentração de IL-6 60 horas pós-inoculação de LPS. O pico febril ocorreu quatro horas pós-indução endotoxêmica. Constatou- se leucopenia com neutropenia e redução na concentração da proteína total, albumina e glicoproteína ácida duas horas após a administração de LPS, acompanhados por uma elevação inicial na concentração de glicose, seguida de redução, seis horas pós-inoculação. Concluiu-se que a dosagem de Interleucina 6 e o proteinograma sérico são métodos de diagnósticos eficientes para detectar e monitorar a progressão e gravidade de processos inflamatórios provenientes de uma endotoxemia induzida experimentalmente em ovinos / Abstract: Aiming to evaluate serum concentrations of interleukin 6 (IL-6) and proteinogram of sheep undergoing experimental endotoxemia. Ten animals (4 years old) were divided into two groups, Control Group (CG, n= 4) inoculated with NaCl 0,9%, IV and Treated Group (TG, n= 6) inoculated with 400 ng/Kg of LPS from Escheria coli. The physical examination was performed immediately before inoculation (M0), as well as blood collection for hematological and biochemical profiles, dosage of IL-6 and proteinogram. Samples were collected at M0 and after 2, 4, 6, 12, 24, 36, 48 and 60 hours after of inoculation. The dosage of IL-6 was done by ELISA and the proteinogram by method of eletrophoresis in polyacrylamide sodium dodecyl sulphate (SDS-PAGE), for hematological profile was used automatic cell counter (BC-2800Vet), the biochemical profile was performed using commercial kits (Labtest®) and the glucose concentrations was measured using glucose monitor (Breeze2, Bayer®). It was found an increase in the dosage of IL-6 60 hours after LPS injection. The fever peak occurred four hours after induction of endotoxemia. There was leukopenia, with neutropenia and reduction in concentration of total protein, albumin and acid glycoprotein two hours after LPS administration, accompanied by an initial increase in glucose concentrations followed by a reduction six hours post-inoculation. It was conclude that the dosage of IL-6 and the proteinogram are effective diagnostic methods to detect and monitor the progression and severity of inflammatory processes from an experimentallay induced endotoxemia in sheep / Mestre
82

Frontline Science: The Expression of Integrin αDβ2 (CD11d/CD18) on Neutrophils Orchestrates the Defense Mechanism Against Endotoxemia and Sepsis

Bailey, William P., Cui, Kui, Ardell, Christopher L., Keever, Kasey R., Singh, Sanjay, Rodriguez-Gil, Diego J., Ozment, Tammy R., Williams, David L., Yakubenko, Valentin P. 01 May 2021 (has links)
Neutrophil-macrophage interplay is a fine-tuning mechanism that regulates the innate immune response during infection and inflammation. Cell surface receptors play an essential role in neutrophil and macrophage functions. The same receptor can provide different outcomes within diverse leukocyte subsets in different inflammatory conditions. Understanding the variety of responses mediated by one receptor is critical for the development of anti-inflammatory treatments. In this study, we evaluated the role of a leukocyte adhesive receptor, integrin αDβ2, in the development of acute inflammation. αDβ2 is mostly expressed on macrophages and contributes to the development of chronic inflammation. In contrast, we found that αD-knockout dramatically increases mortality in the cecal ligation and puncture sepsis model and LPS-induced endotoxemia. This pathologic outcome of αD-deficient mice is associated with a reduced number of monocyte-derived macrophages and an increased number of neutrophils in their lungs. However, the tracking of adoptively transferred fluorescently labeled wild-type (WT) and αD−/− monocytes in WT mice during endotoxemia demonstrated only a moderate difference between the recruitment of these two subsets. Moreover, the rescue experiment, using i.v. injection of WT monocytes to αD-deficient mice followed by LPS challenge, showed only slightly reduced mortality. Surprisingly, the injection of WT neutrophils to the bloodstream of αD−/− mice markedly increased migration of monocyte-derived macrophage to lungs and dramatically improves survival. αD-deficient neutrophils demonstrate increased necrosis/pyroptosis. αDβ2-mediated macrophage accumulation in the lungs promotes efferocytosis that reduced mortality. Hence, integrin αDβ2 implements a complex defense mechanism during endotoxemia, which is mediated by macrophages via a neutrophil-dependent pathway.
83

Dietary Green Tea to Attenuate Metabolic Endotoxemia-Associated Inflammation Along the Gut-Liver Axis

Sasaki, Geoffrey Y. January 2020 (has links)
No description available.
84

The Role of Ceramides in Mediating Endotoxin-Induced Mitochondrial Disruption

Hansen, Melissa Ellen 01 December 2014 (has links) (PDF)
Ceramides are sphingolipids that serve as important second messengers in an increasing number of stress-induced pathways. Ceramide has long been known to affect the mitochondria, altering both morphology and physiology. Lipopolysaccharide (LPS) is a prevalent circulating inflammatory agent in obesity, potentially mediating some of the pathologies associated with weight gain. Given previous findings of TLR4-mediated ceramide accrual and ceramide-mediated mitochondrial disruption, we questioned whether ceramide is necessary for LPS-induced mitochondrial disruption. We found that LPS treatment increased gene transcript levels of ceramide synthesis enzymes and mitochondrial fission proteins and increased ceramide content in cultured myotubes and in mouse tissue. Mitochondrial respiration from permeabilized red gastrocnemius was reduced from animals receiving LPS injections when compared with those receiving vehicle (PBS). However, respiration from mice receiving both LPS and myriocin, a ceramide inhibitor, (0.3 mg/kg) was similar to PBS-injected animals. We treated murine myotubes with similar LPS conditions. These cells demonstrated increased ceramide synthesis and increased levels of mitochondrial fission with LPS treatment; these effects were mitigated with the addition of myriocin. However, in contrast to the whole gastrocnemius response in animals receiving LPS, respiration from myotubes was increased with LPS alone, and even higher with both myriocin alone and myriocin with LPS. We also sought to assess the impact of ceramide on skeletal muscle mitochondrial structure and function. A primary observation was the rapid and dramatic division of mitochondria in ceramide-treated cells. This effect is likely a result of increased Drp1 action, as ceramide increased Drp1 expression and Drp1 inhibition prevented ceramide-induced mitochondrial fission. Further, we found that ceramide treatment reduced mitochondrial O2 consumption (i.e., respiration) in cultured myotubes and permeabilized red gastrocnemius muscle fiber bundles. Ceramide treatment also increased H2O2 levels and reduced Akt/PKB phosphorylation in myotubes. However, inhibition of mitochondrial fission via Drp1 knockdown completely protected the myotubes and fiber bundles from ceramide-induced metabolic disruption, including maintained mitochondrial respiration, reduced H2O2 levels, and unaffected insulin signaling. These data suggest that the forced and sustained mitochondrial fission that results from ceramide accrual may alter metabolic function in skeletal muscle, which is a prominent site not only of energy demand (via the mitochondria), but also of ceramide accrual with weight gain.
85

Study of Role of Ribosomal Protein L13a in Resolving Inflammation

Poddar, Darshana, Ph.D. 10 June 2014 (has links)
No description available.
86

Novel Mechanisms Underlying the Inflammatory Effects of Leptin and Low Dose Endotoxin

Vaughan, Tamisha Y. 16 June 2010 (has links)
Obesity over the last several has become a major health concern in our country as well as the world. Obesity is also one of the risk factors which lead to several inflammatory complications such as diabetes, artherosclerosis, etc. Two leading factors involved in the causes of inflammatory complications include leptin and low dose endotoxin lipopolysaccharide (LPS). However, the mechanism underlying the involvement of these two mediators is not clearly understood. The purpose of this study is to understand the mechanism underlying inflammatory complications caused by leptin and low dose endotoxin most recently coined metabolic endotoxemia. Interleukin-Receptor Associated Kinase 1 (IRAK-1) is an intracellular signaling component shown to activate NFκB which leads to the induction of proinflammatory mediators. Deletion of IRAK-1 in mice has beneficial effects in alleviating inflammatory complications and human variations in IRAK-1 gene are correlated with higher risks for inflammatory diseases. Therefore, we hypothesized that IRAK-1 is critically involved for the induction of proinflammatory mediators induced by leptin and low dose LPS. IL-6 mRNA levels were measured in THP-1 (human monocytic cells) and wild type and IRAK-deficient bone marrow derived macrophages (BMDM) challenged with different combinations of leptin and LPS. Data shows that leptin alone will not induce inflammatory mediators. However, increased induction of IL-6 was observed in a synergistic manner involving both LPS and leptin in an IRAK-1 dependent manner causing a robust inflammatory response. With regard to the effect of low dose LPS, we observed that human monocytic cells treated with low concentrations of LPS showed a mild yet sustained induction of proinflammatory cytokines, which is contrast to the robust and transient induction of cytokines by a high dose LPS. To further determine the molecular mechanisms, we measured several key signaling molecules that include IRAK-1, IKKepsilon, and C/EBPdelta. Our study revealed a novel mechanism that appears to be distinct from the traditional NFï «B pathway responsible for the effect of low dose LPS. / Ph. D.
87

Molecular Mechanisms Governing Persistent Induction of Pro-Inflammatory Genes by Lipopolysaccharide

Glaros, Trevor Griffiths 17 August 2011 (has links)
Low dose endotoxemia is caused by several health conditions including smoking, alcohol abuse, high fat diets, and aging. Several studies have correlated low dose endotoxemia with increased risks of atherosclerosis, diabetes, and Parkinson's disease. Unlike high doses of endotoxin which induce a strong but transient induction of pro-inflammatory mediators, low doses of endotoxin result in a mild but chronic induction of pro-inflammatory genes. The central hypothesis of our study was that if low doses of endotoxin are capable of inducing mild prolonged inflammation, then a unique signaling circuit must be utilized. In the first study, the molecular mechanisms for the persistent induction of lipocalin 2 (LCN2) in response to 100 ng/mL of lipopolysaccharide (LPS) in kidney fibroblasts was examined. It appears that the intracellular signaling network responsible for the persistent induction of LCN2 requires both activator protein-1 (AP-1) and CCAAT/enhancer binding protein delta (C/ebpδ). Interleukin-1 receptor-associated kinase 1 (IRAK-1) is critical for LCN2 expression. In the second study, the molecular mechanisms governing the persistent induction of interleukin 6 (IL-6) upon a 50 pg/mL challenge of LPS in macrophages was examined. At this dose, only the persistent activation of cJun N-terminal kinase (JNK) and C/ebpδ was observed. IL-6 transcription requires the transient recruitment of activating transcription factor 2 (ATF2) and the persistent recruitment of C/ebpδ to the IL-6 promoter. In the third study, the molecular mechanisms that mediate LPS-induced priming was examined. The results demonstrate that macrophages are able to sense their prior history of exposure to LPS that result in either a priming or tolerance phenotype upon a secondary challenge of LPS. Results suggest that this sensing mechanism involves cross-talk between IRAK-1 and phosphoinositide-3-kinase (PI3K). Collectively, these studies indicate that JNK and C/ebpδ are the primary players responsible for the persistent expression of pro-inflammatory genes during low dose endotoxemia. IRAK-1 is a key intracellular signaling kinase that mediates signaling at low doses of LPS. IRAK-1 is not only critical for low dose induced expression, but also for LPS-induced priming. This research has revealed a novel signaling pathway that could provide new molecular targets for drug development against chronic inflammatory diseases. / Ph. D.
88

Endotoxin-induced microRNA expression in equine peripheral blood mononuclear cells

Parkinson, Nicholas J. 22 July 2016 (has links)
The innate immune response to lipopolysaccharide (LPS) mediated by toll-like receptor 4 (TLR4) contributes substantially to the morbidity of equine gastrointestinal disease, neonatal sepsis and other diseases. MicroRNAs (miRNAs), small non-coding RNA molecules acting as post-transcriptional regulators of gene expression, have key roles in TLR4 signaling regulation in other species. The central hypothesis of this study was that LPS induces differential expression of miRNAs in equine peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from healthy adult horses and cultured with LPS or medium only for 2, 4 and 8 hours. Concentrations of inflammatory cytokines were measured in supernatants by immunoassay. Illumina Next-Generation Sequencing of the miRNA transcriptome was performed in PBMCs at 0, 2 and 4 hours. Selected expression changes were verified by qRT-PCR. 327 mature miRNAs were detected in equine PBMCs. Only miR-155 was significantly upregulated by LPS. 9 miRNAs showed statistically significant expression changes with time. Tumor necrosis factor-α concentration was significantly higher in supernatants from LPS-treated cells than controls from 2 hours, while interleukin-10 and interferon-γ were increased at 8 hours. miR-155 expression was correlated to all three cytokines. These data provide a foundation for future research into miRNA involvement in equine inflammatory responses. miR-155 is the principal LPS-induced miRNA in horses. Bioinformatic target predictions support roles in regulation of innate and adaptive immune responses including TLR4 signaling, as in humans. It is thus likely to influence the acute inflammatory response to LPS. Further research will be necessary to establish its role in naturally occurring disease. / Master of Science
89

Papel da solução salina hipertônica (NaCl 7,5%) no remodelamento pulmonar da endotoxemia induzida por lipopolissacarídeos / Role of hypertonic saline solution (NaCl 7,5%) in lung remodeling of endotoxemic rats

Petroni, Ricardo Costa 31 October 2013 (has links)
Sepse é uma resposta inflamatória inapropriada desencadeada pela presença de bactérias e/ou produtos bacterianos como lipopolissacarídeos (LPS). A sepse grave e o choque séptico estão associados a taxas de mortalidade de 40 a 60%. A falência respiratória está entre as mais frequentes complicações da sepse grave, ocorrendo em quase 80% dos casos. Cerca de 40% dos pacientes com sepse desenvolvem a síndrome do desconforto respiratório agudo (SDRA), caracterizada principalmente pela alteração da função respiratória, surgimento de edema intersticial pulmonar e deposição de colágeno nos pulmões. Embora a reposição volêmica seja normalmente utilizada em pacientes sépticos, não há consenso quanto ao volume a ser administrado, sendo atualmente recomendada a utilização de pequenos volumes. Neste contexto, a solução salina hipertônica (NaCl 7,5%, SH) tem sido apresentada como um potencial agente terapêutico. Visando contribuir para o conhecimento dos benefícios da solução salina hipertônica (SH) na sepse, o presente trabalho teve como objetivo avaliar a ação do tratamento precoce e tardio com solução hipertônica no pulmão de ratos endotoxêmicos. Ratos Wistar foram separados em 4 grupos (n=10): CTL (sem nenhum insulto ou tratamento); LPS (injetados com LPS 10mg/Kg i.p); HIPER (animais que receberam tratamento com solução hipertônica 7,5% NaCl i.p na dose de 4ml/Kg 15 min. ou 1,5 horas após injeção de LPS) e SALINA ((animais que receberam tratamento com solução salina 0,9% NaCl i.p na dose de 34ml/Kg 15 min. ou 1,5 horas após injeção de LPS). Foram avaliados a mortalidade, e após 24 horas o edema e a mecânica pulmonar, os colágenos tipo I e tipo III, a expressão e atividade da MMP-9, a expressão de FAK e a síntese de óxido nítrico (NO). Nossos resultados mostraram que o tratamento precoce com solução hipertônica evitou a morte dos animais endotoxêmicos. Nenhum dos tratamentos modulou os mediadores inflamatórios. O tratamento precoce com solução hipertônica diminuiu a síntese de iNOS e nitrito, a expressão e atividade de MMP-9 e de FAK, junto com a deposição de colágeno tipo I evitando a substituição do colágeno III. Observamos melhora dos parâmetros de mecânica respiratória. O tratamento tardio com solução hipertônica não apresentou os mesmos resultados promissores observados no tratamento precoce, sugerindo que o tempo de administração da hipertônica é de grande importância para obtenção de seus efeitos terapêuticos / Sepsis syndrome is caused by inappropriate immune activation due to bacteria and bacterial components released during infection. The respiratory failure is among the most frequent complication of severe sepsis, occurring in almost 80% of the cases. About 40% of septic patients develop acute respiratory distress syndrome (ARDS) which is characterized mainly by the change of respiratory function, interstitial lung edema and fibronectin and collagen deposition in the lung. Fluid resuscitation is normally used in the management of patients with severe sepsis and septic shock. Hypertonic saline solution (HS, NaCl 7,5%) has shown to modulates immune function and decrease pulmonary injury triggered by endotoxemic shock. Our objective was to investigate the effects of early and later HS treatment on the mechanism involved in pulmonary injury, in an experimental model of endotoxemic shock. Wistar rats received lipopolysaccharide - LPS (10mg/kg i.p.) and volume i.v. after 15 minutes (early) or 1,5 hours (later). The animals were assigned in four groups (n=10): control group (not subjected to LPS); LPS group (injected with LPS 10mg/kg i.p); HS group (treated with hypertonic saline, 4 mL/Kg i.v. after LPS) and NS group (treated with normal saline, 34 mL/kg i.v. after LPS). We evaluated mortality and at 24h after treatment, pulmonary edema and mechanics, type I and type III collagen expression, metalloproteinase 9 expression and activity, focal adhesion kinase (FAK) and nitric oxide (NO) synthesis were measured. In the early treatment NS increased pulmonary resistance and elastance, compared to other groups. HS inhibited collagen expression compared to LPS and NS groups and prevented pulmonary injury by decreasing MMP-9 activity in tissue. Expression of FAK was decreased in HS groups compared to LPS and NS groups. NO expression was decreased in HS group, compared to LPS and NS groups. The later treatment with HS did not showed improvement of previous parameters increasing mortality and pulmonary injury. We concluded that HS treatment of endotoxemic shock at the earliest possible time point maximizes its efficacy in preventing pulmonary injury probably acting on nitric oxide-induced FAK activation pathway, which could modulate the collagen deposition in pulmonary tissue, and consequently decrease the progression of pulmonary fibrosis. Later treatment with HS decreased beneficial effects of hypertonic saline observed in early infusion, showed the importance of timing in the result of fluid therapy
90

Efeitos macrovasculares, microvasculares e interação leucócito-endotélio, na endotoxemia experimental após o uso de Dobutamina com e sem ressuscitação volêmica / Effects macrovascular, microvascular leukocyte-endothelial interaction in experimental endotoxemia after dobutamine with or without resuscitation volumen

Ana Olimpia Maia dos Santos Camboim 14 September 2012 (has links)
Na sepse, o mecanismo desencadeador de morte é a disfunção múltipla de órgãos e sistemas. Com isso a microcirculação é considerada o motor na patogênese da sepse. A perfusão microcirculatória representa um dos principais objetivos para melhorar as taxas de sobrevida. Uma vez reconhecida a síndrome séptica, o protocolo clínico estabelece o uso de fluidoterapia com salina, de forma vigorosa na primeira hora e seguida de suporte inotrópico com Dobutamina. A partir daí foi levantada a hipótese das drogas &#946;-agonistas serem relevantes na recuperação da microcirculação, antes mesmo de seu conhecido papel na recuperação do choque cardiogênico. Assim, estudar o papel da Dobutamina, um &#946;-agonista, na resposta adrenérgica em situação de sepse se faz necessário e urgente e o entendimento de sua ação, associada à reposição volêmica, foi objeto deste estudo. Foram usados no presente estudo, 78 hamsters, induzida a endotoxemia com LPS (2mg/kg/de massa de peso corporal) e divididos em 9 grupos: controle (n=10), endotóxico(n=10), endotóxico tratados com Dobutamina na dose de 5 e 15 &#956;g /kg/min (n=10), Isoproterenol(n=10), ressuscitação volêmica (n=10) e ressuscitação volêmica associada à Dobutamina 5 (n=10) e 15 &#956;g/kg/min (n=4) e Isoproterenol (n=4). Foram comparados os resultados de recuperação da densidade capilar funcional ao longo do tempo entre os grupos, e obteve-se resultado estatisticamente significativo no grupo em que se usa Dobutamina de 5&#956;g/kg/min associada à ressuscitação volêmica p< 0,05. Em conclusão este estudo mostra que o papel da ressuscitação volêmica é crucial na resposta da microcirculação para melhorar a densidade capilar funcional, que a velocidade da hemácia capilar tem relação direta com a melhora na perfusão tecidual e que a associação de recuperação volêmica com solução salina e Dobutamina na dose de 5 &#956;g /kg /min melhora significativamente sua resposta e melhora a perfusão. / During sepsis the mechanism responsible for death is multiple dysfunctions of organs and systems and therefore the microcirculation is considered the motor in the pathogenesis of sepsis and microcirculatory perfusion represents one of the main objectives to improve survival rate. Once one recognizes the septic syndrome, the clinical protocol establishes the use of fluid therapy with physiological saline, in a vigorous way, in the first hour followed by inotropic support with dobutamine. With these facts in mind, our hypothesis is that &#946;-agonist drugs are relevant for microcirculatory recuperation, even before their role was known in the recuperation of cardiogenic shock. In this way, to study the role of dobutamine, a &#946;-agonist, in the adrenergic response in sepsis is needed and urgent. The understanding of its action associated to volume resuscitation was the aim of our study. Seventy-eight male hamsters were used in our study, endotoxemia being induced with LPS (2 mg/kg body weight), divided in 9 groups: control (n=10), endotoxic (n=10), endotoxic treated with dobutamine in the concentrations of 5 and 15 &#956;g/kg/min (n=10, each), isoproterenol (n=10), volume resuscitation associated to dobutamine 5 &#956;g/kg/min (n=10), 15 &#956;g/kg/min (n=4), isoproterenol (n=4) or not (n=10). The microcirculation was observed in the dorsal window chamber and the results compared the recuperation of function capillary density with time and the group treated with dobutamine 5 &#956;g/kg/min associated to volume resuscitation showed a statistically significant improvement (p<0.05) of it. In conclusion, this study has shown that volume resuscitation plays a crucial role in the microcirculatory response in terms of improvement of functional capillary density, the velocity of red blood cells in the capillary has a direct relationship with the improvement of tissue perfusion and the association of volume resuscitation with physiological saline and dobutamine 5 &#956;g/kg/min elicits a significant amelioration of perfusion.

Page generated in 0.0262 seconds