• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 650
  • 417
  • Tagged with
  • 1067
  • 1038
  • 1013
  • 207
  • 125
  • 119
  • 115
  • 106
  • 96
  • 91
  • 89
  • 82
  • 81
  • 78
  • 77
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Gatubelysning i bebyggelse utan fast elnät i Ghana : Kan en anläggning för gatubelysning drivas av solceller med bränsleceller som ackumulator, i ett slutet system? / Off grid Street Lighting in Ghana : Could a Facility for Street Lights be powered by Solar Cells with Fuel Cell as an accumulator, in a closed system?

Mårtensson, Pär January 2013 (has links)
Abstract There are rural areas in Ghana which are off-grid but where there is a need for street lighting. Street lighting facilities in such areas typically store electrical power in lead-acid batteries. The goal of this thesis is to construct a facility where fuel cells and hydrogen accumulation replace lead-acid batteries. The construction consists of a solar cell which transmits DC power to an electrolyzer which in turn produces hydrogen and oxygen. The gases accumulate in the container until nightfall when it starts providing DC power to street lighting via a fuel cell. The street lights can operate between 5 - 10 hours per day, depending on the power of the lamp. Besides providing street lighting the device may also be used for other purposes such as indoor lighting, charging of mobile phones etc. This means that, in addition to the basic purpose of providing electrical power to the street lights, other co-benefits of social significance can be achieved. The device is designed not to create any harmful emissions during operation, thus being environmentally sustainable. Further research on the device may in a second step entail: Construction of a prototype on a smaller scale, where calculations and function are tested. If it turns out well, a third step can begin: To build a full scale plant to be tested on site in Ghana.
462

Eneregy Management In Industries : Analysis of Energy Saving potential by Steam conedensate recovery

Kifleyesus, Biniam Okbaendrias January 2017 (has links)
When speaking about energy it means speaking about life, activity, economy, growth and environmental issues. The issue of energy has been the main article all over the world in recent years, this is due to the importance of energy to life and its impact on the environment. For example, Paris climate change meeting in 2015 is one of the recent global meeting which directly related to the energy use by nations. The meeting was mainly focused up on the restriction of greenhouse gas emission which implies that industries should think about other alternative energy resources rather than fossil fuel for positive impact on climatic change. This is one of the cases that led industries into greater competition in the global market. Industries must consider energy alternatives which is safe for the environment and by using such energy a competitive product with better quality and quantity should be produced. This challenge has motivated industries to look and study the energy that they are using currently. Studies and researches show that one of the main and most abundant energy resources that most of these industries can get is by improving the energy efficiency or managing the energy that they currently use. The main aim of this thesis is to provide Arizona chemical plant (Kraton) at Sandarne on the potential energy saving by managing their energy use. The first wisdom in energy utilization is managing and using the energy they possess efficiently. In Arizona plant at Sandarne, the product named “Pitch” (a natural viscoelastic polymer or rosin) is a fuel used as the primary energy supply for the production of steam by boilers. The steam may be utilized well but the energy in the condensate (after steam loses its latent heat) is not addressed well enough. Hence this paper has studied on how significant is the energy lost by the steam condensate is and how its recovery can be used to save energy and cost. The plant produces about an average of 11.42 ton of steam each hour in a year. This steam can be returned or fully recovered (100%) as condensate from the law of conservation of mass since only energy is lost from the steam. But the plant returns a maximum of about 3ton of condensate each hour. This amount is relatively low compared to the amount of condensate recovery possibility. Recovery possibility of condensate return showed that the plant at Sandarne can return at least 8.5 ton of condensate  each hour. In comparison with the current return estimated 5.5 ton of condensate is being lost simply as waste each hour leading to about 400 SEK minimum cost loss. The calculation of cost is in minimum because the charge from water supply and condensate effluent disposal charge are not considered. In this paper only recovery from the easily recoverable steam condensate is being considered (25% of the system) which resulted in payback time of the proposed investment 1.88 years without considering the above explained charges. It is much motivating study considering the generalized approach and over simplified method. If a deeper investigation is made on the potential, it can be clearly shown that how significant the potential is in securing and sustaining energy and environmental issues. Ensuring the security and sustainability of energy which addresses the environmental issue precisely will help the plant to stay on the race of global market competition.   Keywords: Energy efficiency, Boiler efficiency, Energy management, Condensate recovery,
463

Waste from instant tea manufacturing as a fuel for process steam generation

Somasundara, D. H. G. S. R. January 2017 (has links)
An existing furnace oil fired boiler is used to supply process steam to an instant tea manufacturing factory. The instant tea is manufactured the Broken Mixed Fannings (BMF) through extraction and other required processes. The average steam consumption of the plant is 6000 kg/h at 10 barg pressure. During the process, tea waste is generated at a nominal rate of 50,000 kg/day, about 2000 kg/h at around 70% MC content on wet basis. At the moment this waste tea is either dumped in the surrounding area by spending money or sent to landfilling purposes, which create environmental issues.   The tea waste coming out at 70% MC wet basis, is looked at to press through continuous belt press to reduce the moisture content to about 55% on wet basis. The water removed from this pressing process is sent to effluent treatment plant at the factory. The output from the belt press is sent to a steam operated  The average generation of tea waste from the instant tea manufacturing process process is about 2000 kg/h, after pressing in the belt press an output rate of about 1,400 kg/h at 55% MC. This amount of tea waste at 55% MC is sent to a rotary steam tube dryer and the MC is reduced from 55% to 30% and the output rate from the steam tube dryer is about 857 kg/h. The amount of steam consumed by the rotary steam tube dryer at 6 barg pressure is 760 kg/h. Then the tea waste from the rotary tube dryer is mixed with firewood of 30% MC and fed to the boiler to generate process steam, out of which 857 kg/h steam at 6 barg pressure is sent back to the rotary steam dryer. From tea waste alone, a steam amount of 2,472 kg/h can be supplied after giving steam to the rotary steam dryer. The balance steam amount of 3,528 kg/h for the process requirement is supplied by burning additional firewood at 30% MC content. The tea waste fuel and firewood in combination have an overall moisture content of 30% on wet basis. The boiler is rated at 10,000 kg/h F & A 100 deg C with an actual generating capacity of about 9000 kg/h at 10 barg operating pressure at 70 deg C feed water temperature. By implementing the combination of belt press, rotary steam tube dryer and firewood boiler in place of the existing furnace oil fired boiler, an annual monetary saving of 168 Mn SLR/year can be achieved with a simple payback period of 21 months which is a highly feasibly project.
464

The impact of building orientation on energy usage : Using simulation software IDA ICE 4.7.1

Martin, Daniel January 2017 (has links)
The building sector consumes 32% of global energy used, and it is responsible for 20% of total greenhouse gases emissions. In Europe, more than one third of the buildings are 50 years or older, thus, it is critical that new dwellings are designed in the most efficient way from an energy perspective, since the consequences of the decisions taken today will remain during decades. The use of Building Information Modeling (BIM) software is promising for the design of a wide range of constructions; from small dwellings to big apartment buildings. These programs allow the architect, designer or civil consultant to perform several simulations of the energy behavior of a building in a timely manner, even before a single brick is put in place. Among them, IDA ICE software utilized in this thesis is a top rated program, situated by some authors within the four main building energy simulation tools. This is an outstanding fact considering that it is estimated in more than 400 the number of available BIM programs. With the help of IDA ICE it will be demonstrated that for a dwelling object of study, located in Madrid (Spain), it is possible to save up to 4 250€ through the entire life of the building if the proper orientation is chosen. The discussed literature and results will also show that orientation is, by far, the most critical passive design parameter related to a building, from which the efficacy of other related measures depends on.   It will be also proven that the optimal orientation depends on the weather where the dwelling is located, even though a general trend consisting in orienting the houses located in the northern hemisphere to the south, and vice versa, is observed. Building orientation, BIM programs, building energy consumption, passive design parameters, IDA-ICE simulation tool.
465

The Viability of Installing Mid-Size PV Solar Parks in Sweden : "A paper that evaluates the economic viability of installing mid-size PV solar parks ranging from 250 kW to 2 MW in the village of Åled."

Ghebre, Temesghen Tesfazghi January 2017 (has links)
The ambition of the Swedish government is rapidly concentrating on the development of the renewable energy systems especially on wind energy, bio energy and solar energy. It has been observed on the growth of the production of electricity and heat from these three mentioned renewable energy systems. But, relatively in Sweden the share of production of electricity obtained from PV is quite smaller than the other two. The PV electricity production in Sweden comprises in a large scale of mainly the grid connected distributed PV systems and with a small number of installed solar parks. The aim of this paper is to analyze the viability of installing mid -size PV solar parks in Sweden and to simulate the effect of the proposed project in the village’s (Åled is the village where the proposed site is located) and the country’s electricity production. This study includes designing, simulation and financial analysis of different grid connected centralized mid -size capacities of PV solar parks of 250 kWp,500 kWp,1MWp and 2MWp. They are all fixed ground mounted systems. Moreover, it also discusses the main reasons that hinders decision makers, the PV complications that are connected to the grid, Sweden’s energy regulations particularly the emission regulation and the financial policies of PV. Also, study visit, telephone and email contacts have supplemented it. This study was done with the collaboration of Nyedal Solenergi, in which the proposed site was owned by the company and this paper will be a future guide for the investment of the mid-size PV solar park. According to the study a discussion has been made with the grid supplier (EON) in that area on the investment on one of the designed projects which are presented in this paper. The results of the study show that the effect of the proposed systems on the production of electricity in the village of Åled was between 2.68 – 21.4 % and the impact on the country’s PV electricity production was 0.2 – 1.58 %. And, the possibility of installing mid-size PV solar parks generally in Sweden particularly in the proposed site is possible and economically it is viable but not profitable for system capacities less than 1 MW. As the IRR found for all capacities is greater than the estimated WACC, hence each proposed capacity has the possibility of paying back all its investment costs in about 23 years. So, the profitability is very low in case of the 250 kWp and 500 kWp but for the others they have about 7-8 years of profitability. A sensitivity analysis also has shown the impact of initial investment costs, O & M costs and electricity export rate on the IRR, NPV and equity payback. The initial investment cost and electricity export rate were seen with high effect on the IRR, NPV and equity payback. The LCOE calculated was higher than the average electricity spot price (300 SEK/MWh) for 250 kWp and 500 kWp but lower for the other two capacities. The overall impact for the financial analysis was due to the decreasing of module prices, the rules that changes every year on electricity subsidies for renewables, tax reductions and rapid decreasing of electricity spot prices. In the future if the price of modules continues decreasing, spot price increases, more modification of the subsidy and introduction of new PV technologies integrated with other sources of energy is done then such projects could be more profitable.
466

Solar Variability Assessment in the Built Environment : Model Development and Application to Grid Integration / Variationer i Solelgenerering i den Byggda Miljön : Modellutveckling och Integration i Elnätet

Lingfors, David January 2017 (has links)
During the 21st century there has been a rapid increase in grid-connected photovoltaic (PV) capacity globally, due to falling system component prices and introduction of various economic incentives. To a large extent, PV systems are installed on buildings, which means they are widely distributed and located close to the power consumer, in contrast to conventional power plants. The intermittency of solar irradiance poses challenges to the integration of PV, which may be mitigated if properly assessing the solar resource. In this thesis, methods have been developed for solar variability and resource assessment in the built environment on both national and local level, and have been applied to grid integration studies. On national level, a method based on building statistics was developed that reproduces the hourly PV power generation in Sweden with high accuracy; correlation between simulated and real power generation for 2012 and 2013 were 0.97 and 0.99, respectively. The model was applied in scenarios of high penetration of intermittent renewable energy (IRE) in the Nordic synchronous power system, in combination with similar models for wind, wave and tidal power. A mix of the IRE resources was sought to minimise the variability in net load (i.e., load minus IRE, nuclear and thermal power). The study showed that a fully renewable Nordic power system is possible if hydropower operation is properly planned for. However, the contribution from PV power would only be 2-3% of the total power demand, due to strong diurnal and seasonal variability. On local level, a model-driven solar resource assessment method was developed based on low-resolution LiDAR (Light Detection and Ranging) data. It was shown to improve the representation of buildings, i.e., roof shape, tilt and azimuth, over raster-based methods, i.e., digital surface models (DSM), which use the same LiDAR data. Furthermore, the new method can provide time-resolved data in contrast to traditional solar maps, and can thus be used as a powerful tool when studying the integration of high penetrations of PV in the distribution grid. In conclusion, the developed methods fill important gaps in our ability to plan for a fully renewable power system.
467

Planning for Sustainable Use of Water

Hedelin, Beatrice January 2008 (has links)
The basic problem that this work wishes to address concerns the  unsustainable use of water resources in many places of the world. In some places, the problem leads to human suffering and death while also obstructing social and economic development. In other places, where the consequences are less severe, natural environments are seriously damaged. A significant part of the solution to this problem lies in the planning and decision-making domain. The overall aim of this thesis is therefore to contribute to the available knowledge on planning and management for the sustainable use of water resources. Planning as a process is in focus, both in itself and in the organisational and legal contexts that affect how planning processes are performed.   The main methodological approach used, and the theoretical contribution made here, is the deriving and discussion of a set of deductive criteria for the development and assessment of planning processes for the sustainable use of water resources (Papers III and IV). The criteria were derived using a multi-disciplinary approach, where the relevant literature on how to transform the concepts of ‘integration’ and ‘participation’ – both key principles for sustainable development in relation to planning – into an analytical framework of twelve criteria, was reviewed and synthesised. The derived criteria concern issues such as, how to integrate knowledge and values into the planning process and how to generate commitment, legitimacy or acceptance for the resulting plan, by democratic means. The criteria are then used to assess the EU Water Framework Directive (WFD) – an extensive legal framework which will steer water planning in the EU Member States for several decades to come – and to assess the planning processes that follows on from WFD implementation in Sweden.   The analysis contained in (Paper V) showed that the WFD erects few formal barriers to good planning practices. The analysis also showed however, that the planning processes that follow on from its implementation will need to be adapted to compensate for the weak legal support in a number of important areas, namely, the use of knowledge from beyond the natural sciences, the use of methodologies for the explicit handling of values and the use of procedures for democratic participation. Several recommendations are also made in respect of how the WFD could be supplemented in order for it to become a stronger support in planning processes for the sustainable use of water.   The analysis of the ongoing water planning processes in Sweden (Paper VI) showed that knowledge of how to work with values and how to create forms and methods of participation and collaboration remain clearly underdeveloped. In consequence, the main objectives behind participation – the provision of knowledge and perspectives for the process and the creation of legitimacy, acceptance or engagement – are actually at risk. Recommendations include complementing the existing knowledge base with insights from the social sciences and the humanities, to create well informed learning systems within the new water administration and to make use of alternative methods for the handling of values.   In addition to this, two papers from the thesis (Papers I and II) concern the situation pertaining before WFD implementation in Sweden. By comparing the system for municipal land and water planning (the former main system for long-term water planning in Sweden) with WFD prescriptions, and with the organisation of the new water administration bodies, some potential implications of WFD implementation were identified. From here it followed, that the development of forms of co-operation between the concerned administrative organisations, and in respect of the democratic involvement of the public and other concerned actors, were crucial in creating an integrative, effective and democratic system for water planning in Sweden.   The thesis also illustrates the use of a tentative model for the operationalisation of ‘sustainable development’. The tentative model is described in the thesis, and it constitutes the methodological baseline for the thesis, since five of the papers contained herein use various approaches related to this model.
468

Energy Efficiency Improvements of Tumble Dryers : -Technical Development, Laundry Habits and Energy Labelling

Stawreberg, Lena January 2011 (has links)
Tumble dryers are becoming more and more common in ordinary households as a complement to the washing machine. Tumble dryers offer a fast drying cycle independent on weather conditions and require small space. They do, however, considering the large number of units use a large amount of electricity. The main objective in this thesis is to identify possibilities in order to reach a reduced electricity use for domestic tumble-drying of clothes. This involves an investigation of the condensing tumble dryer in order to point out possible energy efficiency improvements. The purpose of the energy label, which indicates the energy efficiency of the tumble dryer, is also studied, whether it matches the actual laundry habits. Finally, suggestions for technical development of the tumble dryer are made in line with today’s consumer behaviour. The performance of the condensing tumble dryer has been studied using a design of experiments to create a statistical model in Paper I. This model was used to find the best settings for the power supply to the heater, the internal airflow and the external airflow in order to reach a high specific moisture extraction rate (SMER) and a low leakage ratio. A low external airflow and high power supply to the heater gives the highest SMER. To reach the lowest values for the leakage ratio, a low internal airflow should be applied together with a high external airflow. The use of a statistical model gave valuable information of the performance of the existing tumble dryer. For further improving the energy efficiency of the dryer, the amount of leakage and its location was investigated in Paper IV. By studying energy and mass balances from experiments, pressure measurements and modelling, the effects of leakage on the process were evaluated. As the location of the leakage is so important for the energy efficiency, the worst-case scenario where leakage is located between the heater and the drum is used as a start point in the study. It was determined that there is a large leakage of air between the heater and the drum leading to a significant loss in energy recovery. The drying loads used by consumers are getting smaller, often less than 3 kg dry load, while the maximum capacity of the dryers are increasing, up to 7 or 8 kg. In Paper II, tests were made with different loads in order to investigate if the energy label serves its purpose as today’s standard is set at the dryers’ maximum capacity. The results from this study show that the energy efficiency when drying a small load is significantly lower than for a large load. In order to encourage a production of tumble dryers with higher energy efficiency for small loads, where the dryer is most frequently used, the standards for the energy label should be revised. Today, manufacturers do not gain any benefits by improving the performance for partial loads. A mathematical model over a venting tumble dryer was established in Paper III with the aim of testing different control strategies in order to improve the energy efficiency of the tumble dryer for partial loads. The ideas behind the different strategies were to minimize the heat losses during the drying process and to increase the residence time for the air in the drum and thereby increase the moisture content of the air leaving the drum. Using such a control strategy it is possible to reach an improvement of SMER by approximately 4% when drying small loads. In order to reach larger improvements, however, a more extensive product development will be necessary. Finally, the results in this thesis points at the necessity of including not only the technical development of the tumble dryer, but also the policy tools involved and the consumers’ habits in order to reach a reduced electricity use for drying clothes in households.
469

Energibalans av två glödgningsugnar inom ett integrerat stålverk

Färnström, Dennis January 2017 (has links)
Av den globala energianvändningen så upptar stålindustrin hela 5 % och sett till CO2 – utsläppen som orsakats av mänskliga faktorer så upptar stålindustrin hela 7 %. Stålindustrin är en energikrävande industri och därför är det viktigt att se över dess energianvändning för en nutida och framtida hållbarhet.  Ugnar är en av de bidragande faktorerna till den höga energianvändningen och de drivs på icke förnybara bränslen, därför är studier kring detta av hög relevans. Moderna tekniker gällande ugnar i dagens läge riktar sig mycket åt förbränningstekniken, d.v.s. förbränningen av bränslet som ugnarna drivs på. Oxyfuel-tekniken innebär att bränslet förbränns med ren syrgas istället för luft, vilket i huvudsakligt syfte är för att höja förbränningsverkningsgraden. Att använda brännare som kan återvinna rökgaser är också en modern teknik för energieffektiv ugnsdrift.  Outokumpu är ett världsledande företag inom tillverkningen av rostfritt stål och anläggningen i Avesta är ett integrerat verk, det betyder att ståltillverkningen i Avesta omfattar hela processen från råmaterial och skrot till färdig produkt. Anläggningen består av tre huvudsakliga verk som kallas stålverket, varmbandsverket och slutligen Linje 76 & Z-High vilket är avdelningen som dessa två glödgningsugnar befinner sig.  Det huvudsakliga syftet med denna rapport är att uppvisa en energibalans av två glödgningsugnar inom Outokumpus anläggning i Avesta, avgränsningarna är också tydliga då energibalansen drar sig ifrån den första ugnens inlopp till den andra ugnens utlopp. Och det är den termiska energieffektiviteten som har studerats, d.v.s. hur mycket energi man får ut av den olja som sätts in. Framtagandet av data har genomförts med hjälp av historiska data gällande ugnarnas drift under ett tidsspann på 3 månader tillbaka i tiden, även manuella temperaturmätningar har genomförts.  En verkningsgrad har tagits fram för varje ugn och ugnarna tillsammans, verkningsgraderna har beräknats genom att väga förhållandet mellan hur mycket energi som det glödgade materialet har tagit upp, med hur mycket olja som har använts under samma tidsspann.   De huvudsakliga resultaten till denna studie tyder sig på att ugnarna är effektiva till att värma stålet och har relativt små transmissionsförluster från ugnarnas omslutande areor. Däremot så finns potential att kunna återvinna mer värme ifrån rökgaser i avgaspannan. / The steel industry occupies the whole 7 % of the global carbon dioxide emissions caused by human factors and 5 % of the global energy usage. The steel industry is an energy intense industry and it’s therefore important to analyze its energy use for its future sustainability. Furnaces are driven on non-renewable fuels and are one of the devoting components to the high energy consumption, so studies of this are of high relevance.  Regarding modern techniques of furnaces in today’s mode are much concentrated on the combustion, which means the combustion of the fuel that supplies the furnaces with heat.  Oxy-fuel technology means that the fuel is combusted with pure oxygen instead of air, and its purpose is to increase the combustion efficiency. A second modern technology is the usage of burners that are able to recycle flue gases as an increase of energy efficiency.  Outokumpu is a world leading company in the manufacture of stainless steel and the plant in Avesta is an integrated steel mill, which means the steel production cover the entire process from scrap and raw material to finished product. The plant consists of three main works called the steel mill, hot rolling mill and KBR L76 which is the department for these annealing furnaces.  The main objective of this report is to present an energy balance of two annealing furnaces at the Outokumpu plant in Avesta. The boundary of the study is clear, the energy balance will take part from the inlet of the first furnace to the outlet of the second one. It’s the thermal energy efficiency that has been studied, that is to say how much energy you get from the fuel that is added. Information has been collected using historical data on the operation of the furnaces during a three month period of time, also manual temperature measurements has been carried out.  By calculations an efficiency has been developed for each furnace and the furnaces together. This has been carried out by weighing the proportion of the amount of heat that all material have accumulated, with the amount of oil used during the same time.  The results of this study mainly indicate that the furnaces are effective in heating the steel, and its heat losses from the surrounding areas are small. On the other hand, there is potential for recycling more heat regarding the use of flue gases in the exhaust-boiler.
470

Utvärdering av Blitzortung blixtlokaliseringssystem : En jämförande studie med SMHI som referenssystem / Evaluation of the Blitzortung lightning locating system

Bergman, Adam January 2017 (has links)
Blitzortung is a non-commercial lightning detection system intended for recreational use only. In this thesis the performance of the Blitzortung system is evaluated in order to see to which extent it can be compared to a high performance commercial lightning detection system for use in Sweden. Also a graphical tool for visualising lightning strikes detected by Blitzortung on maps containing an electric grid with the related infrastructure is proposed. The evaluation is accomplished by comparing lightning data registered by Blitzortung with lightning data from the national lightning locating system provided by the Swedish meteorological institute. By analysing lightning data from the lightning high-season in Sweden between the year 2012-2016, and by conducting a more in depth evaluation of the system based on data from 2016, the Blitzortung system performance is evaluated. Results for calculated flash density and flash rate density suggests that the Blitzortung system is improving over the study time, which is probably due to the fact that the number of sensors in Sweden has increased from a single station in 2012 to 30 stations in 2016. The performance evaluation show a relative detection efficiency of 34 % for strokes correlated between the systems in relation to the total strokes detected by SMHI. For strokes detected south of latitude 61 in Sweden the relative DE (detection efficiency) is 44.7 %, and for CG(cloud-toground) strokes it is 43.0 %. If only CG-strokes south of latitude 61 is considered the corresponding value is 55.1 %. The performance of the Blitzortung-system seems to be depending on the number of sensors in the region of interest. The relative positional error between the networks south of latitude 61 was shown to have a smaller median error of 1750 m and an upper quartile on 3350 m, compared to north of latitude 61 where the median error was 2780 m and the upper quartile 5900 m. The results indicates a systematic directional error for correlated strokes between the systems. It is also shown that the included parameters for Blitzortung strokes could not be used in any meaningful way for predicting positional errors between the networks.

Page generated in 0.0827 seconds