Spelling suggestions: "subject:"conergy ese"" "subject:"conergy tese""
91 |
The impact from varying wind parameters and climate zones on building energy use : A case study on two multi-family buildings in Sweden using building energy simulationTamilvanan, Karthickraj, Mathipadi, Sai Kiran January 2020 (has links)
Globally, buildings utilize 35 % of the final energy use and contribute to approximately one-third of CO2 emissions. Hence, reducing the energy use of buildings contributes to a large amount of CO2 emissions to be decreased. The building’s energy use is affected by many parameters, including wind which plays an important role in building energy use. In this thesis, we aim to analyze the impact of wind parameters on building’s energy use on two multi-family building types with natural ventilation at various wind sheltering conditions at different climatic zones in Sweden. Building energy simulation models (BES) of a standalone and an attached building located in Visby, Sweden, were constructed with the use of the dynamic BES IDA ICE. Luleå and Malmö were taken as other two study locations to investigate the impact from different climate zones. The simulations were performed with the constructed calculation models, with the various wind sheltering conditions at the different climatic zones to calculate the energy use of the buildings and ventilation and infiltration losses. The sensitivity analysis was then carried out based on changing the wind profile of the climate file to evaluate the impact of wind on the ventilation and infiltration losses, as well as the heat energy use of the building. The results showed that the energy use for space heating of the attached building was 89 kWh/m2 (38 %) lower than the standalone building. The energy use varies between 9–20 kWh/m2 (3–10 %) considering the exposed, semi-exposed and sheltered wind condition for the two building types. In the different climate zones, Luleå has 47 kWh/m2 higher energy use compared to Visby and Malmö for the standalone building. The corresponding figure for the attached building is 25 kWh/m2. The sensitivity analysis show that when the wind speed is increased by 100 %, the ventilation and infiltration losses increase between 3563–18683 kWh (54–61 %) while the energy use of the building increases between 11–54 kWh/m2 (20–27 %).
|
92 |
Bariéry rozvoje využívání větrné energie v České republice / Barriers to the Development of Wind Energy Use in the Czech RepublicLukeš, Petr January 2010 (has links)
The development of the wind energy exploitation is a sum of processes which are subject to variety of heterogeneous factors. The nature and the leverage power of those factors vary and develop over time. Each regional or national location can be characterized by variety of factors, which are specific for respective locations. The wind energy development in the Czech Republic is influenced by number of barriers which restrain or slow down further progress. These barriers stem from environmental, economical, social and institutional disposition/nature of respective technologies. This thesis at first, based on available qualitative and quantitative data, describes and analyzes the situation and development of the wind energy exploitation. Specifics of the wind energy are placed in the context of selected European countries where factors and barriers influencing the development is described. The theme is regarded with spatio-temporal distribution of a "new technology". The thesis goes on focusing on identification of barriers that have impact on the wind energy development in the Czech Republic. Those restrictions/barriers are subsequently confronted with stands and perception of specific stakeholders, which are involved in the process. Analyses are carried out not only on individual barriers but also...
|
93 |
Comparative life cycle assessment of organic building materialsYossef, Delav, Hot, Dino January 2021 (has links)
The ever-increasing awareness of global warming has made the building industry startlooking for alternative building solutions in order to meet the changing demands. Thesechallenges have given rise to organization which aim to go further and construct moresustainable alternatives in the form of Ecovillages. This thesis is conducted in collaborationwith Bysjöstrans Ekoby and aims to investigate what type of organic alternatives exist andhow they perform in building elements.The study was carried out through a comparative LCA where a base case construction forboth roof and wall was established. Followed by comparing different organic materials toeach other and the base case materials in order to determine low-impact materials. The goalwas to replaces as many layers within the structure such as insulation, structure, roofcladding, façade, wind and vapor barrier.This was later followed by combing the materials together in order to identify whichalternative construction options would perform the best in regard to greenhouse gasemissions (CO2 eq kg) and primary energy use (MJ).The results of the study show that the performance or organic materials vary significantly.Whit a lot of materials being better but also worse than traditional materials. It showed thatfor internal wall and roof surface adding clay plater can reduce the GHG emission with 68%, timber frame with 98 %, façade with 43 %, roof cladding with 93 %, vapor barrier with76 % and insulation with 79 %. The best preforming construction option could reduce thebase case emission with 68 %.
|
94 |
Comparing Building Energy Benchmarking Metrics using Dimension Reduction TechniquesAgale, Ketaki 21 October 2019 (has links)
No description available.
|
95 |
Undersökning av energideklarationer : Uppfyller de sitt syfte att bidra till en effektiv energianvändning i byggnader? / Examination of energy declarations : Do they fulfill their purpose of contributing to an efficient energy use in buildings?Sandberg, Marcus, Andersson Svorono, Gabriel January 2019 (has links)
År 2002 laginfördes ett EU-direktiv med syftet att skapa möjligheten för länder inom EU att kunna ha bättre kontroll på sin energianvändning. Utifrån detta direktiv infördes därefter en lag om energideklarationer. Energideklarationernas främsta syfte skulle vara att bidra till en effektiv energianvändning i byggnader och en god inomhusmiljö. Detta skulle uppnås genom att ge en översiktlig bild av byggnadens energistatus, samt underlag för investeringsbeslut vid energieffektivisering. Detta examensarbete undersöker om energideklarationer uppfyller syftet att bidra till en effektiv energianvändning. Frågor till verksamma inom fastighetsbolag samt egen undersökning av energideklarationer resulterade i ett konstaterande att deklarationerna ger en översiktlig bild av byggnadens energistatus på ett tydligt sätt. För verksamma inom fastighetsbolagen kan energideklarationerna fungera som underlag för energieffektivisering, dock kan åtgärdsförslagen anses vara för generella. Denna uppfattning om åtgärdsförslagen gör att många använder sig av effektiviseringsåtgärder som tagits fram inom organisationen genom registrering, analys och uppföljning av energianvändningen på en högre detaljnivå. Denna detaljnivå kan utgöra en tydligare bild av var i byggnaden åtgärder behöver göras, samt vilka typer av åtgärder som är lämpligast. Energideklarationernas syfte att bidra till en effektiv energianvändning uppfylls därmed endast till viss del. / In 2002, a directive from EU stated that the countries should start keeping better track of how buildings consume energy. From this directive a law was introduced that implied that energy declarations now were to be established. The main purpose of energy declarations was for them to contribute to efficient energy use and a healthy indoor environment. This was to be achieved by giving a general view of the building’s energy status, as well as basis for investments in making the building more energy efficient. This master’s dissertation examines if energy declarations fulfill their purpose of contributing to an efficient energy use. After questioning of real estate company’s personnel and examining energy declarations, they proved to be considered adequate in showing a building’s general energy consumption. However, the action proposals are often considered too simplistic. Instead, many companies base their actions in order to make the building more efficient on their own personnel, their thorough investigation and detailed analysis of a building’s energy consumption. This detailed analysis gives a clearer picture of where energy can be saved and in what way actions should be made in order to be most efficient. The purpose of energy declarations is therefore only partially fulfilled.
|
96 |
Wood's Potential as an Eco-Friendly Building Material: A Comparative Study of Wood and Steel Columns in Reducing Energy Consumption and Carbon Emissions in ConstructionIbrahim, Shuruq January 2023 (has links)
The building sector contributes significantly to carbon dioxide (CO2) due to the high energy use in building material production. One of the most critical concerns the World Summit on Sustainable Development must address is saving energy. In order to reduce CO2 emissions and their impact on the climate, strategies such as reducing energy demand, increasing efficiency, and using renewable resources instead of fossil fuels need to be implemented. This study was conducted through a mix of qualitative and quantitative methods to examine the possibility of lowering energy use and emissions in columns. The main purpose is to examine the potential environmental impact and energy use using a lifecycle assessment (LCA) approach. Steel production contributes significantly to climate change because it uses a lot of energy and produces many greenhouse gases. In Sweden, the steel industry uses coal as the main fuel, as shown from the data collected. Various studies explore the potential for reducing greenhouse gas (GHG) emissions and improving carbon sinks, such as taking measures in the building, energy supply, and forestry industries. This study concludes that buildings can be designed to be more energy-efficient, with better materials that are energy-efficient and lower carbon emissions. Material substitution can reduce energy use and carbon emissions. The replacement of steel with wood in construction can significantly reduce carbon emissions. The research findings indicate that an effective strategy to enhance the sustainability of buildings during the production phase is to reduce energy consumption and carbon emissions by incorporating wood as a primary building material.
|
97 |
Analysis and simultaion of underfloor heating system for bathrooms in Swedish buildingsFàbregas, Andreu January 2023 (has links)
The pursuit of reducing energy consumption and enhancing thermal efficiency across various sectors to foster sustainable practices has gained significant prominence in recent years, driven by the global environmental crisis. Sweco consultancy has undertaken a study focusing on underfloor heating systems for bathrooms in low-energy buildings located in Sweden. The objective is to analyse the energy usage and thermal loss to the ground based on the thickness of insulation employed. Literature findings indicate that the thermal loss to the ground should comprise approximately 15 % of the total energy, and there exists a logarithmic relationship between the thermal conductivity and density of the insulation material. In the present study, multiple simulation models were developed using IDA-ICE to assess the supplied energy and the percentage of heating loss through the ground for two typical bathrooms situated on adjacent floors of a residential building in Stockholm. The analysis encompasses scenarios where the construction is directly built on the soil or on a concrete slab, as well as the potential thermal loss from the upper level bathroom to the lower level. The results demonstrate that without an insulation layer the heating loss through the ground is remarkably high, approximately 60 %. When employing an insulation thickness of 200 mm or greater, the distinction between constructing on a concrete slab or on the soil becomes negligible. Furthermore, with a 300 mm insulation thickness, the heating loss percentage decreases to over 15 %. The simulations also reveal that the lower level bathroom can benefit from the energy loss occurring in the upper level bathroom. In instances where there is no insulation, the upper level experiences a 56 % energy loss, resulting in energy savings of over 70 % for the lower level bathroom. By incorporating a 45 mm insulation thickness on the upper level floor, this percentage is reduced to 13 %, leading to energy savings of over 25 % for the lower level bathroom.
|
98 |
Vad krävs för en halverad energianvändning i Sveriges bebyggelse till år 2050? : En backcasting studie med sex scenarion för en hållbar energianvändning i den svenska bostads- och servicesektorn / What does it take for a halved energy use in Sweden’s dwellings to the year 2050?Olson, Petter January 2017 (has links)
I Sverige står bostads- och servicesektorn för ca 40 procent av den totala energianvändningen. Riksdagen hade fram till år 2012 ett specifikt mål om att halvera energianvändningen i sektorn till år 2050. I väntan på att ett nytt mål antas skrivs att innebörden för målet kvarstår. Till 2050 ska energianvändningen ha halverats. Denna rapport är en backcastingstudie som har som mål att analysera vad som krävs för att uppnå halveringsmålet genom satsning på fyra huvudåtgärder; nyproduktion, ombyggnad, stegvis förbättring och effektivare användning av bostadsbeståndet. Sex scenarion har satts upp, ett för varje huvudåtgärd och två scenarion som kombinerar de övriga fyra. Resultatet visar vilken väg som kan tänkas vara bäst att gå och at tstora insatser för att nå målet kommer att krävas. Dessa berör bostads- och servicesektorns alla aktörer samt beslutsfattare på samhällets alla nivåer. En beräkning för den potentiella besparingen i koldioxidutsläpp till följd av energiminskningen har också gjorts. Utsläppsminskningarna kan som följd komma att bli av betydande storlek och kan bidra till att Sverige blir ett föregångsland i omställningen till ett hållbart samhälle. / In Sweden, the dwelling and service sector accounts for approximately 40 percent of the total energy use. Up until 2012, the parliament had a specific goal to reduce the energy use by half in the sector to 2050. While waiting for a new goal to be set however, the parliament states that the implication of the goal remains. The energy use shall be reduced by half before the year 2050. This report is a back-casting study that has the aim to analyze what it takes to reach the goal by focusing on four main measures; new construction, reconstruction, gradual improvement and more efficient use of the heated areas in residential buildings. Six scenarios have been set up, one for every main measure and two scenarios that combine the other four. The result shows what path might be best to choose and that extensive and rapid transformationis necessary to reach the goal. These contributions affect all the involved actors as well as stakeholders on all the different levels of society. Resulting reductions in carbon dioxide emissionsdue to the decrease in energy use have also been calculated. The potential reduction can become significant in size and contribute to making Sweden a pioneer in the transformation to asustainable society.
|
99 |
Climate Footprint on Transportation and Storage of Carbon Dioxide (CO2) / Klimatfotavtryck för transport och lagring av koldioxid CO2Erlandsson, Jennifer, Tannoury, Fredrik January 2020 (has links)
In order to combat climate change there is a need to achieve negative emissions. Bio-energy with carbon capture and storage (BECCS) is a promising technology that offers the possibility to remove carbon dioxide (CO2) emissions from the atmosphere. However, this also implies that the BECCS process needs to store more CO2 than it emits. The purpose of this study is to examine the liquefaction, intermediate storage, transportation and long term storage of CO2 and evaluate the climate impact of the energy use and the leakage of CO2. This thesis is based on data collected through an extensive literature study and several interviews that were performed with relevant actors and informants. A key finding in this thesis is that the energy use through the examined steps of BECCS is responsible for the bulk of the CO2 emissions. Liquefaction and the transportation plays an essential role as it has the highest energy usage. Unfortunately the energy use of injecting CO2 into the geological formation remains unknown because of lack of data. The leakages found throughout the process were often negligible or even zero. However the leakages from injecting CO2 through pipeline and the CO2 leakage from long term storage was found to be of some significance. The total BECCS related carbon dioxide equivalent (CO2e) emissions, are summarised in three scenarios ranging from approximately 49-58 kg CO2e per stored tonne of CO2. In these scenario calculations, some assumptions have had to be made. In order to evaluate the true and total environmental impact of BECCS, further research will be needed. / Dagens samhälle står inför avsevärda miljömässiga utmaningar, inte minst då mängden växthusgaser (GHG) i atmosfären kommer behöva reduceras drastiskt för att undvika två graders uppvärmning. Bio-energy with carbon capture and storage (BECCS) är en teknologi med potential att avlägsna koldioxid (CO2) inte bara från nya utsläpp, utan även i bästa fall från atmosfären. I det specifika fall som denna rapport tittar närmare på, förbränns biomassa för att skapa fjärrvärme, men istället för att CO2 släpps ut i luften så fångas den upp och komprimeras till flytande form. Därefter kan CO2 transporteras till en injektionsanläggning för att slutligen pumpas ner i en geologiskt lämplig berggrund. Denna process kan resultera i negativa utsläpp om mer CO2 lagras än vad processen skapar och släpper ut. Målet med detta kandidatexamensarbete är att undersöka energianvändningen och läckaget av CO2 under förvätskningen, den kortsiktiga lagringen, transporten samt den långsiktiga lagringen av CO2. Kandidatexamensarbetet är framförallt baserat på data insamlad i form av en litteraturstudie. Denna data har även kompletterats med data från flertalet intervjuer med forskare och anställda på företag som arbetar med BECCS. Flera antaganden har varit nödvändiga då det i dagsläget finns en brist på information angående energianvändningen och läckaget av CO2 i processens delsteg. Energianvändningen för injektionen av CO2 förblir okänd då det inte fanns någon relevant information att tillgå. Då läckaget visade sig vara försumbart eller noll i flera delsteg, utgör energianvändningen en signifikant andel av de totala utsläppen. De största utsläppen av CO2 inom ramen för BECCS processen orsakas därför av förvätskningsprocessen och transporten av CO2 då dessa delar är mest energikrävande. Resultatet av kandidatexamensarbetet kan sammanfattas i tre scenarion, ett lågt scenario, ett median scenario och ett högt scenario. Slutsatsen var att samtliga inkluderade steg av BECCS resulterar i ett utsläpp mellan 49-58 kg koldioxidekvivalenter (CO2e) per ton CO2 som lagras. För att kunna kvantifiera den totala klimatpåverkan av BECCS finns ett behov av ytterligare studier som tar hänsyn till alla delsteg under processen.
|
100 |
Energiutvärdering av Undervisningshuset på Kungliga Tekniska Högskolan i Stockholm : Uppföljning av energianvändning medelst normalårskorrigering / Energy evaluation of Undervisningshuset at The Royal Institute of Technology in Stockholm : Follow-up of energy use by means of standard year correctionPehrs, Malin, Hjort, Lina January 2020 (has links)
Bostad- och servicesektorn står för cirka 40 % av den totala årliga energianvändningen i Sverige. För nybyggda hus med ambitiösa miljökrav, såsom objektet för denna studie, är en viktig del i hållbarhetsarbetet uppföljning och feedback av energianvändningen för att illustrera sambandet mellan ambition och faktiskt resultat. Energiuppföljning i Undervisningshuset, en byggnad på KTH Campus med ambitiösa visioner om hållbarhet och pedagogik, är därför syftet med denna studie. För att jämföra energianvändningen mellan olika år måste energianvändningen normaliseras vilket sker i två steg; korrigering för normalt brukande och normalårskorrigering. I denna rapport beräknas Undervisningshusets normaliserade energianvändning medelst energisignatur och graddagar, vilken jämförs med den enligt Energideklarationen förväntade energianvändningen som normaliserats med SMHI:s energi-index. Undervisningshusets energiprestanda är enligt energisignaturmetoden 56 kWh/m2 och år och enligt graddagsmetoden 59 kWh/m2 och år, jämfört med den förväntade energiprestandan i Energideklarationen på 60 kWh/m2 och år. Både resultaten för denna rapport och Energideklarationen klassificerar därmed Undervisningshuset med Energiklass B. / The housing- and service sector makes up about 40 % of the total yearly energy use in Sweden. For new buildings with ambitious requirements, such as the object of this study, an important part of the work towards sustainability is follow-up and feedback on its energy use to illustrate the connection between ambition and actual result. Energy follow-up for Undervisningshuset, a building on KTH Campus with ambitious visions of sustainability and pedagogy, is therefore the aim of this study. To compare the energy use in buildings between different years the energy use must be normalized which is done in two steps; correction for normal occupancy and standard year correction. In this report the normalized energy use of Undervisningshuset is calculated by means of energy signature and degree-days, which is compared to the expected energy use according to the Energy Declaration normalized by SMHI’s energy-index. The energy performance of Undervisningshuset is 56 kWh/m2 and year according to the energy signature method and 59 kWh/m2 according to the degree-day method, compared to the expected energy performance in the Energy Declaration of 60 kWh/m2 and year. Both the results of this report and the Energy Declaration thereby classifies Undervisninshuset with Energy Class B.
|
Page generated in 0.0439 seconds